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Abstract

In this work, we evaluate various existing di-
alogue relevance metrics, find strong depen-
dency on the dataset, often with poor correla-
tion with human scores of relevance, and pro-
pose modifications to reduce data requirements
and domain sensitivity while improving corre-
lation. Our proposed metric achieves state-of-
the-art performance on the HUMOD dataset
(Merdivan et al., 2020) while reducing mea-
sured sensitivity to dataset by 37%-66%. We
achieve this without fine-tuning a pretrained
language model, and using only 3, 750 unan-
notated human dialogues and a single negative
example. Despite these limitations, we demon-
strate competitive performance on four datasets
from different domains. Our code, including
our metric and experiments, is open sourced1.

1 Introduction

The automatic evaluation of generative dialogue
systems remains an important open problem, with
potential applications from tourism (Şimşek and
Fensel, 2018) to medicine (Fazzinga et al., 2021).
In recent years, there has been increased focus
on interpretable approaches (Deriu et al., 2021;
Chen et al., 2021) often through combining vari-
ous sub-metrics, each for a specific aspect of dia-
logue (Berlot-Attwell and Rudzicz, 2021; Phy et al.,
2020; Mehri and Eskenazi, 2020b). One of these
key aspects is “relevance” (sometimes called “con-
text coherence”), commonly defined as whether
“[r]esponses are on-topic with the immediate dia-
logue history” (Finch and Choi, 2020).

These interpretable approaches have motivated
measures of dialogue relevance that are not reliant
on expensive human annotations. Such measures
have appeared in many recent papers on dialogue
evaluation, including USR (Mehri and Eskenazi,
2020b), USL-H (Phy et al., 2020), and others (Pang

1https://github.com/ikb-a/
idk-dialogue-relevance

et al., 2020; Merdivan et al., 2020). Additionally,
dialogue relevance has been used directly in train-
ing dialogue models (Xu et al., 2018).

Despite this work, comparison between these ap-
proaches has been limited. Aggravating this prob-
lem is that authors often collect human annotations
on their own datasets with varying amounts and
types of non-human responses. Consequently, di-
rect comparisons are not possible. It is known that
metrics of dialogue quality often perform poorly
on new test sets of quality ratings (Yeh et al., 2021),
but it remains an open question whether poor gen-
eralization also plagues the much simpler dialogue
relevance task. We address this problem by evalu-
ating and comparing six prior approaches on four
publicly available datasets of dialogue annotated
with human ratings of relevance. We find poor cor-
relation with human ratings across various methods,
with high sensitivity to dataset.

Based on our observations, we propose a simple
metric of logistic regression trained on pretrained
BERT NSP features (Devlin et al., 2019), using “i
don’t know.” as the only negative example. With
this metric, we achieve state-of-the-art correlation
on the HUMOD dataset (Merdivan et al., 2020).
We release our metric and evaluation code to en-
courage comparable results in future research.

Our primary contributions are: (i) empirical ev-
idence that current dialogue relevance metrics for
English are sensitive to dataset, and often have
poor correlation with human ratings, (ii) a simple
relevance metric that exhibits good correlation and
reduced domain sensitivity, and (iii) the counter-
intuitive result that a single negative example can
be equally effective as random negative sampling.

2 Prior metrics

Prior metrics of relevance in dialogue can generally
be divided into more traditional approaches that are
token-based, and more current approaches based on
large pretrained models. These metrics are given
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the context (i.e., the two-person conversation up
to a given point in time), as well as a response
(i.e., the next speaker’s response, also known as the
‘next turn’ in the conversation). From these, they
produce a measure of the response’s relevance to
the context. The ground-truth response (i.e., the
‘gold response’) may or may not be available.

2.1 n-gram approaches
There have been attempts to use metrics based on
n-grams from machine-translation and summariza-
tion, such as BLEU (Papineni et al., 2002), ROUGE
(Lin, 2004), and METEOR (Banerjee and Lavie,
2005) in dialogue. However, we discard these ap-
proaches due to their limitations: they require a
ground-truth response, and correlate poorly with
dialogue relevance (Merdivan et al., 2020).

2.2 Average-embedding cosine similarity
Xu et al. (2018) proposed to measure the cosine
similarity of a vector representation of the context
and the response. Specifically, the context and re-
sponse are represented via an aggregate (typically
an average) of the uncontextualized word embed-
dings. This approach can be modified to exploit
language models by instead using contextualized
word embeddings.

2.3 Fine-tuned embedding model for Next
Utterance Prediction (NUP)

This family of approaches combines a word em-
bedding model (typically max- or average-pooled
BERT word embeddings) with a simple 1-3 layer
MLP, trained for next utterance prediction (typi-
cally using negative sampling) (Mehri and Eske-
nazi, 2020b; Phy et al., 2020). The embedding
model is then fine-tuned to the domain of interest.
In some variants, the model is provided with in-
formation in addition to the context and response;
e.g., Mehri and Eskenazi (2020b) appended a topic
string to the context. This approach has also been
directly used as a metric of overall dialogue qual-
ity (Ghazarian et al., 2019). In this paper, we fo-
cus on the specific implementation by Phy et al.
(2020): max-pooled BERT embeddings passed into
a single-layer MLP followed by two-class softmax,
trained with binary cross-entropy (BCE) loss and
random sampling of negative samples.

Note that, for methods that are fine-tuned or oth-
erwise require training, it will often be the case
that annotated relevance data is not available on the
domain of interest. As a result, model performance

cannot be measured on a validation set during train-
ing. Therefore, either the method must be trained
to convergence on the training set, or a different
method other than validation set performance must
be employed to reduce the risk of halting training
on a model with poor performance.

Another concern with using trained metrics to
evaluate trained dialogue systems is that they may
both learn the same patterns in the training data.
An extreme example would be a dialogue model
that learns only to reproduce responses from the
training data verbatim, and a relevance metric that
learns to only accept verbatim responses from the
training data. We believe that this risk can be re-
duced by training the metric on separate data from
the model. However, this approach is only prac-
tical if the metric can be trained with a relatively
small amount of data and therefore does not com-
pete with the dialogue model for training examples.
Alternatively, a sufficiently generalizable metric
may be trained on data from a different domain.

2.4 Normalized conditional probability

Pang et al. (2020) also exploited pretrained models,
however they instead relied on a generative lan-
guage model (specifically GPT-2). Their proposed
metric is the conditional log-probability of the re-
sponse given the context, normalized to the range
[0, 1] (see Appendix D.1 for details).

Mehri and Eskenazi (2020a) also relied on a
generative language model (specifically, DialoGPT
(Zhang et al., 2020)), however their approach mea-
sured the probability of followup-utterances, e.g.,
“Why are you changing the topic?” to indicate ir-
relevance. Their relevance and correctness scores
are defined as c(q | r) = −∑|n|

i=1 logP (ni | r, q),
where ni ∈ n is a negative response suggesting ir-
relevance or incorrectness. Note that positive utter-
ances can be used, however the author’s measures
of correctness and relevance only used negative
utterances.

3 Datasets used for analysis

A literature review reveals that many of these meth-
ods have never been evaluated on the same datasets.
As such, it is unclear both how these approaches
compare, and how well they generalize to new data.
For this reason, we consider four publicly avail-
able English datasets of both human and synthetic
dialogue with human relevance annotations. All
datasets are annotated with Likert ratings of rele-
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Dataset Superset Contexts Turns per
Context

Responses
per
Context

Response types Relevance
Annotation

HUMOD (Merdivan et al., 2020) Cornell movie dialogue
(Danescu-Niculescu-Mizil and
Lee, 2011)

4, 750 2-7 2 Human, Random Human Likert 1-5

USR-TC (Mehri and Eskenazi, 2020b) Topical Chat (Gopalakrishnan
et al., 2019)

60 1-19 6 Human (x2), Transformer (x4) Likert 1-3

P-DD (Pang et al., 2020) DailyDialogue (Li et al., 2017) 200 1 1 LSTM Likert 1-5
FED (Mehri and Eskenazi, 2020a) N/A 375 3-33 1 Human, Meena (Adiwardana

et al., 2020), or Mitsuku
Likert 1-3
(relevance and
correctness)

Table 1: Summary of datasets used.

vance from multiple reviewers; following Merdi-
van et al. (2020), we average these ratings over
all reviewers. Due to variations in data collection
procedures, as well as anchoring effects (Li et al.,
2019), Likert ratings from different datasets may
not be directly comparable. Consequently, we keep
the datasets separate. This also allows us to observe
generalization across datasets.

Altogether, our selected datasets cover a wide va-
riety of responses, including human, LSTM, Trans-
former, Meena (Adiwardana et al., 2020), and Mit-
suku2 generated responses, and random distractors.
See Table 1 for an overview.

3.1 HUMOD Dataset
The HUMOD dataset (Merdivan et al., 2020) is
an annotated subset of the Cornell movie dialogue
dataset (Danescu-Niculescu-Mizil and Lee, 2011).
The Cornell dataset consists of 220, 579 conversa-
tions from 617 films. The HUMOD dataset is a
subset of 4, 750 contexts, each consisting of be-
tween two and seven turns. Every context is paired
with both the original human response, and a ran-
domly sampled human response. Each response is
annotated with crowd-sourced ratings of relevance
from 1-5. The authors measured inter-annotator
agreement via Cohen’s kappa score (Cohen, 1968),
and it was found to be 0.86 between the closest rat-
ings, and 0.42 between randomly selected ratings.
Following the authors, we split the dataset into a
training set consisting of the first 3, 750 contexts, a
validation set of the next 500 contexts, and a test-
set of the remaining 500 contexts. As it is unclear
how HUMOD was subsampled from the Cornell
movie dialogue dataset, we do not use the Cornell
movie dialogue dataset as training data.

3.2 USR Topical-Chat Dataset (USR-TC)
The USR-TC dataset is a subset of the Topical-
Chat (TC) dialogue dataset (Gopalakrishnan et al.,

22019 Loebner prize winning system

2019) created by Mehri and Eskenazi (2020b).
The Topical-Chat dataset consists of approximately
11, 000 conversations between Amazon Mechani-
cal Turk workers, each grounding their conversa-
tion in a provided reading set. The USR-TC dataset
consists of 60 contexts taken from the TC frequent
test set, each consisting of 1-19 turns. Every con-
text is paired with six responses: the original hu-
man response, a newly created human response,
and four samples taken from a Transformer dialog
model (Vaswani et al., 2017). Each sample fol-
lows a different decoding strategy, namely: argmax
sampling, and nucleus sampling (Holtzman et al.,
2020) at the rates p = 0.3, 0.5, 0.7, respectively.
Each response is annotated with a human 1-3 score
of relevance, produced by one of six dialogue re-
searchers. The authors reported an inter-annotator
agreement of 0.56 (Spearman’s correlation). We
divide the dataset evenly into a validation and test
set, each containing 30 contexts. We use the TC
train set as the training set.

3.3 Pang et al. (2020) Annotated
DailyDialogue Dataset (P-DD)

The P-DD dataset (Pang et al., 2020) is a subset of
the DailyDialogue (DD) dataset (Li et al., 2017).
The DailyDialogue dataset consists of 13, 118 con-
versations scraped from websites where English
language learners could practice English conversa-
tion. The P-DD dataset contains 200 contexts, each
of a single turn and paired with a single synthetic
response, generated by a 2-layer LSTM (Bahdanau
et al., 2015). Responses are sampled using top-K
sampling for k ∈ {1, 10, 100}; note that k varies
by context. Each response is annotated with ten
crowdsourced 1-5 ratings of relevance with a re-
ported inter-annotator Spearman’s correlation be-
tween 0.57 and 0.87. Due to the very small size
of the dataset (only 200 dialogues in total), and
the lack of information on how the contexts were
sampled, we use this dataset exclusively for testing.
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3.4 FED Dataset
The FED dataset (Mehri and Eskenazi, 2020a), con-
sists of 375 annotated dialogue turns taken from
40 human-human, 40 human-Meena (Adiwardana
et al., 2020), and 40 human-Mitsuku conversations.
We use a subset of the annotations, specifically
turnwise relevance, and turnwise correctness (the
latter defined by the authors as whether there was a
“a misunderstanding of the conversation”). As the
authors note, their definition of correctness is often
encapsulated within relevance; we thus evaluate on
both annotations. Due to the small size, we used
this dataset only for testing.

4 Evaluating Prior Metrics

For each of the aforementioned datasets, we evalu-
ate the following relevance metrics:

• COS-FT: average fastText 3 embedding cosine
similarity. Code by Csáky et al. (2019)

• COS-MAX-BERT: Cosine similarity with
max-pooled BERT contextualized word em-
beddings, inspired by BERT-RUBER (Ghaz-
arian et al., 2019)

• COS-NSP-BERT: Cosine similarity using the
pretrained features extracted from the [CLS]
token used by next-sentence-prediction head.

• NUP-BERT: Fine-tuned BERT next-utterance
prediction approach. Implementation by Phy
et al. (2020). We experiment with fine-tuning
BERT to the HUMOD train set (3750 dia-
logues), the full TC train set, and TC-S (a
subset of the TC training set containing 3, 750
dialogues).

• NORM-PROB: GPT-2 based normalized
conditional-probability; approach and imple-
mentation by Pang et al. (2020); note that the
P-DD dataset was released in the same paper.

• FED-RELEVANT & FED-CORRECT:
DialoGPT based normalized conditional-
probability; approach and implementation by
Mehri and Eskenazi (2020a)

In all cases, we use hugging-face
bert-base-uncased as the pretrained
BERT model. Only NUP-BERT was fine-tuned.
To prevent an unfair fitting to any specific dialogue
model, and to better reflect the evaluation of a new
dialogue model, only human responses were used

3https://fasttext.cc/

at train time. All hyperparameters were left at their
recommended values. NUP-BERT performance is
averaged over 3 runs.

Note that we also evaluate GRADE (Huang et al.,
2020) and DYNA-EVAL (Zhang et al., 2021); how-
ever these do not measure relevance, but rather
dialogue coherence: “whether a piece of text is
in a consistent and logical manner, as opposed to
a random collection of sentences” (Zhang et al.,
2021). As relevance is a major aspect of dialogue
coherence, we include these baselines for complete-
ness. As both metrics are graph neural networks
intended for larger train sets, we use checkpoints
provided by the authors. GRADE is trained on
DailyDialogue (Li et al., 2017), and DynaEval on
Empathetic Dialogue (Rashkin et al., 2019). Both
are trained with negative sampling, with GRADE
constructing more challenging negative samples.

A summary of the authors’ stated purpose for
each metric can be found in the Appendix C.

4.1 Analysis

Table 2 makes it clear that the normalized probabil-
ity and cosine similarity approaches do not general-
ize well across datasets. Although NORM-PROB
excels on the P-DD dataset, it has weak perfor-
mance on HUMOD and a significant negative cor-
relation on USR-TC. Likewise the FED metrics
perform well on the FED data, but are negatively
correlated on all other datasets. Consequently, we
believe that the NORM-PROB and FED metrics are
overfitted to their corresponding datasets. Similarly,
although COS-FT has the best performance on the
USR-TC dataset, it performs poorly on HUMOD,
and has negative correlation on P-DD. As such, it is
clear that, while both cosine-similarity and normal-
ized probability approaches can perform well, they
have serious limitations. They are very sensitive
to the domain and models under evaluation, and
are capable of becoming negatively correlated with
human ratings under suboptimal conditions.

Looking at the dialogue coherence metrics,
DYNA-EVAL performs strongly on FED, and
weakly on all other datasets. GRADE performs
very strongly on HUMOD and P-DD (the latter,
likely in part as it was trained on DailyDialogue),
but is uncorrelated on USR-TC. Given that these
metrics were not intended to measure relevance,
uneven performance is to be expected as relevance
and dialogue coherence will not always align.

The final baseline, NUP-BERT, is quite com-
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HUMOD USR-TC P-DD FED-Correctness FED-Relevance
Prior Metric S P S P S P S P S P
COS-FT 0.09 0.10 *0.26 *0.24 −0.02 −0.04 0.08 0.04 0.11 0.07
COS-MAX-BERT *0.13 *0.10 *0.20 0.14 0.03 0.02 0.03 0.01 0.06 0.04
COS-NSP-BERT 0.08 0.06 0.08 0.09 *0.30 *0.23 −0.03 −0.01 −0.04 −0.02
NORM-PROB *0.19 *0.16 *−0.24 *−0.26 *0.65 *0.59 0.05 0.06 0.07 0.07
FED-CORRECT −0.06 −0.04 −0.08 −0.12 *−0.25 *−0.26 *0.17 *0.17 *0.15 *0.15
FED-RELEVANT −0.06 −0.05 −0.08 −0.12 *−0.26 *−0.27 *0.17 *0.17 *0.15 *0.15
GRADE *0.61 *0.61 0.00 0.03 *0.70 *0.68 0.12 0.12 *0.15 *0.15
DYNA-EVAL *0.09 *0.10 0.10 0.10 0.00 -0.02 *0.26 *0.27 *0.32 *0.31
NUP-BERT (H) *0.33 (0.02) *0.37 (0.02) 0.10 (0.02) *0.22 (0.01) *0.62 (0.04) *0.54 (0.02) �0.14 (0.04) *0.21 (0.03) *0.22 (0.01) *0.30 (0.01)
NUP-BERT (TC-S) *0.29 (0.02) *0.35 (0.03) �0.17 (0.03) �0.20 (0.04) *0.58 (0.05) *0.56 (0.04) 0.05 (0.04) 0.12 (0.01) �0.16 (0.04) *0.21 (0.01)
NUP-BERT (TC) *0.30 (0.01) *0.38 (0.00) 0.16 (0.02) *0.21 (0.02) *0.62 (0.05) *0.58 (0.04) 0.06 (0.01) �0.12 (0.02) *0.18 (0.02) *0.23 (0.01)

Table 2: Spearman (S) and Pearson (P) correlations of baseline models with average human ratings on the test sets.
BERT-NUP is averaged over three runs, with the standard deviation reported in brackets. Training data is specified
in brackets: (H) signifies HUMOD, (TC) signifies the Topical Chat training set, and (TC-S) signifies a subset of
TC containing 3, 750 dialogues (same size as the HUMOD train set). ‘*’ indicates all trials were significant at the
p < 0.01 level. ‘�’ indicates at least one trial was significant. Note that most cosine and language-model based
metrics attain negative correlation with human scores.

HUMOD USR-TC P-DD FED-Correctness FED-Relevance
Prior Metric S P S P S P S P S P
NUP-BERT (H) *0.33 (0.02) *0.37 (0.02) 0.10 (0.02) *0.22 (0.01) *0.62 (0.04) *0.54 (0.02) �0.14 (0.04) *0.21 (0.03) *0.22 (0.01) *0.30 (0.01)
NUP-BERT (TC-S) *0.29 (0.02) *0.35 (0.03) �0.17 (0.03) �0.20 (0.04) *0.58 (0.05) *0.56 (0.04) 0.05 (0.04) 0.12 (0.01) �0.16 (0.04) *0.21 (0.01)
NUP-BERT (TC) *0.30 (0.01) *0.38 (0.00) 0.16 (0.02) *0.21 (0.02) *0.62 (0.05) *0.58 (0.04) 0.06 (0.01) �0.12 (0.02) *0.18 (0.02) *0.23 (0.01)
IDK (H) *0.58 (0.00) *0.58 (0.00) 0.18 (0.00) *0.24 (0.00) *0.53 (0.00) *0.48 (0.01) *0.15 (0.00) *0.23 (0.00) *0.24 (0.00) *0.29 (0.00)
IDK (TC-S) *0.58 (0.00) *0.58 (0.00) 0.18 (0.00) *0.22 (0.00) *0.54 (0.01) *0.49 (0.01) *0.15 (0.00) *0.23 (0.00) *0.24 (0.00) *0.29 (0.00)

Table 3: Comparison of our proposed metric (IDK) against the NUP-BERT baseline on the test set. Note the strong
improvement on HUMOD and equivalent, or slightly improved performance on USR-TC, at the cost of performance
loss on P-DD. Note IDK (H) and IDK (TC-S) performance is almost identical, suggesting that IDK performance is
largely independent of training data.

petitive, outperforming each of the other baselines
on at least 2 of the datasets. Despite this, we can
see that performance on HUMOD, USR-TC, and
FED is still fairly weak. We can also observe that
NUP-BERT has some sensitivity to the domain of
the training data; fine-tuning on HUMOD data re-
sults in lower Spearman’s correlation on USR-TC,
and fine-tuning on USR-TC performs worse on the
FED datasets. However, the amount of training
data (TC vs TC-S) has little impact.

Overall, the results of Table 2 are concerning as
they suggest that at least five current approaches
generalize poorly across either dialogue models or
domains. The absolute performance of all metrics
studied vary considerably by dataset, and the rel-
ative performance of closely related metrics such
as COS-FT and COS-NSP-BERT, or NUP-BERT
with different training data, varies considerably
between datasets. As a result, research into new di-
alogue relevance metrics is required. Furthermore,
it is clear that the area’s evaluation methodology
must be updated to use various dialogue models in
various different domains.

5 IDK: A metric for dialogue relevance

Based on these results, we propose a number of
modifications to the NUP-BERT metric to produce
a novel metric that we call IDK (“I Don’t Know”).
The architecture is mostly unchanged, however the
training procedure and the features used are altered.

First, based on the observation that the amount
of training data has little impact, we freeze BERT
features and do not fine-tune to the domain. Ad-
ditionally, whereas the NUP-BERT baseline uses
max-pooled BERT word embeddings, we use the
pre-trained next sentence prediction (NSP) features:
“(classification token) further processed by a Linear
layer and a Tanh activation function [...] trained
from the next sentence prediction (classification)
objective during pre-training”4.

Second, to improve generalization and reduce
variation in training (particularly important as the
practitioner typically has no annotated relevance
data), and operating on the assumption that rele-
vance is captured by a few key dimensions of the
NUP features, we add L1 regularization to our re-
gression weights (λ = 1). Note that experiments
with L2 regularization yielded similar validation

4https://huggingface.co/transformers/
v2.11.0/model_doc/bert.html
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set performance (see Appendix, Table 10).

Third, in place of random sampling we use a
fixed negative sample, “i don’t know". This allows
us to train the model on less data.

Additionally, we simplify the model, using lo-
gistic regression in place of 2-class softmax. We
train for 2 epochs using BCE loss – the same as the
NUP-BERT baseline. We use the Adam optimizer
(Kingma and Ba, 2015) with an initial learning rate
of 0.001, and batch size 6.

Table 3 reports the correlation between the met-
ric’s responses and the average human rating. We
achieve a Pearson’s correlation on HUMOD of
0.58, surpassing HUMOD baselines (Merdivan
et al., 2020), and achieving parity with GRADE
(0.61). Examples of the our metric’s output on
the HUMOD dataset, and a scatter plot of IDK vs
human scores are in Appendices A and F, respec-
tively.

Compared to NUP-BERT, our proposed met-
ric provides strong improvement on the HUMOD
dataset and equivalent or stronger performance on
USR-TC and FED, at a cost of performance on P-
DD. In particular, IDK (TC-S) performance on the
FED datasets is considerably stronger than NUP-
BERT (TC-S). As the performance drop on P-DD
is less than the performance gain on HUMOD, and
as HUMOD is human data rather than LSTM data,
we consider this tradeoff to be a net benefit.

Compared to GRADE in particular, we have re-
duced performance on P-DD, equivalent perfor-
mance on HUMOD, and stronger performance on
USR-TC and FED (in particular, correlation on the
USR-TC dataset is non-zero). It is worth noting
that, in general, our approach does not out-perform
the baselines in all cases – only the majority of
cases. As such, when annotated human data is
not available for testing, it would appear that our
approach is the preferred choice.

Our metric is also preferable, as it is less sensi-
tive to domain. To numerically demonstrate this,
we measure the domain sensitivity of the evaluated
metrics as the ratio of best Spearman’s correlation
to worst Spearman’s correlation – this value should
be positive (i.e., there is no dataset where the met-
ric becomes negatively correlated), and as close to
1 as possible (i.e., there is no difference in perfor-
mance). Looking at Table 10, we find IDK strongly
outperforms all prior metrics, reducing this ratio by
more than 37%-66% compared to the best baseline.

Prior Metric Ratio
FED-CORRECT −0.7
FED-RELEVANT −0.7
NORM-PROB −2.7
COS-NSP-BERT −7.5
COS-FT −13
GRADE ∞
DYNA-EVAL ∞
NUP-BERT (TC-S) 11.6
NUP-BERT (TC) 10.3
COS-MAX-BERT 6.7
NUP-BERT (H) 6.2
IDK (H) 3.9
IDK (TC-S) 3.9

Table 4: Ratio of best Spearman correlation to worst on
all datasets for all metrics. Sorted in improving order.

5.1 Testing NSP feature dimensionality

As a followup experiment, we tested our assump-
tion that only a fraction of the BERT-NSP features
are needed. Plotting the weights learned by IDK
on HUMOD, we found a skewed distribution with
a small fraction of weights with magnitude above
0.01 (See Appendix, Figure 1). Hypothesizing that
the largest weights correspond to the relevant di-
mensions, we modified the pretrained huggingface
NSP BERT to zero all dimensions of the NSP fea-
ture, except for the 7 dimensions corresponding to
the largest IDK HUMOD weights. We then eval-
uated NSP accuracy on three NLTK (Bird et al.,
2009) corpora: Brown, Gutenburg, and Webtext.
As expected, we found that reducing the dimen-
sionality from 768 to 7 had no negative impact (see
Appendix, Table 7). Again, note that the mask was
created using IDK trained on HUMOD data, and
the weights of BERT and the NSP prediction head
were in no way changed. Therefore, it is clear that
(at least on these datasets) over 99% of the BERT
NSP feature dimensions can be safely discarded.

5.2 Ablation tests

Table 5 outlines correlation when ablating the L1
regularization, or when using randomly sampled
negative samples in place of “i don’t know". Ran-
dom samples are produced by shuffling the re-
sponses of the next 3, 750 dialogues in the dataset.

Overall, it appears that the majority of the per-
formance gains come from the combination of L1
regularization with pretrained BERT NSP features.
The clearest observation is that L1 regularization is
critical to good performance when using “i don’t
know" in place of random samples – otherwise, the
model presumably overfits. Second, using “i don’t
know" in place of random samples has a mixed,
but relatively minor effect. Thirdly, the effect of
L1 regularization is quite positive when training on
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HUMOD USR-TC P-DD FED-Correctness FED-Relevance
Data L1 idk S P S P S P S P S P
H ✓ ✓ *0.58 (0.00) *0.58 (0.00) 0.18 (0.00) *0.24 (0.00) *0.53 (0.00) *0.48 (0.01) *0.15 (0.00) *0.23 (0.00) *0.24 (0.00) *0.29 (0.00)
H ✓ *0.42 (0.06) *0.42 (0.05) *0.24 (0.00) *0.25 (0.00) *0.29 (0.06) *0.32 (0.03) *0.14 (0.00) *0.17 (0.01) *0.21 (0.01) *0.19 (0.02)
H ✓ *0.61 (0.00) *0.61 (0.00) 0.12 (0.00) *0.21 (0.01) *0.55 (0.00) *0.52 (0.01) 0.09 (0.00) *0.19 (0.01) *0.17 (0.00) *0.26 (0.01)
H *0.60 (0.00) *0.61 (0.00) 0.18 (0.00) *0.26 (0.01) *0.54 (0.00) *0.50 (0.01) 0.10 (0.02) �0.11 (0.02) �0.14 (0.02) 0.09 (0.03)
TC-S ✓ ✓ *0.58 (0.00) *0.58 (0.00) 0.18 (0.00) *0.22 (0.00) *0.54 (0.01) *0.49 (0.01) *0.15 (0.00) *0.23 (0.00) *0.24 (0.00) *0.29 (0.00)
TC-S ✓ *0.36 (0.04) *0.34 (0.05) 0.17 (0.01) 0.11 (0.01) *0.34 (0.03) *0.32 (0.04) *0.14 (0.00) *0.15 (0.01) *0.21 (0.00) *0.17 (0.01)
TC-S ✓ *0.59 (0.01) *0.54 (0.03) �0.18 (0.04) *0.27 (0.02) *0.52 (0.03) *0.43 (0.05) �0.14 (0.01) *0.21 (0.00) *0.22 (0.01) *0.29 (0.01)
TC-S *0.35 (0.07) *0.41 (0.01) �0.13 (0.10) *0.21 (0.03) �0.23 (0.10) �0.27 (0.11) 0.05 (0.06) 0.11 (0.03) �0.12 (0.12) �0.18 (0.04)

Table 5: Test correlation of various ablations of the proposed metric. The L1 column signifies whether L1
regularization is used (λ = 1), and the “idk” column indicates whether the negative samples are “i don’t know”, or a
random shuffle of 3, 750 other human responses. Note that L1 regularization is beneficial when training on TC-S.

TC data (regardless of the negative samples), and
mixed but smaller when training on HUMOD data.
Overall, this suggests that when a validation set
of domain-specific annotated relevance data is not
available, then L1 regularization may be helpful.
Its effect varies by domain, but appears to have a
much stronger positive effect than a negative effect.

The result that L1 regularization allows us to
use “i don’t know” in place of random negatives
samples is quite interesting, as it seems to counter
work in contrastive representation learning (Robin-
son et al., 2021), and dialogue quality evaluation
(Lan et al., 2020) suggesting that “harder” negative
examples are better. We believe that the reason
for this apparent discrepancy is that we are not
performing feature learning; the feature space is
fixed, pretrained, BERT NSP. Furthermore, we’ve
shown that this feature space is effectively 7 dimen-
sional. As a result, we believe that the L1 regular-
ization causes an effective projection to 7D. Con-
sequently, as our model is low-capacity, “i don’t
know” is sufficient to find the separating hyper-
plane. Having said this, it is still unclear why we
see improved performance on FED when training
on HUMOD data. Comparing the histograms of
learned weight magnitudes (see Appendix, Figure
2) we find that the ablated model has larger number
of large weights – we speculate that the random
negative samples’ variation in irrelevant aspects
such as syntactic structure is responsible.

5.3 Additional Experiments
We repeated our IDK experiments with two dif-
ferent fixed negative samples; performance and
domain sensitivity are generally comparable, al-
though unexpectedly more sensitive to the choice
of training data (see Appendix J). We also experi-
mented with using the pretrained BERT NSP pre-
dictor as a measure of relevance, however perfor-
mance is considerably worse on the longer-context
FED dataset (see Appendix I). Finally, we observed

that BCE loss encourages the model to always map
“i don’t know” to zero; yet, the relevance of “i
don’t know” varies by context. Unfortunately, ex-
periments with a modified triplet loss did not yield
improvements (see Appendix H).

6 Related Work

In addition to the prior metrics already discussed,
the area of dialogue relevance is both motivated
by, and jointly developed with, the problem of
automatic dialogue evaluation. As relevance is
a major component of good dialogue, there is a
bidirectional flow of innovations. The NUP-BERT
relevance metric is very similar to BERT-RUBER
(Ghazarian et al., 2019); both train a small MLP
to perform the next-utterance-prediction task based
on aggregated BERT features. Both of these share a
heritage with earlier self-supervised methods, such
as adversarial approaches to dialogue evaluation
that train a classifier to distinguish human from
generated samples (Kannan and Vinyals, 2017).
Another example of shared development is the use
of word-overlap metrics such as BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004) that have been
imported wholesale into both dialogue relevance
and overall quality from the fields of machine-
translation and summarization, respectively.

Simultaneously, metrics of dialogue evaluation
have been motivated by dialogue relevance. There
is a long history of evaluating dialogue models on
specific aspects; Finch and Choi (2020) performed
a meta-analysis of prior work, and proposed di-
mensions of: grammaticality, relevance, informa-
tiveness, emotional understanding, engagingness,
consistency, proactivity, and satisfaction. New ap-
proaches to dialogue evaluation have emerged from
this body of work, seeking to aggregate individual
measures of various dimensions of dialogue, often
including relevance (Mehri and Eskenazi, 2020b;
Phy et al., 2020; Berlot-Attwell and Rudzicz, 2021).
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These approaches also share heritage with earlier
ensemble measures of dialogue evaluation such as
RUBER (Tao et al., 2018) – although in the case
of RUBER, it combined a referenced and unrefer-
enced metric rather than separate aspects.

Metrics of dialogue relevance and quality also
share common problems such as the diversity of
valid responses. Our findings that existing rele-
vance metrics generalize poorly to new domains
is consistent with previous findings about metrics
of dialogue quality (Lowe, 2019; Yeh et al., 2021).
Thus, our work suggests that this challenge extends
to the subproblem of dialogue relevance as well.

At the same time, it must be remembered that
measuring holistic dialogue quality is a very dif-
ferent task from measuring dialogue relevance – it
is well established that aspects of dialogue such as
fluency, and interestingness are major components
of quality (Mehri and Eskenazi, 2020b,a), and these
should have no impact on relevance.

With respect to prior work comparing relevance
metrics, we are aware of only one tangential work.
Yeh et al. (2021) performed a comparison of vari-
ous metrics of dialogue quality; within this work
they dedicated three paragraphs to a brief com-
parison of how these quality metrics performed at
predicting various dialogue qualities, including rel-
evance. They reported results on only two of the
datasets we used (P-DD and FED). Interestingly,
the authors found that the FED metric performs
well on P-DD (reporting a Spearman’s correlation
of 0.507), however our results demonstrate that
the components of FED that are meant to mea-
sure relevance (i.e. FED-REL and FED-COR) are
significantly negatively correlated with human rel-
evance scores. Additionally, as Yeh et al. (2021)
focus on quality, they do not compare performance
between the two relevance datasets. Instead they
compare performance on quality against perfor-
mance on relevance, and use the discrepancy to
conclude that measuring relevance alone (as done
by NORM-PROB) is insufficient to determine qual-
ity. Although we agree that relevance alone is in-
sufficient for dialogue quality evaluation, our work
provides a richer understanding. Our finding that
NORM-PROB performs poorly across a range of
relevance datasets suggests that the poor perfor-
mance of NORM-PROB in the quality-prediction
task is also caused by the poor relevance general-
ization in addition to the insufficiency of relevance
to measure overall quality.

7 Discussion

Our experiments demonstrate that several pub-
lished measures of dialogue relevance have poor, or
even negative, correlation when evaluated on new
datasets of dialogue relevance, suggesting overfit-
ting to either model or domain. As such, it is clear
that further research into new measures of dialogue
relevance is required, and that care must be taken
in their evaluation to compare against a number of
different models in a number of domains. Further-
more, it is also clear that for the current practitioner
who requires a measure of relevance, there are no
guarantees that current methods will perform well
on a given domain. As such, it is wise to collect
a validation dataset of human-annotated relevance
data for use in selecting a relevance metric. If this
is not possible, then our metric, IDK, appears to
be the best option – achieving both good correla-
tion and the lowest domain sensitivity, even when
trained on different domains. Furthermore, when
training data is scarce, our results suggest that the
use of strong regularization allows for the use of
a single negative example, “i don’t know”, in the
place of randomly sampled negative samples. If
that is still too data intensive, then our results sug-
gest that our metric is fairly agnostic to the domain
of the training data; therefore training data can be
used from a different dialogue domain in place of
the domain of interest.

Having said this, it is clear that further research
into what exactly these metrics are measuring, and
why they fail to generalize, is merited. The re-
sults are often counter-intuitive; our demonstration
that 99% of the BERT NSP features can be safely
discarded is just one striking example. Similarly,
although our empirical results suggest that use of
a single negative example generalizes across do-
mains, there is no compelling theoretical reason
why this should be so. More generally, all the
metrics outlined are complex, dependent on large
corpora, and created without ground truth annota-
tions. As a result, they are all dependent on either
surrogate tasks (i.e., NUP), or unsupervised learn-
ing (e.g., FastText embeddings). Consequently, it is
especially difficult to conclude what exactly these
metrics are measuring. At present, the only strong
justification that these metrics are indeed measur-
ing relevance is good correlation with human judge-
ments – poor generalization across similar domains
is not an encouraging result.

Although the metric outlined is not appropri-
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ate for final model evaluation (as it risks unfairly
favouring dialogue models based on the same pre-
trained BERT, or similar architectures), our aim
is to provide a useful metric for rapid prototyping
and hyperparameter search. Additionally, we hope
that our findings on the domain sensitivity of exist-
ing metrics will spur further research into both the
cause of – and solutions to – this problem.

8 Conclusion

Our work demonstrates that several existing met-
rics of dialogue relevance are problematic as their
performance varies wildly between test-domains.
We take a first step towards resolving this issue by
proposing IDK: a simple metric that is less sensi-
tive to test domain and trainable with minimal data.
We reduce IDK’s data requirements through the
novel use of a fixed negative example, provide evi-
dence that the underlying BERT NSP features are
low-dimensional, and propose that this fact (com-
bined with IDK’s lack of feature learning) allows
for the counter-intuitive use of a single negative
example. Beyond this, we call for better evaluation
of future relevance metrics, and thus release our
code for processing four diverse, publicly available,
relevance-annotated data sets.
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A Example Evaluations

Dialogue Turn Human IDK
Mommy – - -
Yes, darling. - -
Did you ever make a wish? - -
Oh, lots of times. - -
Did your wishes ever come
true?

5.00 4.97

What’s your real name? 1.00 3.81
Sometimes. 4.67 4.60
From high school Mary? Yeah,
I saw her about six months ago
at a convention in Las Vegas.

1.00 1.13

I made a wish today, and it
came true just like Edward said
it would.

5 4.9

When I am sure I am among
friends.

2.33 3.01

Yes, Albert? - -
John, we’re going huntin’. - -
Who’s goin? - -
We’re all going. - -
Nick’s going? 4.67 4.65
I will keep you safe. We are
both older.

2.00 1.09

Nick , Vince , Albert and John. 4.00 4.95
A ride? Hell, that’s a good idea.
Okay, let’s go. Hey, let’s go.

2.33 4.68

No women? 4.00 2.39
I guess so 3.00 2.59

Table 6: Two multi-turn examples from HUMOD test
set. The randomly sampled distractor turns are italicized,
and are not part of the context in subsequent turns. For
ease of comparison, the scores generated by our metric
(IDK trained on HUMOD) are linearly shifted and re-
scaled to 1-5.

B NSP Masking Experiment Results

The results of the NSP masking experiment are
outlined in Table 7. Note that masking > 99% of
the NSP feature had no impact on the pretrained
model, and actually improved accuracy by 2.8%
on the Webtext corpus.

C Exact objectives of prior metrics

In this section, we briefly outline the stated purpose
of each of our relevance metrics evaluated:

Masked Brown Gutenburg Webtext
85.7% 75.3% 65.4%

✓ 85.6% 75.5% 68.2%

Table 7: Next Sentence Prediction (NSP) performance
on various NLTK (Bird et al., 2009) corpora using a
pre-trained BERT and NSP head. When masked, we
zero-out the 768-dim BERT NSP feature, leaving only
the 7 dimensions corresponding to the largest magnitude
weights in IDK (H) (i.e., we zero out > 99% of the
feature vector).

• COS-FT: “In this work, given a dialogue his-
tory, we regard as a coherent response an ut-
terance that is thematically correlated and nat-
urally continuing from the previous turns, as
well as lexically diverse.” (Xu et al., 2018)

• NUP-BERT: “Maintains Context: Does the
response serve as a valid continuation of the
preceding conversation?” (Mehri and Eske-
nazi, 2020b)

• NORM-PROB: “context coherence of a di-
alogue: the meaningfulness of a response
within the context of prior query” (Pang et al.,
2020)

• FED-REL: “Is the response relevant to the
conversation?” (Mehri and Eskenazi, 2020a)

• FED-COR: “Is the response correct or was
there a misunderstanding of the conversation?
[...] No one has specifically used Correct,
however its meaning is often encapsulated in
Relevant.” (Mehri and Eskenazi, 2020a)

We also outline the stated purpose of the dia-
logue coherence metrics evaluated:

• GRADE: “Coherence, what makes dialogue
utterances unified rather than a random group
of sentences” (Huang et al., 2020)

• DYNA-EVAL: “dialogue coherence: consid-
ers whether a piece of text is in a consistent
and logical manner, as opposed to a random
collection of sentences” (Zhang et al., 2021)

D Details for Prior work

D.1 NORM-PROB
Pang et al. (2020) relied on a pretrained generative
language model (specifically GPT-2). Their pro-
posed metric is the conditional log-probability of
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the response given the context, normalized to the
range [0, 1]. Specifically, for a context q with can-
didate response r, their proposed relevance score is

defined as: c(q | r) = −max(c5th,
1
|r| logP (r | q))−c5th

c5th
,

where |r| is the number of tokens in the response,
P (r | q) is the conditional probability of the re-
sponse given the context under the language model,
and c5th is the 5th percentile of the distribution of
1
|r| logP (r | q) over the examples being evaluated.

E Learned HUMOD-IDK Weights

Figure 1 depicts the distribution of weight-
magnitudes learned by IDK on the HUMOD train-
ing set. Notably, there is a very small subset of
weights which is an order of magnitude larger than
the others. Figure 2 demonstrates that the use of
random sampling in place of “i don’t know” when
training on the HUMOD dataset causes a larger
number of large weights.

Figure 1: Histogram of log weight magnitudes learned
by IDK on HUMOD. Note the small number of weights
that are an order of magnitude larger.

F Scatter Plots

Figures 3, 4, 5, 6, and 7 illustrate IDK vs human
scores of relevance, where the IDK training data
is HUMOD. A regression line is fitted to highlight
the trend.

Figure 2: Histogram of log weight magnitudes learned
by IDK and Ablated IDK on HUMOD. The specific
ablation is the use of random negative samples in place
of “i don’t know”. Note that Ablated IDK has a larger
number of large weights than normal IDK.

Figure 3: IDK scores, linearly re-scaled to the range
1-5, versus human scores of relevance, on the HUMOD
test set.

Figure 4: IDK scores, linearly re-scaled to the range
1-3, versus human scores of relevance, on the USR-TC
test set.
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Figure 5: IDK scores, linearly re-scaled to the range 1-5,
versus human scores of relevance, on the P-DD test set.

Figure 6: IDK scores, linearly re-scaled to the range
1-3, versus human scores of relevance, on the FED-
CORRECT test set.

Figure 7: IDK scores, linearly re-scaled to the range
1-3, versus human scores of relevance, on the FED-
RELEVANT test set.

G Performance on validation data split

Correlations of the models on the validation set are
outlined in Table 8 for prior metrics, and in Table
10 for all ablations and variants of our model.
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HUMOD USR-TC
Prior Metric S P S P
COS-FT 0.08 0.08 *0.27 0.17
COS-MAX-BERT 0.08 0.05 0.18 *0.19
COS-NSP-BERT 0.06 *0.09 *0.23 *0.25
NORM-PROB *0.27 *0.25 *−0.29 *−0.30
FED-CORRECT *−0.10 *−0.09 −0.14 −0.15
FED-RELEVANT *−0.10 *−0.09 −0.14 −0.16

GRADE *0.64 *0.64 0.02 0.00
DYNA-EVAL *0.14 *0.15 −0.05 −0.06

NUP-BERT (H) *0.37 (0.01) *0.38 (0.00) *0.38 (0.02) *0.39 (0.01)
NUP-BERT (TC-S) *0.32 (0.01) *0.36 (0.02) *0.38 (0.04) *0.41 (0.04)
NUP-BERT (TC) *0.33 (0.02) *0.37 (0.02) *0.45 (0.07) *0.44 (0.02)

Table 8: Spearman (S) and Pearson (P) correlations of prior metrics with human ratings on the validation splits of
all provided dataset. As NUP-BERT is trained we perform 3 runs, reporing the mean and standard deviation. (*)
denotes p < 0.01 accross all trials. Underline indicates a negative correlation. NOTE: USR scores are human only
for COS-FT, NORM-PROB and NUP-BERT

HUMOD USR-TC P-DD FED-Correctness FED-Relevance
Data L1 idk S P S P S P S P S P
H ✓ ✓ *0.59 (0.01) *0.55 (0.02) 0.17 (0.01) *0.28 (0.01) *0.54 (0.03) *0.44 (0.02) �0.13 (0.02) *0.21 (0.01) *0.21 (0.01) *0.30 (0.00)
H ✓ *0.15 (0.05) *0.19 (0.06) �0.19 (0.01) *0.25 (0.02) 0.10 (0.04) �0.17 (0.05) 0.10 (0.02) �0.11 (0.02) �0.14 (0.02) 0.09 (0.03)
H ✓ *0.45 (0.24) *0.42 (0.21) 0.14 (0.04) �0.23 (0.10) �0.39 (0.21) *0.34 (0.14) 0.11 (0.02) �0.18 (0.06) *0.20 (0.02) *0.25 (0.08)
H *0.61 (0.00) *0.60 (0.01) 0.17 (0.00) *0.23 (0.01) *0.55 (0.01) *0.53 (0.01) �0.14 (0.00) *0.20 (0.02) *0.22 (0.00) *0.27 (0.02)
TC-S ✓ ✓ *0.32 (0.44) *0.25 (0.55) 0.12 (0.06) �0.10 (0.24) *0.24 (0.47) *0.21 (0.46) 0.10 (0.04) �0.10 (0.14) �0.17 (0.07) �0.14 (0.21)
TC-S ✓ *0.27 (0.11) *0.26 (0.10) 0.16 (0.02) 0.14 (0.03) �0.22 (0.12) �0.22 (0.09) �0.13 (0.01) *0.15 (0.01) *0.19 (0.02) *0.17 (0.02)
TC-S ✓ *-0.20 (0.69) *-0.20 (0.65) -0.03 (0.17) �-0.05 (0.29) *-0.18 (0.62) *-0.19 (0.54) �-0.05 (0.18) *-0.07 (0.26) *-0.08 (0.27) *-0.09 (0.35)
TC-S �0.18 (0.20) *0.18 (0.06) 0.04 (0.07) 0.09 (0.17) 0.10 (0.07) 0.07 (0.06) 0.02 (0.10) �0.08 (0.07) 0.00 (0.10) �0.12 (0.10)

Table 9: Repeat of ablation experiments, instead using modified triplet loss (m = 0.4) in place of BCE. Contrary to
our intuition, we do not find any improvement in performance. Comparing against Table 5, we find either equivalent
or degraded performance, with an additional tendency to converge to a degenerate solution (e.g., see high variances
in TC-S with L1 and idk).
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Name HUMOD Spear HUMOD Pear TC Spear TC Pear
H_Rand3750_bce *0.58 (0.00) *0.57 (0.01) *0.46 (0.00) *0.43 (0.02)
H_Rand3750 *0.58 (0.00) *0.58 (0.00) *0.46 (0.00) *0.45 (0.02)
H_IDK_L1 *0.56 (0.01) *0.53 (0.02) *0.45 (0.03) *0.44 (0.02)
H_IDK_L2 *0.55 (0.00) *0.55 (0.01) *0.44 (0.00) *0.44 (0.00)
H_Rand3750_L1 *0.42 (0.22) *0.40 (0.20) *0.44 (0.00) *0.45 (0.01)
H_Rand3750_L2 *0.56 (0.00) *0.55 (0.01) *0.45 (0.00) *0.44 (0.02)
H_Rand3750_bce_L1 *0.58 (0.00) *0.58 (0.00) *0.45 (0.00) *0.46 (0.00)
H_Rand3750_bce_L2 *0.57 (0.00) *0.56 (0.00) *0.45 (0.00) *0.42 (0.00)
H_IDK_bce_L1 *0.57 (0.00) *0.56 (0.00) *0.42 (0.01) *0.41 (0.00)
H_IDK_bce_L2 *0.50 (0.01) *0.51 (0.01) *0.39 (0.00) *0.42 (0.00)
H_IDK_bce *0.39 (0.05) *0.40 (0.05) *0.36 (0.02) *0.34 (0.00)
H_IDK *0.15 (0.05) *0.19 (0.06) 0.09 (0.05) �0.21 (0.05)
TC-S_IDK_L1 *0.29 (0.43) *0.23 (0.53) *0.39 (0.07) *0.41 (0.07)
TC-S_IDK_L2 *0.54 (0.01) *0.55 (0.01) *0.43 (0.01) *0.44 (0.00)
TC-S_IDK_bce_L1 *0.57 (0.00) *0.56 (0.00) *0.43 (0.00) *0.40 (0.00)
TC-S_IDK_bce_L2 *0.47 (0.02) *0.48 (0.01) *0.41 (0.00) *0.39 (0.01)
TC-S_IDK_bce *0.35 (0.04) *0.33 (0.05) *0.40 (0.01) *0.31 (0.01)
TC-S_IDK *0.25 (0.10) *0.24 (0.10) *0.34 (0.05) *0.36 (0.03)
TC-S_Rand3750_L1 *-0.19 (0.67) *-0.20 (0.63) *-0.13 (0.52) *-0.14 (0.50)
TC-S_Rand3750_L2 �-0.33 (0.27) �-0.32 (0.26) *-0.45 (0.02) *-0.43 (0.02)
TC-S_Rand3750_bce_L1 *0.56 (0.01) *0.52 (0.03) *0.44 (0.03) *0.40 (0.02)
TC-S_Rand3750_bce_L2 *0.04 (0.55) *0.09 (0.56) �-0.26 (0.27) �-0.23 (0.31)
TC-S_Rand3750_bce *0.31 (0.05) *0.36 (0.03) �0.16 (0.29) �0.18 (0.26)
TC-S_Rand3750 �0.15 (0.17) *0.11 (0.02) �-0.14 (0.24) �-0.06 (0.27)

Table 10: Validation correlation of all of tested variants and ablations of our model. H vs. TC-S indicates training
set (HUMOD or subset of TopicalChat respectively). IDK vs. Rand3750 indicates whether negative examples are “i
don’t know” or random. If bce is present, then BCE was used as the loss, otherwise our modified triplet loss is used.
If L1 or L2 is present, then L1 or L2 regularization with λ = 1 is used respectively, otherwise no regularization
is used. Again, standard deviation over three trials is reported in parentheses, and ‘*’ is used to indicate that
all trials were significant at p < 0.01. ‘�’ indicates at least one trial was significantly different from zero at
p < 0.01. Note that L1 and L2 regularization have similar effects, with the exception of worse performance between
TC-S_Rand2750_bce_L1 and TC-S_Rand2750_bce_L2; we suspect this could be overcome with hyperparameter
tuning.
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HUMOD USR-TC P-DD FED-Correctness FED-Relevance
Prior Metric S P S P S P S P S P
NUP-BERT (H) *0.33 (0.02) *0.37 (0.02) 0.10 (0.02) *0.22 (0.01) *0.62 (0.04) *0.54 (0.02) �0.14 (0.04) *0.21 (0.03) *0.22 (0.01) *0.30 (0.01)
NUP-BERT (TC-S) *0.29 (0.02) *0.35 (0.03) �0.17 (0.03) �0.20 (0.04) *0.58 (0.05) *0.56 (0.04) 0.05 (0.04) 0.12 (0.01) �0.16 (0.04) *0.21 (0.01)
NUP-BERT (TC) *0.30 (0.01) *0.38 (0.00) 0.16 (0.02) *0.21 (0.02) *0.62 (0.05) *0.58 (0.04) 0.06 (0.01) �0.12 (0.02) *0.18 (0.02) *0.23 (0.01)
IDK (H) *0.58 (0.00) *0.58 (0.00) 0.18 (0.00) *0.24 (0.00) *0.53 (0.00) *0.48 (0.01) *0.15 (0.00) *0.23 (0.00) *0.24 (0.00) *0.29 (0.00)
IDK (TC-S) *0.58 (0.00) *0.58 (0.00) 0.18 (0.00) *0.22 (0.00) *0.54 (0.01) *0.49 (0.01) *0.15 (0.00) *0.23 (0.00) *0.24 (0.00) *0.29 (0.00)
IDK-ICS (H) *0.55 (0.01) *0.53 (0.00) *0.25 (0.01) *0.27 (0.00) *0.44 (0.01) *0.39 (0.00) *0.16 (0.00) *0.22 (0.00) *0.22 (0.00) *0.30 (0.00)
IDK-ICS (TC-S) *0.58 (0.00) *0.47 (0.00) 0.17 (0.00) *0.27 (0.00) *0.52 (0.00) *0.36 (0.00) *0.14 (0.00) *0.16 (0.00) *0.22 (0.00) *0.24 (0.00)
IDK-OK (H) *0.58 (0.00) *0.59 (0.00) 0.15 (0.00) *0.23 (0.00) *0.49 (0.00) *0.47 (0.00) 0.11 (0.00) *0.19 (0.00) *0.19 (0.00) *0.26 (0.00)
IDK-OK (TC-S) *0.59 (0.00) *0.59 (0.00) 0.18 (0.00) *0.24 (0.00) *0.52 (0.00) *0.46 (0.00) *0.15 (0.00) *0.23 (0.00) *0.23 (0.00) *0.29 (0.00)
BERT NSP *0.59 *0.40 0.17 *0.25 *0.53 *0.31 0.12 0.10 *0.21 *0.18

Table 11: Comparison of our proposed metric (IDK) against the pretrained BERT NSP predictor on the test set.
We also trained IDK with different fixed negative examples, "i couldn’t say" (IDK-ICS) and "i’m ok." (IDK-OK).
Note BERT NSP tends to have comparable Spearman’s performance and worse Pearson’s correlation. The only
exception is FED where BERT NSP has inferior performance. In general, IDK with different fixed negative samples
outperforms NUP-BERT, and is less sensitive to training data, although not to the same extent as baseline IDK.
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H Additional Experiments: Triplet Loss

An intuitive limitation of using “i don’t know” as
a negative example with BCE loss is that this en-
courages the model to always map “i don’t know”
to exactly zero. However, the relevance of “i don’t
know” evidently varies by context. Clearly, it is
a far less relevant response to “I was interrupted
all week and couldn’t get anything done, it was
terrible!” than it is to “what is the key to artifi-
cial general intelligence?” Motivated by this in-
tuition, we experimented with a modified triplet
loss, L(c, r) = − log (1 +m− ft(c, r)) where
ft(c, r) = max (y(c, r)− y(c, r′) +m, 0).

Intuitively, a triplet loss would allow for the rele-
vance of “i don’t know” to shift, without impacting
the loss as long as the ground-truth responses con-
tinue to score sufficiently higher. Note that the loss
is modified to combat gradient saturation due to the
sigmoid non-linearity. However, the results (see
Table 9) suggest equivalence, at best. Often, this
loss performs equivalently to BCE but it can also
produce degenerate solutions (note the high vari-
ance when training on TC data). Furthermore, it
does not appear to produce superior correlations.

For this reason, we believe that, although adapt-
ing triplet loss for next-utterance prediction in place
of BCE could be made to work, it does not appear
to provide any advantages. If validation data is
available, it can be used to confirm whether the
model has reached a degenerate solution, and thus
this loss could be used interchangeably with BCE.
However, there does not appear to be any advantage
in doing so.

I Additional Experiments: BERT NSP

As a followup experiment we compared IDK
against directly using the pretrained BERT NSP
predictor. In general, Spearman’s correlation was
comparable on all datasets except for FED, and
Pearson’s correlation was degraded. Performance
on FED was inferior to IDK. We speculate that the
reason for this is that the FED datasets has longer
contexts, which is problematic for the NSP pre-
dictor as it was trained with sentences rather than
utterances. Results are summarized in Table 11.

J Additional Experiments: IDK with
other fixed negative samples

As a followup experiment we trained IDK using
two different fixed negative samples: "i couldn’t

say" (simply chosen as a synonym for "i don’t
know"), and "i’m ok." (chosen as an example of
a generic response from Li et al. (2016)). Results
are reported in Table 11; in general we still see an
performance improvement over NUP-BERT, and in
some cases we exceed the performance of baseline
IDK. We also see that performance remains con-
sistent between runs, maintaining a lower standard
deviation than NUP-BERT.

However, it is also clear that changing the fixed
negative sample has some unexpected consquences:
specifically, we see variation based on training data
that is not observed when using "i don’t know" as
the fixed negative sample (although the variation
due to training data appears to be less than NUP-
BERT).

We retain the reduced sensitivity to test set.
Specically, our ratios of best-to-worst Spearman’s
correlation are 3.44 for IDK-ICS (H), 4.14 for IDK-
ICS (TC-S), 5.27 for IDK-OK (H), and 3.93; most
are very close to the baseline IDK ratio of 3.9, and
all are an improvement on the best prior work; 6.2
on NUP-BERT (H) – it is worth noting that NUP-
BERT (TC-S) attains a ratio of 11.6, considerably
worse than when trained on HUMOD data.
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