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Abstract

As humans, we experience the world with all
our senses or modalities (sound, sight, touch,
smell, and taste). We use these modalities,
particularly sight and touch, to convey and
interpret specific meanings. Multimodal ex-
pressions are central to conversations; a rich
set of modalities amplify and often compen-
sate for each other. A multimodal conversa-
tional AI system answers questions, fulfills
tasks, and emulates human conversations by
understanding and expressing itself via multi-
ple modalities. This paper motivates, defines,
and mathematically formulates the multimodal
conversational research objective. We provide
a taxonomy of research required to solve the
objective: multimodal representation, fusion,
alignment, translation, and co-learning. We sur-
vey state-of-the-art datasets and approaches for
each research area and highlight their limiting
assumptions. Finally, we identify multimodal
co-learning as a promising direction for multi-
modal conversational AI research.

1 Introduction

The proliferation of smartphones has dramatically
increased the frequency of interactions that humans
have with digital content. These interactions have
expanded over the past decade to include conversa-
tions with smartphones and in-home smart speak-
ers. Conversational AI systems (e.g., Alexa, Siri,
Google Assistant) answer questions, fulfill spe-
cific tasks, and emulate natural human conversation
(Hakkani-Tür et al., 2011; Gao et al., 2019).

Early examples of conversational AI include
those based on primitive rule-based methods such
as ELIZA (Weizenbaum, 1966). More recently,
conversational systems were driven by statisti-
cal machine translation systems: translating input
queries to responses (Ritter et al., 2011; Hakkani-
Tür et al., 2012). Orders of magnitude more data
led to unprecedented advances in conversational
technology in the mid-part of the last decade. Tech-

niques were developed to mine conversational train-
ing data from the web search query-click stream
(Hakkani-Tür et al., 2011; Heck, 2012; Hakkani-
Tür et al., 2013) and web-based knowledge graphs
(Heck and Hakkani-Tür, 2012; El-Kahky et al.,
2014). With this increase in data, deep neural-
networks gained momentum in conversational sys-
tems (Mesnil et al., 2014; Heck and Huang, 2014;
Sordoni et al., 2015; Vinyals and Le, 2015; Shang
et al., 2015; Serban et al., 2016; Li et al., 2016a,b).

Most recently, specialized deep learning-based
conversational agents were developed primarily
for three tasks: (1) goal-directed tasks in research
systems (Shah et al., 2016; Eric et al., 2017; Liu
et al., 2017, 2018; Li et al., 2019; Hosseini-Asl
et al., 2020; Wu et al., 2020; Peng et al., 2021; Xu
et al., 2021b) and commercial products (Siri, Cor-
tana, Alexa, and Google Assistant), (2) question-
answering (Yi et al., 2019; Raffel et al., 2020; Za-
heer et al., 2021), and (3) open-domain conversa-
tions (Wolf et al., 2019; Zhou et al., 2020; Adi-
wardana et al., 2020; Paranjape et al., 2020; Roller
et al., 2020; Bao et al., 2020; Henderson et al.,
2020; Zhang et al., 2020a). However, developing a
single system with a unified approach that achieves
human-level performance on all three tasks has
proven elusive and is still an open problem in con-
versational AI.

One limitation of existing agents is that they
often rely exclusively on language to communi-
cate with users. This contrasts with humans, who
converse with each other through a multitude of
senses. These senses or modalities complement
each other, resolving ambiguities and emphasizing
ideas to make conversations meaningful. Prosody,
auditory expressions of emotion, and backchannel
agreement supplement speech, lip-reading disam-
biguates unclear words, gesticulation makes spatial
references, and high-fives signify celebration.

Alleviating this unimodal limitation of conver-
sational AI systems requires developing methods
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to extract, combine, and understand information
streams from multiple modalities and generate mul-
timodal responses while simultaneously maintain-
ing an intelligent conversation.

Similar to the taxonomy of multimodal machine
learning research (Baltrušaitis et al., 2017), the
research required to extend conversational AI sys-
tems to multiple modalities can be grouped into
five areas: Representation, Fusion, Translation,
Alignment, and Co-Learning. Representation and
fusion involve learning mathematical constructs
to mimic sensory modalities. Translation maps
relationships between modalities for cross-modal
reasoning. Alignment identifies regions of rel-
evance across modalities to identify correspon-
dences between them. Co-learning exploits the
synergies across modalities by leveraging resource-
rich modalities to train resource-poor modalities.

Concurrently, it is necessary for the research ar-
eas outlined above to address four main challenges
in multimodal conversational reasoning – disam-
biguation, response generation, coreference reso-
lution, and dialogue state tracking (Kottur et al.,
2021). Multimodal disambiguation and response
generation are challenges associated with fusion
that determine whether available multimodal inputs
are sufficient for a direct response or if follow-up
queries are required. Multimodal coreference reso-
lution is a challenge in both translation and align-
ment, where the conversational agent must resolve
referential mentions in dialogue to corresponding
objects in other modalities. Multimodal dialogue
state tracking is a holistic challenge across research
areas typically associated with task-oriented sys-
tems. The goal is to parse multimodal signals to
infer and update values for slots in user utterances.

In this paper, we discuss the taxonomy of re-
search challenges in multimodal Conversational
AI as illustrated in Figure 1. Section 2 provides
a history of research in multimodal conversations.
In Section 3, we mathematically formulate multi-
modal conversational AI as an optimization prob-
lem. Sections 4, 5, and 6 survey existing datasets
and state-of-the-art approaches for multimodal rep-
resentation and fusion, translation, and alignment.
Section 7 highlights limitations of existing research
in multimodal conversational AI and explores mul-
timodal co-learning as a promising direction for
research.
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Figure 1: Taxonomy of multimodal Conversational AI
research

2 Background

Early work in multimodal conversational AI fo-
cused on the use of visual information to improve
automatic speech recognition (ASR). One of the
earliest papers along these lines is by Yuhas et al.
(1989) followed by many papers including work
by Meier et al. (1996), Duchnowski et al. (1994),
Bregler and Konig (1994), and Ngiam et al. (2011).

Advances in client-side capabilities enabled
ASR systems to utilize other modalities such as
tactile, voice, and text inputs. These systems sup-
ported more comprehensive interactions and facili-
tated a higher degree of personalization. Examples
include ESPRIT’s MASK (Lamel et al., 1998), Mi-
crosoft’s MiPad (Huang et al., 2001), and AT&T’s
MATCH (Johnston et al., 2002).

Vision-driven tasks motivated research in adding
visual understanding technology into conversa-
tional AI systems. Early work in reasoning
over text+video include work by Ramanathan
et al. (2014) where they leveraged these combined
modalities to address the problem of assigning
names of people in the cast to tracks in TV videos.
Kong et al. (2014) leveraged natural language de-
scrptions of RGB-D videos for 3D semantic pars-
ing. Srivastava and Salakhutdinov (2014) devel-
oped a multimodal Deep Boltzmann Machine for
image-text retrieval and ASR using videos. Antol
et al. (2015) introduced a dataset and baselines for
multimodal question-answering, a challenge com-
bining computer vision and natural language pro-
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cessing. More recent work by Zhang et al. (2019b)
and Selvaraju et al. (2019) leveraged conversational
explanations to make vision and language models
more grounded, resulting in improved visual ques-
tion answering.

While modalities most commonly considered in
the conversational AI literature are text, vision, tac-
tile, and speech, other sources of information are
gaining popularity within the research community.
These include eye-gaze, 3D scans, emotion, action
and dialogue history, and virtual reality. Heck et al.
(2013) and Hakkani-Tür et al. (2014) use gesture,
speech, and eye-gaze to resolve and infer intent in
conversational web-browsing systems. Grauman
et al. (2021) presents ego-centric video understand-
ing, Padmakumar et al. (2021), and Shridhar et al.
(2020) present task completion from 3D simula-
tions, and Gao et al. (2021) presents multisensory
object recognition.

Processing conventional and new modalities
brings forth numerous challenges for multimodal
conversations. To answer these challenges, we will
first mathematically formulate the multimodal con-
versational AI problem, then detail fundamental
research sub-tasks required to solve it.

3 Mathematical Formulation

We formulate multimodal conversational AI as an
optimization problem. The objective is to find the
optimal response S to a message m given underly-
ing multimodal context c. Based on the sufficiency
of the context, the optimal response could be a
statement of fact or a follow-up question to resolve
ambiguities. Statistically, S is estimated as:

S = argmax
r

p(r|c,m). (1)

The probability of an arbitrary response r can
be expressed as a product of the probabilities of re-
sponses {ri}Ti=1 over T turns of conversation (Sor-
doni et al., 2015).

p(r|c,m) =
T∏

i=1

p(ri|r1, . . . ri−1, c,m) (2)

It is also possible for conversational AI to re-
spond through multiple modalities. We represent
the multimodality of output responses by a ma-
trix R := {r1i , r2i , . . . rli} over l permissible output
modalities.

S = argmax
R

p(R|c,m) (3)

Learning from multimodal data requires manipu-
lating information from all modalities using a func-
tion f(·) consisting of five sub-tasks: representa-
tion, fusion, translation, alignment, and co-learning.
We include these modifications and present the fi-
nal multimodal conversational objective below.

S = argmax
R

p(R|f(c,m)) (4)

In the following sections, we describe each sub-
task contained in f(·).

4 Multimodal Representation + Fusion

Multimodal representation learning and fusion are
primary challenges in multimodal conversations.
Multimodal representation is the encoding of multi-
modal data in a format amenable to computational
processing. Multimodal fusion concerns joining
features from multiple modalities to make predic-
tions.

4.1 Multimodal Representations
Using multimodal information of varying granu-
larity for conversations necessitates techniques to
represent high-dimensional signals in a latent space.
These latent multimodal representations encode hu-
man senses to improve a conversational AI’s per-
ception of the real-world. Success in multimodal
tasks requires that representations satisfy three
desiderata (Srivastava and Salakhutdinov, 2014):

1. Similarity in the representation space implies
similarity of the corresponding concepts

2. The representation is easy to obtain in the
absence of some modalities

3. It is possible to infer missing information from
observed modalities

There exist numerous representation methods
for the range of problems multimodal conversa-
tional AI addresses. Multimodal representations
are broadly classified as either joint representations
or coordinated representations (Baltrušaitis et al.,
2017).

4.1.1 Joint Representations
Joint representations combine unimodal signals
into the same representation space. Traditional
techniques to learn joint representations include
multimodal autoencoders (Ngiam et al., 2011),
multimodal deep belief networks (Srivastava and
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Salakhutdinov, 2014), and sequential networks
(Nicolaou et al., 2011).

The success of the Transformer to represent text
(Vaswani et al., 2017) and BERT when modeling
language (Devlin et al., 2019) have inspired a vari-
ety of multimodal transformer-based architectures
for (1) vision-and-language understanding (Sun
et al., 2019b; Lu et al., 2019; Gabeur et al., 2020;
Chen et al., 2020b; Tan and Bansal, 2019; Singh
et al., 2021a), (2) vision-grounded speech recogni-
tion (Baevski et al., 2020; Hsu et al., 2021; Chan
et al., 2021), and (3) User Interface (UI) under-
standing (Bapna et al., 2017; He et al., 2021; Bai
et al., 2021; Li et al., 2021; Xu et al., 2021b; Heck
and Heck, 2022).

Transformer-based models used as joint multi-
modal representations can be described as illus-
trated in the taxonomy of Figure 1. Modality spe-
cific encoders {ji(·)}ni=1 embed unimodal tokens
{cik}nk=1 to create latent features {zik}nk=1 (Equa-
tion 5). Decoder networks use latent features to
produce output symbols. A transformer Ψ(·) con-
sists of stacked encoders and decoders with intra-
modality attention. Attention heads compute rela-
tionships within elements of a modality, producing
multimodal representations {hik}nk=1 (Equation 6).

zi1 , zi2 , . . . zin = ji(ci1 , ci2 , . . . cin) (5)

h11 . . . hmn = Ψ(z11 , z12 , . . . zmn) (6)

4.1.2 Coordinated Representations
In contrast, coordinated representations model each
modality separately. Constraints coordinate rep-
resentations of separate modalities by enforcing
cross-modal similarity over concepts. For exam-
ple, the audio representation ga(·) of a dog’s bark
would be closer to the dog’s image representation
gi(·) and further away from a car’s (Equation 7).
A notion of distance d between modalities in the
coordinated space enables cross-modal retrieval.

d(ga(dog), gi(dog)) < d(ga(dog), gi(car)) (7)

In practice, contrastive objectives are used to
coordinate representations between pairs of modal-
ities. Contrastive learning has been successful in
relating separate views of the same image (Becker
and Hinton, 1992; Chen et al., 2020a; He et al.,
2020; Grill et al., 2020; Radford et al., 2021), im-
ages and their natural language descriptions (We-
ston et al., 2010; Kiros et al., 2014; Zhang et al.,

2020b; Li et al., 2020), and videos with their corre-
sponding audio and natural language descriptions
(Owens et al., 2016; Korbar et al., 2018; Sun et al.,
2019a; Miech et al., 2020; Alayrac et al., 2020;
Akbari et al., 2021; Xu et al., 2021a; Qian et al.,
2021; Morgado et al., 2021).

4.2 Multimodal Fusion

Multimodal fusion combines features from multi-
ple modalities to make decisions, denoted by the fi-
nal block before the outputs in Figure 1. Fusion ap-
proaches are broadly classified into model-agnostic
and model-based methods.

Model-agnostic methods are independent of spe-
cific algorithms and are split into early, late, and
hybrid fusion. Early fusion integrates features fol-
lowing extraction, projecting features into a shared
space (Potamianos et al., 2003; Ngiam et al., 2011;
Nicolaou et al., 2011; Jansen et al., 2019). In con-
trast, late fusion integrates decisions from unimodal
predictors (Becker and Hinton, 1992; Korbar et al.,
2018; Shuster et al., 2020; Alayrac et al., 2020;
Akbari et al., 2021). Early fusion is predominantly
used to combine features extracted in joint represen-
tations while late fusion combines decisions made
in coordinated representations. Hybrid fusion ex-
ploits both low and high level modality interactions
(Wu et al., 2005; Schwartz et al., 2020; Piergio-
vanni et al., 2020; Goyal et al., 2020).

Model-based methods consist of graphical tech-
niques like Hidden Markov Models (Nefian et al.,
2002; Gurban et al., 2008), neural networks (Nico-
laou et al., 2011; Antol et al., 2015; Gao et al., 2015;
Malinowski et al., 2015; Kottur et al., 2018; Qian
et al., 2021), and transformers (Xu and Saenko,
2016; Hori et al., 2017; Peng et al., 2019; Zhang
et al., 2019a; Shuster et al., 2020; Chen et al.,
2020b; Geng et al., 2021; Xu et al., 2021b)

4.3 State-of-the-art Representation+Fusion
Models for Conversational AI

Having introduced the multimodal representation
and fusion challenges, we present the state-of-the-
art in these sub-tasks for conversational AI.

4.3.1 Factor Graph Attention

Schwartz et al. (2020) develops Factor Graph At-
tention (FGA), a joint representation for multi-turn
question answering grounded in images. FGA em-
beds images using VGG-16 (Simonyan and Zis-
serman, 2015) or F-RCNN (Ren et al., 2016) and
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textual modalities using LSTMs. Nodes in the fac-
tor graph represent attention distributions over el-
ements of each modality, and factors capture rela-
tionships between nodes.

There are two types of factors – local and joint.
Local factors capture interactions between nodes of
a single modality (e.g., words in the same sentence),
while joint factors capture interactions between
different modalities (e.g., a word in a sentence and
an object in an image).

Representations from all modalities are concate-
nated via hybrid fusion and passed through a multi-
layer perceptron network to retrieve the best candi-
date answer.

Table 1 compares the Recall-at-k (R@k) of dis-
criminative models on VisDial v1.0 test-std. The
F-RCNN version of FGA is the state-of-the-art.

Model R@1 R@5 R@10
LF (Das et al., 2017) 40.95 72.45 82.83

HRE (Das et al., 2017) 39.93 70.45 81.50
Memory Network (Das et al., 2017) 40.98 72.30 83.30

CorefNMN (ResNet-152) (Kottur et al., 2018) 47.55 78.10 88.80
NMN (ResNet-152) (Hu et al., 2017) 44.15 76.88 86.88

FGA (F-RCNNx101) (Schwartz et al., 2020) 52.75 82.92 91.07

Table 1: Comparison of models on VisDial v1.0 test-std
(Recall@k)(Schwartz et al., 2020)

4.3.2 TRANSRESNET

Shuster et al. (2020) presents TRANSRESNET for
image-based dialogue. Image-based dialogue is
the task of choosing the optimal response on a di-
alogue turn given an image, an agent personality,
and dialogue history. TRANSRESNET consists of
separately learned sub-networks to represent input
modalities. Images are encoded using ResNeXt
32×48d trained on 3.5 billion Instagram images
(Xie et al., 2017), personalities are embedded using
a linear layer, and dialogue is encoded by a trans-
former pretrained on Reddit (Mazaré et al., 2018)
to create a joint representation.

TRANSRESNET compares model-agnostic and
model-based fusion by using either concatenation
or attention networks to combine representations.
Like FGA, the chosen dialogue response is the
candidate closest to the fused representation.

On the first turn, TRANSRESNET uses only style
and image information to produce responses. Di-
alogue history serves as an additional modality
on subsequent rounds. Ablation of one or more
modalities diminishes the ability of the model to
retrieve the correct response. Optimal performance
on Image-Chat (Shuster et al., 2020) is achieved

using multimodal concatenation of jointly repre-
sented modalities (Table 2).

Modalities Turn 1 Turn 2 Turn 3 All
Image Only 37.6 28.1 20.7 28.7
Style Only 18.3 15.3 17.0 16.9

Dialogue History Only 1.0 33.7 32.3 22.3
Style + Dialogue 18.3 45.4 43.1 35.4
Image + Dialogue 37.6 39.4 32.6 36.5

Image + Style 54.0 41.1 35.2 43.4
Style + Dialogue + Image 54.0 51.9 44.8 50.3

Table 2: Recall@1 (%) on Image-Chat using
TRANSRESNETRET (ResNeXt-IG-3.5B, MM-Sum)

4.3.3 MultiModal Versatile Networks (MMV)
Alayrac et al. (2020) presents a training strategy
to learn coordinated representations using self-
supervised contrastive learning from instructional
videos. Videos are encoded using TSM with
a ResNet50 backbone (Lin et al., 2019), audio
is encoded using log MEL spectrograms from
ResNet50, and text is encoded using Google News
pre-trained word2vec (Mikolov et al., 2013).

Alayrac et al. (2020) defines three types of coor-
dinated spaces: shared, disjoint, and ‘fine+coarse’.
The shared space enables direct comparison and
navigation between modalities, by assuming equal
granularity. The disjoint space sidesteps naviga-
tion to solve the granularity problem by creating a
space for each pair of modalities. The ‘fine+coarse’
space solves both issues by learning two spaces.
A fine-grained space compares audio and video,
while a lower-dimensional coarse-grained space
compares fine-grained embeddings with text. We
further discuss the MMV model in Section 6.3.

5 Multimodal Translation

Multimodal translation maps embeddings from one
modality to signals from another for cross-modality
reasoning (Figure 1). Cross-modal reasoning en-
ables multimodal conversational AI to hold mean-
ingful conversations and resolve references across
multiple senses, specifically language and vision.
To this end, we survey existing work addressing
the translation of images and videos to text. We
discuss multimodal question-answering and mul-
timodal dialogue, translation tasks that extend to
multimodal conversations.

5.1 Image
Antol et al. (2015) and Zhu et al. (2016) present Vi-
sual Question-Answering (VQA) and Visual7W for
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multimodal question answering (MQA). The MQA
challenge requires responding to textual queries
about an image. Both datasets collect questions
and answers using crowd workers, encouraging
trained models to learn natural responses. Heck
and Heck (2022) presents the Visual Slot dataset,
where trained models learn answers to questions
grounded in UIs.

The objective of MQA is a simplification of
Equation 4 to a single-turn, single-timestep sce-
nario (T = 1), producing a response to a question
mq given multimodal context {ci}ni=1:

SMQA = argmax
R

p(R|f(c1, . . . cn,mq)) (8)

Multi-turn question-answering (MTQA) is the
next step towards multimodal conversational AI.
VisDial (Das et al., 2017) extends VQA to multiple
turns, translating over QA history in addition to
images. GuessWhat?! (de Vries et al., 2017) is
a guessing game, discovering objects in a scene
through dialogue. MANYMODALQA (Hannan
et al., 2020) requires reasoning over prior knowl-
edge, images, and databases. MIMOQA (Singh
et al., 2021b) is an example of multimodal re-
sponses, where answers are image-text pairs.

The objective of MTQA (Equation 9) is
an extension of MQA to include QA history
hqa = {mq1 , ra1 ,mq2 , ra2 , . . .mqi−1 , rai−1}.

SMTQA = argmax
R

p(R|f(c1, . . . cn,hqa)) (9)

Image-Grounded Conversations (IGC)
(Mostafazadeh et al., 2017) builds on MTQA by
presenting a dataset for multimodal dialogue (MD):
machine perception and conversation through
language. Image-Chat (Shuster et al., 2020)
extends IGC to agents with personalities. Crowd
workers hold three-turn conversations about an
image with one of 215 emotions (e.g., peaceful,
erratic, skeptical). Motivated by the popularity
of visual content in instant-messaging, Meme
incorporated Open-domain Dialogue (MOD)
(Fei et al., 2021) contains natural language
conversations interspersed with behavioral stickers.
SIMMC (Moon et al., 2020) and SIMMC2.0
(Kottur et al., 2021) present goal-oriented dialogue
for shopping. The challenge requires leveraging
dialogue and a state of the world to resolve
references, track dialogue state, and recommend
the correct object. IGC, Image-Chat, MOD,
SIMMC, and SIMMC2.0 solve the MD objective

that depends on previous dialogue responses
hd = {md1 , rd1 ,md2 , rd2 , . . .mdi−1

, rdi−1
}:

SMD = argmax
R

p(R|f(c1, . . . cn,hd)) (10)

5.2 Video

An extension of VQA to the video domain in-
cludes TVQA, TVQA+ (Lei et al., 2020) built on
TV shows, MovieQA (Tapaswi et al., 2016) based
on movies, and Audio Visual Scene-Aware Dia-
log (AVSD) (Alamri et al., 2019) based on CHA-
RADES (Sigurdsson et al., 2016). DVD (Le et al.,
2021) presents video-QA over videos synthesized
from the CATER dataset (Girdhar and Ramanan,
2020). Besides visual reasoning, video-QA re-
quires temporal reasoning, a challenge addressed
by multimodal alignment that we discuss in the
following section.

6 Multimodal Alignment

While image-based dialogue revolves around ob-
jects (e.g., cats and dogs), video-based dialogue re-
volves around objects and associated actions (e.g.,
jumping cats and barking dogs) where spatial and
temporal features serve as building blocks for con-
versations. Extracting these spatiotemporal fea-
tures requires multimodal alignment – aligning
sub-components of different modalities to find cor-
respondences. We identify action recognition and
action from modalities as alignment challenges rel-
evant to multimodal conversations.

6.1 Action Recognition

Action recognition is the task of extracting natu-
ral language descriptions from videos. UCF101
(Soomro et al., 2012), HMDB51 (Kuehne et al.,
2011), and Kinetics-700 (Carreira et al., 2019) in-
volve extracting actions from short YouTube and
Hollywood movie clips. HowTo100M (Miech
et al., 2019), MSR-VTT (Xu et al., 2016), and
YouCook2 (Zhou et al., 2017) are datasets con-
taining instructional videos on the internet and re-
quire learning text-video embeddings. YouCook2
and MSR-VTT are annotated by hand while
HowTo100M uses existing video subtitles or ASR.

Mathematically, the goal is to retrieve the cor-
rect natural language description y ∈ Y to a query
video x (Equation 11). Video and text representa-
tion functions g(·)video and g(·)text embed modali-
ties into a coordinated space where they are com-
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pared using a distance measure d.

argmin
y∈Y

d(gvideo(x), gtext(yj)) (11)

6.2 Action from Modalities
Equipping multimodal conversational agents with
the ability to perform actions from multiple modal-
ities provides them with an understanding of the
real world, improving their conversational utility.

Talk the Walk (de Vries et al., 2018) presents
the task of navigation conditioned on partial in-
formation. A “tourist” provides descriptions of a
photo-realistic environment to a “guide” who de-
termines actions. Vision-and-Dialog Navigation
(Thomason et al., 2019) contains natural dialogues
grounded in a simulated environment. The task is
to predict a sequence of actions to a goal state given
the world scene, dialogue, and previous actions.
TEACh (Padmakumar et al., 2021) extends Vision-
and-Dialog Navigation to complete tasks in an AI2-
THOR simulation. The challenge involves aligning
information from language, video, as well as action
and dialogue history to solve daily tasks. Ego4D
(Grauman et al., 2021) contains text annotated ego-
centric (first person) videos in real-world scenarios.
Ego4D includes 3D scans, multiple camera views,
and eye gaze, presenting new representation, fu-
sion, translation, and alignment challenges. It is
associated with five benchmarks: Video QA, object
state tracking, audio-visual diarization, social cue
detection, and camera trajectory forecasting.

6.3 Multimodal Versatile Networks (MMV)
In addition to a representation, Alayrac et al. (2020)
presents a self-supervised task to train modal-
ity embedding graphs for multimodal alignment.
Sampling temporally aligned audio, visual clips,
and narrations from the same video creates pos-
itive training examples, while those from differ-
ent videos comprise negative training examples.
A Noise-Contrastive Estimation (NCE) loss (Gut-
mann and Hyvärinen, 2010) is minimized to ensure
similarity between embeddings of positive training
examples while forcing negative pairs further apart.
A Multiple Instance Learning (MIL) (Miech et al.,
2020) variant of NCE measures loss on pairs of
modalities of different granularity. MIL accounts
for misalignment between audio/video and text by
measuring the loss of fine-grained information with
multiple temporally close narrations.

The network is trained on HowTo100M (Miech
et al., 2019) and AudioSet (Gemmeke et al., 2017).

Table 3 compares the performance of MMV on
action classification, audio classification, and zero-
shot text-to-video retrieval.

7 Discussion

The current datasets used for research in multi-
modal conversational AI are summarized in Table 4.
While MQA and MTQA are promising starting
points for multimodal natural language tasks, ex-
tending QA to conversations is not straightforward.
Inherently, MQA limits itself to direct questions
targeting visible content, whereas multimodal con-
versations require understanding information that
is often implied (Mostafazadeh et al., 2017). Ut-
terances in dialogue represent speech acts and are
classified as constatives, directives, commissives,
or acknowledgments (Bach and Harnish, 1979).
Answers belong to a single speech act (constatives)
and represent a subset of natural conversations.

Similarly, the work to-date on action recognition
is incomplete and insufficient for conversational
systems. Conversational AI must represent and
understand spatiotemporal interactions. However,
current research in action recognition attempts to
learn relationships between videos and their natural
language descriptions. These descriptions are not
speech acts themselves. Therefore, they do not
adequately represent dialogue but rather only serve
as anchor points in the interaction.

In contrast, Image-Chat (Shuster et al., 2020)
presents a learning challenge directly aligned with
the multimodal dialogue objective in Equation 4.
Image-Chat treats dialogue as an open-ended dis-
cussion grounded in the visual modality. Succeed-
ing in the task requires jointly optimizing visual
and conversational performance. The use of crowd
workers that adopt personalities during data col-
lection encourages natural dialogue and captures
conversational intricacies and implicatures.

MQA answers explicit questions about an im-
age ( →Is this at a farm?), and action recogni-
tion describes videos ( →Mountain biking). On
the other hand, Image-Chat requires both implicit
knowledge ( → Halloween, → Exercise) and
multi-turn reasoning ( → Halloween → Holiday,

→ Exercise → Fitness).
Despite its advantages over other datasets,

Image-Chat makes three assumptions about multi-
modal conversations limiting its extension to the
multimodal conversational objective:
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Model UCF101 (FT) HMDB51 (FT) ESC-50 (Linear) AS K600 YC2 MSR-VTT
MIL-NCE (S3D-G) (Miech et al., 2020) 91.3 61.0 / / / 51.2 32.4

AVTS (MC3) (Korbar et al., 2018) 89.0 61.6 80.6 / / / /
AA+AV CC (Jansen et al., 2019) / / / 28.5 / / /

CVRL (Qian et al., 2021) / / / / 64.1 / /
XDC (Alwassel et al., 2020) 91.2 61.0 84.8 / / / /

ELo (Piergiovanni et al., 2020) 93.8 67.4 / / / / /
AVID (Morgado et al., 2021) 91.5 64.7 89.2 / / / /

GDT (IG65M) (Patrick et al., 2020) 95.2 72.8 88.5 / / / /
MMV FAC (TSM-50x2) (Alayrac et al., 2020) 95.2 75.0 88.9 30.9 70.5 45.4 31.1

Table 3: Comparison of learnt representations on UCF101, HMDB51, ESC-50, AudioSet, Kinetics600, YouCook2,
and MSR-VTT. Top-1 Accuracy for UCF101, HMDB51, ESC-50, Kinetics600, mean Average Precision (mAP) for
AudioSet, Recall@10 for YouCook2 and MSR-VTT (Alayrac et al., 2020).

Dataset Modalities Task Data Collection POV
VQA (Antol et al., 2015) I,Q Question Answering Human-Human Third Person
Visual7W (Zhu et al., 2016) I,Q Question Answering Human-Human Third Person
Visual Slot (Heck and Heck, 2022) UI, Q Question Answering Human X
TVQA (Lei et al., 2019) V,Q,S Question Answering Human-Human Third Person
MovieQA (Tapaswi et al., 2016) V,C,Q,T,S Question Answering Human Third Person
MANYMODALQA (Hannan et al., 2020) I,C,Q,T,Tables Question Answering Human-Human Third Person
MIMOQA (Singh et al., 2021b) I,Q,T Question Answering Machine X
VisDial (Das et al., 2017) I,HQ,HA,C,Q Question Answering Human-Human Third person
Guesswhat (de Vries et al., 2017) I, HQ,HA Question Answering Human-Human Third Person
AVSD (Alamri et al., 2019) V,A,HQ,HA,C,Q Question Answering Human-Human Third Person
DVD (Le et al., 2021) V,Q,HQ,HA Question Answering Machine X
SIMMC (Moon et al., 2020) HD, Q, VR Shopping Machine Self-play First Person
SIMMC2.0 (Kottur et al., 2021) HD, Q, VR Shopping Machine Self-play First Person
IGC (Mostafazadeh et al., 2017) I,Q,D Chit-chat + Question Answering Human-Human Third-Person
Image-Chat (Shuster et al., 2020) I,D,Personality Chit-chat Human-Human Third Person
MOD (Fei et al., 2021) D, Personality Visual chit-chat Human-Human X
UCF101 (Soomro et al., 2012) V,A (partial) Action Recognition YouTube Third Person
HMDB51 (Kuehne et al., 2011) V Action Recognition YouTube+Movies Third Person
Kinetics 700 (Carreira et al., 2019) V Action Recognition YouTube Third Person
HowTo100M (Miech et al., 2019) V,T,S Text-Video Embeddings YouTube First+Third Person
YouCook2 (Zhou et al., 2017) V,T Text-video retrieval, activity recognition YouTube Third Person
MSRVTT (Xu et al., 2016) V,A,T Video-to-text Web videos First+Third Person
Talk the Walk (de Vries et al., 2018) I, Actions, D Navigation from Actions and Dialogue Human-Human First Person
CVDN (Thomason et al., 2019) VR, Actions, HQ,HA Navigation from Dialogue History Human-Human First Person
TEACh (Padmakumar et al., 2021) Scene, Actions, D Action prediction, Task from language AI2-THOR First+Third Person
Ego4D (Grauman et al., 2021) V,T,A,Gaze,3D Scan,S Spatial Reasoning Human First Person

Table 4: Datasets for multimodal representations. I=Image, V=Video, UI=User Interface, C=Caption, Q=Question,
T=Text, HQ = Question history, HA=Answer history, HD=Dialogue history, VR=Virtual Reality, D=Dialogue,
A=Audio, S=Speech

1. Conversations are limited to three turns, de-
void of long-term dialogue dependencies.

2. Language and images are the only modalities.

3. Personalities are independent of previous re-
sponses. This differs from natural human con-
versations where humans tend to understand
and reciprocate the personality of a dialogue
partner (Rashkin et al., 2019).

The discussion above highlights the limitations
of existing datasets for the multimodal conversa-
tional AI task. Datasets need to be improved to
better capture and represent more natural, multi-
turn dialogues over multiple modalities; dialogues
that more closely resemble how humans converse
with each other and their environment.

In addition, algorithmic improvements are re-
quired to advance the field of multimodal conversa-
tional AI - particularly with respect to the objective
function. Current approaches such as MQA and
action recognition models optimize a limited ob-
jective compared to Equation 4. We postulate that
the degradation of these methods when applied to
multimodal conversations is largely caused by this
and, therefore, motivates investigation.

Another open research problem is to improve
performance on Image-Chat. The current state-of-
the-art TRANSRESNETRET is limited. The model
often hallucinates, referring to content missing in
the image and previous dialogue turns. The model
also struggles when answering questions and hold-
ing extended conversations. We suspect these prob-
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lems are a reflection of the limiting assumptions
Image-Chat makes and the absence of multimodal
co-learning to extract relationships between modali-
ties. For further details, we refer readers to example
conversations in Appendix A.

Different modalities often contain complemen-
tary information when grounded in the same con-
cept. Multimodal co-learning exploits this cross-
modality synergy to model resource-poor modal-
ities using resource-rich modalities. An example
of co-learning in context of Figure 1 is the use of
visual information and audio to generate contextu-
alized text representations.

Blum and Mitchell (1998) introduced an early
approach to multimodal co-training, using informa-
tion from hyperlinked pages for web-page classifi-
cation. Socher and Fei-Fei (2010) and Duan et al.
(2014) presented weakly-supervised techniques to
tag images given information from other modali-
ties. Kiela et al. (2015) grounded natural language
descriptions in olfactory data. More recently, Upad-
hyay et al. (2018) jointly trains bilingual models to
accelerate spoken language understanding in low
resource languages. Selvaraju et al. (2019) uses
human attention maps to teach QA agents “where
to look”. Despite the rich history of work in multi-
modal co-learning, extending these techniques to
develop multimodal conversational AI that under-
stands and leverages cross-modal relationships is
still an open challenge.

8 Conclusions

We define multimodal conversational AI and out-
line the objective function required for its realiza-
tion. Solving this objective requires multimodal
representation and fusion, translation, and align-
ment. We survey existing datasets and state-of-
the-art methods for each sub-task. We identify
simplifying assumptions made by existing research
preventing the realization of multimodal conversa-
tional AI. Finally, we outline the collection of a
suitable dataset and an approach that utilizes multi-
modal co-learning as future steps.
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A Conversations with TRANSRESNET

Image Personality Conversations

Glamorous The star of the show is the man and his fabulous car
[-] I don’t see a man

Glamorous That tends to be the case with men that buy flashy cars and BIG houses!
[-] I would like to drive that car

Glamorous That tends to be the case with men that buy flashy cars and BIG houses!
[-] Would you drive that car?

Glamorous And I would pay him to do that in my backyard as well

[-] I love going to new restaurants

Wise Well, easy come easy go with your food then, raw is dangerous but it’s your life

[-] Do you like spicy food?

Wise It is most likely too spicy for you

[-] This is Lucy, my labrador
Businesslike I should start a dog walking business

[-] That’s a good idea!
Suave He would make a lovely companion for me.

[-] Do you have any pets?
Considerate I think I will. Dogs are a nice animal for the regular person to have

Caring I hope you’re injured too. If not, I can help you with that
[-] I’m not injured

Extreme At least if you crash you’ll beat the paramedics to the scene by at least 20 minutes!
[-] Haha that’s a nice joke

Silly I would die laughing if you did fall

[-] That doesn’t look great
Angry It makes me mad. Why did they have to hang it before the paint was dry?

[-] It’s not a painting
Angry Oh come on, you’re so negative! How is that NOT artistic?!

[-] I didn’t say it wasn’t artistic
Angry Oh come on, you’re so negative! How is that NOT artistic?!

[-] I’m not being negative
Angry Oh come on, you’re so negative! How is that NOT artistic?!

[-] Why are you repeating yourself?
Angry Because you have ruined the artistic integrity of the image. If you had the talent that I have,

you would understand this.
[-] I agree with you

Angry Why are people so judgemental about art? It’s infuriating!

Conversations from TRANSRESNET. Images are chosen from YFCC100M using the browser by Kalkowski et al.
(2015) and the internet, and personalities are chosen at random.

[-] indicates lines spoken by the author.
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