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Abstract

Language understanding in speech-based sys-
tems has attracted extensive interest from both
academic and industrial communities in recent
years with the growing demand for voice-based
applications. Prior works focus on independent
research by the automatic speech recognition
(ASR) and natural language processing (NLP)
communities, or on jointly modeling the speech
and NLP problems focusing on a single dataset
or single NLP task. To facilitate the develop-
ment of spoken language research, we intro-
duce MTL-SLT, a multi-task learning frame-
work for spoken language tasks. MTL-SLT
takes speech as input, and outputs transcription,
intent, named entities, summaries, and answers
to text queries, supporting the tasks of spo-
ken language understanding, spoken summa-
rization and spoken question answering respec-
tively. The proposed framework benefits from
three key aspects: 1) pre-trained sub-networks
of ASR model and language model; 2) multi-
task learning objective to exploit shared knowl-
edge from different tasks; 3) end-to-end train-
ing of ASR and downstream NLP task based
on sequence loss. We obtain state-of-the-art
results on spoken language understanding tasks
such as SLURP and ATIS. Spoken summa-
rization results are reported on a new dataset:
Spoken-Gigaword.

1 Introduction

The wide deployment of voice controlled comput-
ing has led to extensive interest in spoken language
tasks in recent years (Saade et al., 2019; Bastianelli
et al., 2020; Li et al., 2018). For instance, spoken
language understanding aims to extract the seman-
tics from user queries (Chung et al., 2021; Kim
et al., 2021a; Lai et al., 2021), spoken question
answering aims to predict the answer given the spo-
ken context (You et al., 2021; Kuo et al., 2020).
The rapid development of spoken language tasks
have followed dataset releases (Zhang et al., 2020;
Liu et al., 2019) and the evolution of pre-trained

Input

Speech | I am going to the airport tomorrow, please
turn off bedroom light at nine thirty pm.
Ql When should I turn off bedroom light?

Q2 When do I go to the airport?

Output
Sum. | turn off the bedroom light
Intent | hue_lightoff
Slots | [date : tomorrow], [time : nine thirty pm]
[house_place : bedroom],
Ansl. | nine thirty pm
Ans2. | tomorrow
Table 1: An example of multiple spoken language

tasks. Given input utterances in the form of speech,
the ASR-NLP system can provide a summary of the
speech (summarization), intent detection and named en-
tity recognition (language understanding) and answer
textual queries. The spoken question answering task
requires additional questions as input.

models (Devlin et al., 2019; Lewis et al., 2020;
Chuang et al., 2020).

Multi-task learning (MTL) (Caruana, 1997) fo-
cuses on simultaneously solving multiple related
tasks and has attracted much attention in recent
years. Compared with single-task learning, it can
reduce the training and inference time while im-
proving generalization performance and predic-
tion accuracy by learning a shared representation
across related tasks. Prior works show the effec-
tiveness of MTL while they only focus on multi-
ple text-based tasks/datasets (e.g., MT-DNN (Liu
et al., 2019; Wang et al., 2019)) or multiple speech-
based tasks/datasets (e.g., SpeechStew (Chan et al.,
2021)). Also, some works (Raju et al., 2021; Rao
et al., 2021) prove the effectiveness of considering
speech information when performing NLP tasks.
Thus, as can be seen in Figure 1, we argue that it
is helpful when extend these MTL approaches to
spoken language tasks (i.e., ASR-NLP-shared).
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Figure 1: Different Implementations of Spoken Language Tasks.

In this paper, we develop multi-task learning
methods to optimize spoken summarization, spo-
ken question answering, spoken language under-
standing (intent classification and slot filling), as
well as speech recognition on multiple spoken lan-
guage datasets. An example of an application with
these four tasks can be seen in Table 1. Note that
instead of performing experiments only on under-
standing task (e.g., Feng et al. (2021)), we also con-
sider harder generation task into our framework,
whose data distribution has significant difference
to classification task (Observation can be witnessed
from Figure 2, the purple points are far away from
the other data).

A primary challenge with audio as an input
modality is the impact of speech recognition er-
rors and acoustic noise on spoken language tasks.
To mitigate this, our approach jointly optimizes
pretrained speech recognition and language mod-
els for semantic metrics of interest and we train
across multiple language tasks. The various lan-
guage tasks and the impact of multi-task training
can be visualized in the clustering plot of the hidden
state of a pretrained language model in Figure 2.
We demonstrate our results using listen-attend-spell
(LAS) (Chan et al., 2016) speech recognition model
and a BART (Lewis et al., 2020) based NLP model.

Opverall, the main contributions are as follows:

* We propose a MTL-SLT framework to effec-
tively joint train an ASR model and an NLP
model on multiple spoken language tasks.

» Experimental results show that our proposed
multi-task learning framework is state-of-the-
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art on spoken language understanding tasks.
Training multiple language tasks followed by
task-specific finetuning yields optimal models.
Jointly training ASR and NLP with policy gra-
dient methods improves metrics on all spoken
language tasks.

We prepare a spoken summarization dataset
based on the Gigaword dataset (Rush et al.,
2015) using a multi-speaker text-to-speech
(TTS) model. The performance of the intro-
duced spoken-summarization task with the
MTL framework is studied.

Our approach extends to multiple NLP tasks,
providing improvements in an end-to-end spo-
ken language learning setting. We make
our code and data publicly available for re-
searchers to accelerate the development of re-
lated spoken language tasks.

2 Related Work

MTL MTL aims to improve the performance on
a set of primary tasks through an inductive bias
(Caruana, 1997) introduced by additional training
objectives on auxilliary tasks. MTL has also been
used to train several tasks jointly, without the no-
tions of primary and auxilliary tasks (McCann
et al., 2018). MTL approaches for deep learning
include hard parameter sharing where the entire
layers and parameters are shared between tasks;
and soft parameter sharing, where each task has it’s
own model parameters but the distance between the
model parameters is regularized to help the task-
specific parameters to be similar (Ruder, 2017).



Pre-trained Models The paradigm of pre-training
a language model (LM) followed by task-specific
fine-tuning has been shown to obtain remarkable
performance on many NLP tasks. BERT (Devlin
et al., 2019) pre-trains deep bidirectional represen-
tations from unlabeled text and showed competi-
tive performance on the GLUE (Wang et al., 2019)
benchmark. This provided a base for researchers
to build upon, leading to several extensions and
rapid progress in the space of pre-trained LMs.
The MultiTask Deep Neural Network (Liu et al.,
2019) is one such extension with multi-task learn-
ing across all GLUE tasks. The paper argues for
improved domain transfer by performing standard
BERT pretraining, followed by multi-task learning
and task-specific fine-tuning. BERT has been lever-
aged for various NLP tasks, for e.g. the effective-
ness of BERT for the summarization task was ex-
plored by Liu and Lapata (2019). The performance
of text generation tasks have been approaching a
near-human level by virtue of pre-trained encoder-
decoder models, such as BART (Lewis et al., 2020)
and TS5 (Raffel et al., 2020).

Spoken Language Tasks Spoken language tasks
include standard NLP tasks with speech-input in-
stead of text-input. Speech recognition errors can
impact the performance of downstream NLP sys-
tems. Recently, Feng et al. (2021) proposed the
ASR-GLUE benchmark, augmented 6 NLP tasks
from GLUE with speech generated from Google
TTS, and analyzed the robustness of NLP to ASR
errors. However, all 6 tasks are sentence-level clas-
sification problems, and the models did not utilize
MTL framework. Chung et al. (2021) introduced a
speech-language joint pre-training framework for
SLU tasks. The paper showed the effectiveness
of the joint pre-training method with experiments
on four classification tasks, i.e., intent detection,
dialog act classification, spoken sentiment analysis
and spoken question answering. Prior works for
SLU show the impact of speech recognition errors
on downstream Natural Language Understanding
(NLU) performance and propose joint training of
ASR and NLU to improve overall performance
(Rao et al., 2021). Kim et al. (2021b) introduced
a speech-based benchmark for task-oriented dia-
logue systems, specifically targeting the problems
of multi-domain dialogue state tracking and knowl-
edge grounded dialogue modeling, and showed that
well-behaved models trained on written conversa-
tions do not perform well on spoken data.

Figure 2: T-SNE Visualization of BART’s last hidden
state features. Red and blue represent ATIS and SLURP
datasets, green denotes Spoken-SQuAD dataset, purple
denotes Spoken-Gigaword dataset.

3 Approach

3.1 Architecture of MTL-SLT

Figure 3 shows the proposed MTL framework
which consists of three different modules, i.e., the
ASR model, the NLP model and the interface be-
tween them. In this work, the MTL-SLT uses the
LAS architecture for ASR and BART for NLP.

ASR Model Unlike previous works on spoken
language tasks (SLT) that obtain transcriptions us-
ing existing ASR systems/tools (Feng et al., 2021;
Li et al., 2018), in our approach, the ASR model is
updated with the training of end-to-end spoken lan-
guage tasks. To address this, we generate the ASR
transcriptions from a LAS model explained in (Rao
et al., 2021; Chan et al., 2016), and pre-trained it
on the LibriSpeech dataset (Panayotov et al., 2015)
following previous works (Lugosch et al., 2019).

Enc-Decoder NLP Model Bidirectional and
Auto-Regressive Transformers (BART) (Lewis
et al., 2020) uses a separate bidirectional encoder
and autoregressive decoder similar to BERT (De-
vlin et al., 2019) except that (1) BART’s decoder
incorporates cross attention over the final encoder
layer and (2) BART’s encoder does not use a feed-
forward dense layer for word prediction. The
BART model can be used to perform both language
understanding (i.e., intent classification) and lan-
guage generation (i.e., summarization) problems
at the same time, we refer to it as an NLP model
in this work. We use the same pre-trained BART-
base model as the original paper, which includes 6
transformer layers in the encoder and decoder.

Spoken Language Interface The interface ex-
poses relevant outputs from the ASR model to the
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Figure 3: Our proposed MTL framework for LAS-BART-based Spoken Language Models. The model consists of an
ASR system to generate transcription for the input audio frames, and an encoder-decoder system to generate intents,

slots, answers, summarizations for different tasks. They

share parameters of LAS, BART encoder and decoder, and

are first trained on multiple tasks with ASR Loss, Generation Loss and Classification Loss; then the two systems are

jointly trained with Sequence Loss.

downstream NLP model. Prior works have pro-
posed rich interfaces that expose neural embed-
dings from ASR in addition to the text recogni-
tion (Rao et al., 2020). In this work, we use a
simple text interface i.e. the best text recognition
hypothesis from the output of ASR as the input to
the NLP models. We leverage pre-trained models
for both ASR and NLP. Inspired by (Rao et al.,
2021; Raju et al., 2021), we introduce sequence
loss training for the joint ASR-NLP system that al-
lows direct optimization of non-differentiable SLT
metrics. Specifically, we consider the error rate of
ASR, summarization, QA, intent classification and
slot filling as the SLT metrics.

3.2 Joint MTL Training Strategy

The MTL Training Strategy can be divided into
three steps.

Backbone Pre-training The ASR model is first
pre-trained for the speech recognition task using
the LibriSpeech dataset. The NLP model uses the
pre-trained BART (Lewis et al., 2020) model which
is trained to reconstruct corrupted text.

MTL Pre-training Our joint pre-training on mul-
tiple tasks falls into the paradigm of multi-task
learning (MTL). Training details of the MTL-SLT
can be seen in Algorithm 1, in the training stage,
we take turns to load the training data of these

pre-training tasks. For example, we update model
parameters on a batch of training instances from the
first task, and then update parameters on a batch
of training instances of the second task, and the
process repeats. Note that, according to our pre-
liminary experimentation, the effect of different
orders of carrying out these pre-training tasks is
negligible.

Post Fine-tuning After pre-trained with MTL
objective, the MTL model is further fine-tuned on
each dataset with few training steps to improve the
performance.

3.3 Training Losses

There are three types of losses to be optimized
in our framework, i.e., ASR loss, language task-
specific losses and sequence losses. Our model is
first trained by updating 0 45 based on the ASR
loss, then trained by updating @ 1 p for each down-
stream task. Finally, sequence loss training is em-
ployed to update both 6 45 and 0 51 p.

ASR Loss Given input audio sequence x, the
ASR system is trained by teacher-forcing the
encoder-decoder network with the tokens of the
ground truth transcript w with the loss function

being Lo = — Zjvzl log p(wj|z, w.j—1;0).

Intent Detection For sentence-level classifica-
tion problem, denote the sentence pooled represen-

123



Algorithm 1: Training a MTL-SLT model.
Parameter: Pre-trained LAS model and
BART model 6, random initialized task
specific heads , epoch number M, task
number 7.
//Prepare the data for T’ tasks.

fortinl,2,...., T do
| Pack the dataset ¢ into mini-batch: D;.

end
// Multi-task Learning.

for epoch in 1,2,..., M do
1. Merge all the datasets:

D =DyUDs...U Drp
2. Shuffle D

for b; in D do
//by is a mini-batch of task t.

3. Compute loss : L(6)
/[Train the ASR and NLP tasks.
L(0) += Las for ASR
L(0) += Lgen for Summarization
L(0) += Liagging for Slot Filling
L(0) += Lintent for Intent Detection
L(0) += L for Question Answer
if perform joint training then

| L(6) += Lseq for ASR and NLP
end
4. Compute gradient: V(6)
5. Update model: § = 6 — eV (0)

end

end

tation as e from input ASR token sequence w, and
the correct intent label is ¢, the model infers ¢ from
e. The negative log-likelihood loss is used for the
classification loss Lintent = — log p(c|e; 0).

Slot Filling For token-level classification prob-
lem, denote the slot sequence as s, the input as
v, and the sequence length as NV, the negative
log-likelihood loss is used for calculating slot loss

N
£tagging = - Zj:l logp(8j|v, S:j—1; 0)

Summarization The summarization of x is de-
fined as y = (y1,...,yar). The model infers an
appropriate y from v. The generation loss Lgey
is calculated with the negative log-likelihood loss

»cgen = - Zjvzl 10gp(yj|v7 Y.5—1;5 0)

Question Answering For question answering,
we employ binary cross entropy loss on the sen-
tence pooling representation L5 key and the span-
based losses (Rajpurkar et al., 2016) on the sen-

tence representation Lgpan. The QA loss is Lga =
£has_key + ﬁspan-

Sequence Losses Inspired by reinforce frame-
work (Prabhavalkar et al., 2018), sequence loss
training enables end-to-end joint training of ASR
and a downstream language task (Rao et al., 2021).
Denote C' as a joint sequence of ASR and NLP
outputs, this is done by directly optimizing model
parameters 6 for the expected metric cost M (¢, c*)
over the distribution of candidate hypotheses. Here
c* is the ground-truth output and c is a model can-
didate. This is expressed as,

Eseq - ECEC[M(Ca C*)] (1)
= V9Lseq = VoEcec[M(C,c")] 2

~ Vy Zﬁg(c)M(c, )3

~ > M(c,¢)Vopylc). (4

Here, the approximation of the expectation in Eq.
(3) is from using an n-best candidate set C produced
by the model with each candidate arising from a
normalized probability py(c) = % The
probability of a candidate c is given by the combi-
nation of ASR and language task probabilities.

Sequence loss training is a policy gradient ap-
proach that jointly trains § 455 and O p by in-
creasing the prediction probability of candidates
with lower metric costs.

In this work, we optimize for a composite metric
which is a sum of metrics of interest, namely, word
error rate (WER) for ASR task and a language
task metric. The metrics for language task include:
(1) rouge error rate for the summarization task,
(2) exact match error rate and QA F1 error rate
for question answering, and (3) intent and domain
classification error rate as well as SLU-F1 error
rate for the language understanding task. These
metrics are further detailed in Sec. 4.3.

Sequence loss training can be done for an in-
dividual task and is used in conjunction with the
cross-entropy losses defined earlier that acts as a
regularizing term. It can also be combined with
multi-task learning by applying task-appropriate
sequence loss training to update relevant parame-
ters for a batch from the merged dataset.
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Datasets | Spoken-Gigaword |  Spoken-SQuUAD | ATIS | SLURP

Settings  Models |WER(}) RI(f) R2(1) RL(1)|WER() EM(1) FI1(t)|WER() Acc() F1(1)|WER() Acc() SLU-FI(1)
| Asg  LASS | 2263 27.11 - - 4.52 - - | 18.00

: LAS-M | 21.20 26.40 3.03 . - | 1653

> nLp  BARTS - 4312 2572 4078| - 5630 65.82| - 97.63 96.19 8724  85.10

: BART-M| - 4330 2602 41.29| - 5792 6779 - 98.38 97.55 8831  85.62
3 Pineline 55 2263 1581 8.10 14.66| 27.11 1573 29.82| 452 9687 9230| 18.00 8322  72.50
SOIPCHNG ar oM | 2120 1633 861 1529 2640 17.44 3230| 3.03 9811 94.19| 1653 8375 7281
4 Joindy S*S 2066 1602 9.24 1490 25.10 2198 3678| 274 9690 93.11| 16.14 81.87  73.88
MY MM | 1980 1690 9.88 1578 | 22.89 2331 41.26| 255 97.13 93.65| 1581 83.10  74.49

Table 2: Main results of different models and settings on different datasets. BOLD BLACK numbers are in the first
place for ASR and NLP settings, BOLD RED numbers are in the first place for Pipeline and jointly settings. A ({)
means lower is better, and (1) means higher is better. a) For evaluation, we choose four typical and large generation
and understanding datasets, i.e., Spoken-Gigaword, Spoken-SQuAD, ATIS and SLURP. b) For trainging settings,
ASR and NLP represent two independent systems for their own tasks. Pipeline means that the output transcriptions
from the pre-trained ASR system are used as the input of the pre-trained NLP system. Jointly training means that
the parameters of ASR and NLP system are jointly optimized through extra sequence losses. ¢) For models, we use
LAS for ASR system and BART for NLP system empirically. Single models (S) are treated as baselines and trained
only on their own task. MTL models (M) mean that parameters are shared across four tasks and trained together. S
-> S means pipeline training of LAS-S and then BART-S. S + S refers to pre-trained LAS-S and BART-S which are
further jointly trained with sequence loss.

4 Experiments Spoken-Gigaword Spoken-Gigaword is a large
summarization dataset. It is formulated as a sum-

4.1 Datasets mary generation problem, where the general head-

We perform experiments on four datasets, three of
which are existing public corpora (ATIS, SLURP,
Spoken-SQuAD) and one is generated by us
(Spoken-gigaword).

ATIS Airline Travel Information Systems
(ATIS) (Hemphill et al.,, 1990; Shivakumar
et al., 2019) is a widely used Spoken Language
Understanding dataset for airline reservation,
where the user’s intent and utterance’s slots are
predicted given the input command.

SLURP SLURP (Bastianelli et al., 2020) is a re-
cently released Spoken Language Understanding
dataset. It is larger and more semantically complex
compared to ATIS dataset. The SLURP is a collec-
tions of 72k audio recordings of single turn user
interactions with a home assistant on 18 domains.

Spoken-SQuAD Spoken-SQuAD (Li et al,
2018) is a large extraction-based Spoken Question
Answering (SQA) dataset, where the answer of
question is predicted given corresponding context.
For the dataset, the context is in the form of speech
and text, while the question and the answer are in
the form of text. The transcripts of Spoken-SQuAD
are collected from SQuAD benchmark dataset (Ra-
jpurkar et al., 2016).

lines are generated given articles. Considering
that Gigaword is abstractive summaries generation
dataset with large amount of data, it can provide
possibility for designing data-driven models. The
transcripts of Spoken-Gigaword are collected from
Gigaword (Rush et al., 2015), the speech of Spoken-
Gigaword are generated by existing TTS model.

4.2 Experimental Settings

For the MTL-SLT model, we use LAS as the ASR
model, where the input audio features are 64-dim
log-mel filterbank features computed over a 25 ms
window, with 10 ms shifts, the text is tokenized
into subword tokens using a unigram language
model (Kudo, 2018) of vocabulary of 4500. We
use BART-base as NLP model, which has 6 en-
coder layers and 6 decoder layers, a hidden size
of 768, filter size of 3,072, and 12 attention heads.
We apply the default hyper-parameters from prior
works (Rao et al., 2021; Lewis et al., 2020) includ-
ing the learning rate schedule.

4.3 Experimental Metrics

In this section, we show the evaluation metrics
for each tasks. For extractive question answering
task (Rajpurkar et al., 2016), it is evaluated with
two metrics: Exact Match (EM) to check whether
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the answer extracted by the model are exactly the
same as the correct answer and F1 score to measure
the degree of word overlap at token level. For sum-
marization, we follow previous work (Rush et al.,
2015) and use ROUGE-1 (unigrams), ROUGE-2
(bigrams), and ROUGE-L (longest-common sub-
string) (Lin, 2004). For ATIS dataset, we evaluate
it with intent classification accuracy and slot fill-
ing F1 score (Hemphill et al., 1990; Ruan et al.,
2020). For SLURP dataset, we evaluate it with
intent-domain classification accuracy and slot fill-
ing SLU-F1 score proposed in Bastianelli et al.
(2020), which does not overly penalise misalign-
ments caused by ASR errors.

4.4 Main Results

Results of different models and settings on four
datasets are shown in Table 2.

ASR Taking word error rate (WER) as evalua-
tion metric, we can see that the MTL has some
advantages for the ASR task. From Setting 1, MTL
helps improve the performance of LAS model on
ASR when pooling data across tasks. From Setting
4, when jointly training with the NLP model, the
MTL setting sees better performance than indepen-
dently training ASR. Comparing the S+S in Setting
4 to the LAS-S and LAS-M in Setting 1, the im-
provements as per ASR from jointly training are
(1.91% on average) larger than from MTL (1.28%
on average), we attribute this to the optimization
of ASR using sequence loss training for word error
rate as well as related semantic metrics, similar
conclusion can be witnessed in Rao et al. (2021).

NLP NLP system is different from the ASR sys-
tem, in which all datasets are trained for same ob-
jective. For different NLP tasks, they share the
backbone BART parameters and update their own
task specific heads. From Table 2, we can see that
BART-M has improvements over all independent
models on all metrics, which proves the effective-
ness of MTL in NLP system. Classification tasks
see larger improvements than the generation tasks.
In Setting 3 and Setting 4, NLP tasks can be further
improved through jointly training, which shows the
potential of sequence loss training in ASR-NLP
system to make the system robust to acoustic noise.
In Setting 4, M+M performs better than S+S, prov-
ing the effectiveness of MTL in ASR-NLP system.

Pipeline and Jointly Training Methods After
pre-training the ASR and NLP model in single task

mode or on multiple tasks, we have two methods
to jointly use them, the pipeline method that is non-
differentiable and the outputs of ASR system are
directly treated as inputs of NLP system, and the
jointly training method with sequence loss that is
differentiable and can pass the gradient from NLP
system to ASR system. From Table 2, we can see
that results of different spoken language tasks in
Setting 4 are better than in Setting 3, under both of
independent training models and multi-tasks train-
ing models. Also multi-task trained models always
perform better than independent trained models, no
matter under pipeline setting or jointly training set-
ting showing that both these effects are orthogonal
and can complement one another.

Comparison with Existing Works We show
the comparison results of our method to previous
works on SLURP and ATIS in Table 4. Results
are reported on the test set of ATIS and SLURP,
as well as the development set of Spoken-SQuAD.
From Table 3, because it is a recently released large
SLU dataset, there are not too much previous works
that we can refer, but we still get best performance
compared the existing works to our knowledge.

Models | Acc | SLU-FI
Trained on text

NLU* (Bastianelli et al., 2020) 84.84 -
NLU+ (Seo et al., 2021) 87.73 84.34
BART (Lewis et al., 2020) 88.00 | 85.49
Ours: MTL-Text 88.31 | 85.62
End-to-End trained

ASR+ -> NLU+ (Seo et al., 2021) | 82.93 | 71.12
Ours: MTL-SLT 83.10 | 74.49

Table 3: Comparison with existing works on SLURP.
NLU* represents the results from SLURP paper. NLU+
represents the results from a recently released paper.

5 Analysis

5.1 Effect of MTL

MTL on ASR Chan et al. (2021) shows that
by simply mixing multiple ASR datasets together,
ASR model can perform better on each dataset,
and can learn powerful transfer learning representa-
tion. Inspired by this, in our experiment, we would
also like to investigate the performance change af-
ter employing multi-task training only on the ex-
perimented audio data and transcription. Specifi-
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Models | Acc | FI
Trained on text

Attention BiRNN (Liu and Lane, 2016) 91.10 | 94.20
Capsule-NLU (Zhang et al., 2019) 95.00 | 95.20
LIDSNet (Agarwal et al., 2021) 95.97 -
SF-ID Network (E et al., 2019) 96.60 | 95.60
SyntacticTF (Wang et al., 2021) 97.31 | 96.01
BERT SLU (Chen et al., 2019) 97.50 | 96.10
Stack-Prop. (Qin et al., 2019) 96.90 | 95.90
Stack-Prop. + BERT (Qin et al., 2019) 97.50 | 96.10
ASR Error Robust SLU (Ruan et al., 2020) 97.13 | 96.03
Ours: MTL-Text 98.18 | 96.51
End-to-End trained

Phoneme-BERT (Sundararaman et al., 2021) 97.25 | 84.15
E2E SLP (Qian et al., 2021) 96.30 | 90.95
Pre-trained MTL (da Silva Morais et al., 2021) | 96.60 | 91.20
Ours: MTL-SLT 96.92 | 91.43

Table 4: Comparison results on ATIS test set.

cally, during training, only the LAS model is shared
across different tasks. Results can be seen in Set-
ting 1 row LAS-M, in Table 2. We can see that
after employing more data, LAS performs better
on each dataset, which proves that it is effective to
perform more data on ASR model.

MTL on NLP We can see from Table 2 that with
multi-task training, BART performs better in both
the text-based setting (i.e., BART) and jointly train-
ing setting (i.e., LAS-BART).

5.2 Effect of Sequence Loss

With the used sequence loss ( Lseq), We can train
not only the ASR model NLP model independently,
but also train both of them in an end-to-end manner.
We compared the models with and without Ly,
and the result are shown in Table 2. By using the
Lseq, we observe improvements in ASR and NLP
metrics by 2-5%. Sequence loss training allows
for the downstream language modelling task to be
trained with potentially erroneous ASR hypotheses
allowing for robustness to word errors. This also
minimizes the domain shift that occurs from train-
ing (language task has the clean ground truth tran-
scription as input) to inference (language task has
ASR hypotheses as input) resulting in improved
performance. Another impact of sequence loss
training is that ASR is optimized for differentiable
(eg. cross-entropy), non-differentiable (eg. WER)
ASR losses along with arbitrary non-differentiable
metrics of interest (eg. rouge scores, SLU-F1) of
the downstream language task.

5.3 Effect of Post Fine-tuning

The post fine-tuning step described in 3.2 is impor-
tant in our framework, because 1) it can eliminate
differences between datasets arising from different
domains; 2) the optimal performance of different
datasets falls on different positions of a pareto-
optimal surface, post fine-tuning can solve this
problem without introducing more parameters. Ef-
fect of post fine-tuning can be seen in Table 5.

Models ‘ ASR ‘ Summarization-R1
MTL-ASR 21.20 -

w/o Post FT | 23.13 -
MTL-Text - 43.12

w/o Post FT - 26.50
MTL-SLT 19.80 16.02

w/o Post FT | 21.45 14.39

Table 5: Ablation study on Post Fine-tuning.

6 Conclusion

We proposed a multi-task learning framework for
spoken language understanding tasks that take
speech as input and produces (1) intents and named-
entities in language understanding tasks, (2) ab-
stract text summaries, or (3) question answering.
This framework can be extended to other language
tasks such as translation.

In this framework, we make use of pretrained
ASR models and language models like BART and
jointly train these layers across multiple language
tasks. We demonstrate that this training across
tasks coupled with task-specific post-finetuning
produces significantly better results for ASR and
BART separately. We made use of the sequence
loss training framework to enable end-to-end train-
ing of ASR and BART to optimize for metrics
of interest for the classification, sequence tagging,
and generation tasks. This made the downstream
language task robust to errors in ASR hypotheses
that otherwise leads to performance degradation in
pipelined ASR and language task systems.

We demonstrate state-of-the-art results on pub-
lic corpora of SLURP and ATIS for spoken lan-
guage understanding. We also prepare the Spoken-
Gigaword dataset for abstractive summarization of
speech.
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A Experiment Settings

A.1 Statistics of datasets

For the experimental datasets (Spoken-SQuAD,
SLURP, ATIS), we follow the default train/dev/test
splits from the original paper.

A.2 Hyperparameters

We show the detailed hyperparameters for the MTL
Pre-training and Post Fine-tuning stages described
in Section 3.2 of the proposed method on different
datasets in Table 6.

‘ Pre-training ‘ Fine-tuning

Speech Model Batch Size 16 16
Text Model Batch Size 16 16
Joint Training Model Batch Size 4 4
Learning Rate 2e—5 2e—5
Warmup Steps 0 0
Learning Rate Decay Linear Linear
Weight Decay 0 0
Gradient Clipping 1 1
Dropout 0.1 0.1
Attention Dropout 0.1 0.1
Training Steps 100k 20k

Table 6: Hyperparameters for the Pre-training and fine-
tuning stages in training MTL-SLT on the four datasets.

B Spoken-gigaword Dataset

The detail statistics of the generated Spoken-
Gigaword dataset are shown in Table 7. The articles
and summarizations are acquired from gigaword
headline generation dataset (Rush et al., 2015), we
then generate the speech data for the articles us-
ing Tacotron2 (Shen et al., 2018) to extract feature
and . Note that because the input article is noisy,
which make it hard to generate proper speech, so
we remove the ones with special symbols, and we
remove the articles that have more than 30 words.
The implementation is based on an open source
library !.

C Model Structure of NLP task with
BART Model

As a pre-trained sequence-to-sequence denoising
autoencoder, BART uses a standard Transformer-
based neural machine translation architecture,
which consists of 6 encoder and 6 decoder seg-
ments. In our work, we attribute each tasks with
task specific classification head over the BART
model. Specifically, for the Intent Detection task,

"https://github.com/mozilla/TTS/

Types ‘ Spoken-Gigaword
Training Set 249199
Validation Set 12578
words 119M
uni-words 110K
Article aver length 14.6
max length 30
min length 11
words 31M
uni-words 69K
Headline aver words 8.3
max length 30
min length 2

Table 7: Statistics of the generated Spoken-gigaword.

we use the End-Of-Sentence (EOS) token on the
last decoder layer to do the prediction; for the slot
filling task, we predict the slot labels in BIO format
after the last encoder layer; for the summarization
task, generated sentences with EOS token at end
are used to calculate the summarized loss; for the
question answering task, EOS token in the last de-
coder layer is used to predict the answer.

D E2E Spoken Question Answering

In Section 3.3, we mention the Ly,5 key in Spoken
Question Answering. Actually, Spoken-SQuAD is
a dataset with all examples having answers. How-
ever, since the input context of each example is
too long, if we process the input audio directly,
the model’s performance will be very poor. Thus,
instead of processing the input audio directly, we
first split the input into sentence-wise segments,
and then during the training, we predict the answer
on each sentence. Note that we have a classification
head to determine whether this sentence contains
the answer or not, and the loss over this classifica-
tion head is Lyas_key -
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