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Abstract

We present our initial experiments on binary
classification of sentences into linguistically
correct versus incorrect ones in Swedish us-
ing the DalLAJ dataset (Volodina et al., 2021a).
The nature of the task is bordering on linguis-
tic acceptability judgments, on the one hand,
and on grammatical error detection task, on the
other. The experiments include models trained
with different input features and on different
variations of the training, validation, and test
splits. We also analyze the results focusing on
different error types and errors made on dif-
ferent proficiency levels. Apart from insights
into which features and approaches work well
for this task, we present first benchmark results
on this dataset. The implementation is based
on a bidirectional LSTM network and pre-
trained FastText embeddings, BERT embed-
dings, own word and character embeddings, as
well as part-of-speech tags and dependency la-
bels as input features. The best model used
BERT embeddings and a training and valida-
tion set enriched with additional correct sen-
tences. It reached an accuracy of 73% on
one of three test sets used in the evaluation.
These promising results illustrate that the data
and format of DalLAJ make a valuable new
resource for research in acceptability judge-
ments in Swedish.

1 Introduction

Linguistic acceptability comes from the field of
generative linguistics. It is based on native speak-
ers’ intuitive judgements of whether a sentence
is acceptable or not (Schiitze, 1996). While Lau
et al. (2017) argue that acceptability is a gradi-
ent phenomenon, it generally is treated as a bi-
nary classification task (Warstadt et al., 2019). To
create datasets for acceptability judgements, either
existing incorrect sentences are collected, for ex-
ample from linguistic literature (Lau et al., 2017;
Lawrence et al., 2000), or correct sentences are
manipulated (Marvin and Linzen, 2018). Using

incorrect sentences by language learners has not
been a common approach in this field so far.

There have been several studies on linguistic ac-
ceptability in English over the last years, using
various forms of neural networks, targeting differ-
ent error types, and focusing on different underly-
ing aims. Neural networks trained to make accept-
ability judgements can yield for example theoret-
ical insights into how language is perceived and
acquired (Lawrence et al., 2000; Lau et al., 2017),
or into what knowledge language models repre-
sent (Linzen et al., 2016; Jing et al., 2019). Practi-
cal applications of such models include evaluation
of results from language-generating systems (such
as question-answering or machine translation) or
providing assistance in language learning.

Contrary to the field in English, we are aware
of only one study on linguistic acceptability on the
Swedish language (Taktasheva et al., 2021), where
authors use synthetically manipulated data focus-
ing on effects of word order errors on model pre-
dictions. Our study is inspired by the research on
linguistic acceptability, however, we set it into the
domain of second language acquisition. We for-
mulate the task as a binary classification on a sen-
tence level, similar to Daudaravicius et al. (2016),
where the system output should classify a sentence
as correct or incorrect (i.e. containing an error).
We see this type of classification as a first step to
future grammatical error detection (GED) and cor-
rection (GEC) systems for Swedish, and as a first
step before generating feedback on errors.

In our work, we present an exploration of the
binary sentence classification task on Dal.AJ, a
Dataset for Linguistic Acceptability in Swedish,
where each sentence pair contains (1) a sentence
with one error only and (2) a corrected sentence.
Due to the fact that the dataset is new, and the task
unprecedented in this form for Swedish, our study
has a strong exploratory character. Our contri-
butions include a first evaluation of the strengths,
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possibilities, and certain drawbacks of the dataset,
a comparison of different input features to the neu-
ral network, and first benchmark results for this
task.

In the next section, we briefly outline two com-
parable studies in English. In section 3, the data,
features, and models are introduced, followed by
the results in section 4, as well as a discussion and
a conclusion with some ideas for future work in
sections 5 and 6.

2 Related work

Comparing acceptability models is generally dif-
ficult, since there are big differences across lan-
guages, target errors, metrics and datasets. The
following shared task and study are relatively sim-
ilar in set-up and aim to our focus, so they provide
some context to view our work in.

2.1 AESW 2016

The goal in the Automatic Evaluation of Scien-
tific Writing shared task (AESW) 2016 was to
identify sentences in need of correction in sci-
entific articles written in English (Daudaravicius
et al., 2016). This did not only include gram-
matical errors but also stylistic features inappro-
priate for the academic genre. Predictions were
given both in a binary and a probabilistic version.
The task organizers report that six teams partic-
ipated, two of which used deep learning meth-
ods, two maximum entropy, and the remaining two
logistic regression and support vector machines.
The teams using deep learning ranked highest with
F1-scores of 61.08 and 62.78 on the binary task
(Daudaravicius et al., 2016). One of them used a
convolutional neural network and pretrained word
embeddings (Lee et al., 2016). The other team
combined several character - and one word-based
encoder-decoder models and a sentence-level con-
volutional layer by majority vote (Schmaltz et al.,
2016).

2.2 CoLA

CoLA is the Corpus of Linguistic Acceptability,
a collection of 710,657 English sentences labeled
as grammatical or ungrammatical from published
linguistics literature” (Warstadt et al., 2019). It
targets morphological, syntactic, and semantic er-
rors. The authors also present first models trained
on this dataset. The most successful one uses
transfer learning with an encoder pretrained on ar-

tificial data and contextualized word embeddings.
It reaches an in-domain accuracy of 77% and an
out-of-domain accuracy of 73%. Regarding the
different error types, they conclude that their mod-
els ”’do not show evidence of learning non-local
dependencies related to agreement and questions,
but do appear to acquire knowledge about basic
subject-verb-object word order and verbal argu-
ment structure” (Warstadt et al., 2019).

3 Materials and methods
3.1 Data

Three data sources were used in this work. The
main dataset is DalLAJ, a single-error derivation of
the SweL.L-gold corpus. In addition to this, sen-
tences presenting correct samples from SwelL-
gold and the COCTAILL corpus were used.

3.1.1 SweLL-gold

SweLL-gold is a subcorpus of the Swedish
Learner Language corpus, a collection of 502
pseudonymized, normalized, and correction anno-
tated essays written by adult Swedish learners of
beginner, intermediate, and advanced levels (Volo-
dina et al., 2019). The tagset includes 35 error cor-
rection tags, including morphological, syntactical,
orthographic, punctuation, and lexical ones as well
as exceptions such as corrections made as a conse-
quence to other corrections, corrections that do not
fit into any of the categories, or markup of unin-
telligible strings. Rudebeck and Sundberg (2021)
provide detailed information on correction anno-
tation in the SwelLL-gold data. The 502 SweLL-
gold essays contain a total of

* 6,615 sentences containing one or more er-
rors

¢ 1,706 correct sentences.

3.1.2 DalLAJ

DalLAJ is a single-error sentence-scrambled ex-
tension to the SweLL-gold corpus. The format
is described in Volodina et al. (2021a), Volodina
et al. (2021b), where the pilot version DaLLAJ 1.0
was tested, based on four error types.! The full
dataset used in our present study follows the same
principles but contains 35 error types and there-
fore more sentence pairs. The basic principle of

'DaLAJ 1.0 is available as part of the SwedishGlue
collection  (https://spraakbanken.gu.se/en/resources/dalaj),

while DalLAJ 2.0, the full version used for training and
testing in this article, will be released at a later stage.
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the DalLAJ format is that sentences that originally
contained more than one error are included once
for each error, with all other errors corrected. This
has two advantages: Since larger parts of every
sentence are correct, it is easier for the models
to learn the patterns and structure of correct lan-
guage than when sentences contain multiple er-
rors. By splitting multi-error sentences into multi-
ple single-error sentences, we obtain a DalLAJ ver-
sion of the SweLL-gold corpus which is around
five times bigger than the original Swel.L-gold
corpus. For every sentence, this dataset contains
the wrong sentence, the corrected sentence, the
pair of the wrong and correct tokens, and the er-
ror label as described above. In terms of metadata,
it additionally has the education level of the course
the student was taking when writing the text (split
into beginner, intermediate, and advanced) (see
Table 1). It also includes the student’s first lan-
guage, but this is not considered in the present
work. The sentences are randomized, which ex-
cludes the possibility to reconstruct full essays.
This way it is possible to avoid restrictions im-
posed by the GDPR (EU Commission, 2016).

Description
original sentence
corrected sentence
error-correction pair
error label
education level

Example sentence
§Den§ dr en svar fraga .
§Det§ dr en svar fraga .
§Dend—§Det§

L-Ref

Fortsittning

Table 1: Example sentence from DalLAJ

Here are a few statistics about the size and com-
position of DalLAJ 2.0 before preprocessing:

¢ Number of incorrect sentences: 26,652 with
their corrected equivalents which represent
6,615 unique sentences

* Number of unique correct sentences: 6,615
¢ Number of tokens: 1,241,754

* Vocabulary size: 19,963

For effective model training, we need to have
a balanced number of (unique) correct and incor-
rect sentences. However, as we can see from the
statistics numbers, for the 26,652 sentences con-
taining errors we have only 6,615 unique corrected
sentences that are duplicated each time when a

source original sentence has more than one er-
ror. To expose our models to sufficient number
of correct sentences, we, therefore, ideally need
to add further 20,000 correct sentences. 1,706 of
those come from the Swel.L.-gold. To complement
the rest, we use COCTAILL, a corpus of course
books, as described below.

3.1.3 COCTAILL

COCTAILL was chosen as a source for the addi-
tional correct sentences because it comes from the
realm of language learning and should therefore
be similar in domain to DalLAJ. It also includes
information about the level of the course at which
the texts are used for teaching. We have, thus, a
proficiency level label for each sentence in COC-
TAILL. We use this metadata to keep the origi-
nal distribution of beginner (A-levels), intermedi-
ate (B-levels), and advanced (C-levels) sentences
in the additional correct sentence.

COCTAILL stands for ”Corpus of CEFR-based
Textbooks as Input for Learner Level’s mod-
elling” and contains texts from 12 Swedish course
books from beginner to advanced learners (Volo-
dina et al., 2014). Since it also contains a fair
amount of incomplete sentences such as headings,
lists, or word definitions, we applied some filtering
steps. In total, 5,015 beginner, 2,468 intermediate,
and 5,066 advanced sentences were replaced with
sentences of equivalent level to keep the original
distribution.

3.2 Preprocessing

3.2.1 DaLAJ 2.0

We divided the DalLAJ sentences into three splits
of 80% for training and 10% each for validation
and testing, making sure that, even with dupli-
cates, no identical sentences occur in the training
and test splits and that the distribution of begin-
ner, intermediate, and advanced sentences is equal
across splits.
In the next step, we removed

* sentences with a length over 50 tokens (incl.
punctuation)

* duplicate incorrect sentences

* all sentences that contained error types that
appear less than 100 times in total (M-Other,
M-Adj/adv, S-Comp, L-FL, S-Other, P-Sent,
S-Adv, S-WO, S-FinV, S-R, P-R, S-Type)
and
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* all sentences that contained error types that
do not belong to the five main error groups
(orthography, lexis, morphology, punctua-
tion, syntax) - i.e. tags that correspond to
comments of all types and indicate illegi-
ble/uninterpretable strings (C, Cit-FL, Com!,
OBS!, X)

Lastly, all pseudonymized tokens (e.g. *A-city’)
were replaced with names of existing city, country,
or place names, as shown in the example:

* Original: §jag$§ ar fodd i A-hemland .
» Replaced: §jag§ dr fodd i Norge .

3.2.2 Training and validation sets

We tried two approaches with regards to data bal-
ance: (1) In the first approach, we kept the dupli-
cate corrected sentences. Even though duplicates
do not add new information to a model, they do
keep it balanced, so it does not adopt bias due to
an unequal label distribution. (2) In the second ap-
proach, we removed duplicates from the training
and validation sets and replaced them with correct
sentences from COCTAILL, as described in sec-
tion 3.1.3.

3.2.3 Test sets

The models were evaluated on three different test
sets. This does not just give insights into the mod-
els” performance but also into the impact the dif-
ferent compositions of the test sets have on the
scores.

Test set 1 is the regular test split as it oc-
curs in the dataset. In order to get accurate re-
sults, the correct sentences in this split were manu-
ally checked and corrected, so some changes were
made, but no additional sentences were added or
removed. This means that this test set contains
a high number of duplicate correct sentences (as
does the original dataset and the training and vali-
dation data in Models 1 and 3).

Test set 2 is a test set that includes no dupli-
cates. It has the same number of incorrect sen-
tences as the first test set and also uses the manu-
ally checked correct sentences. However, all du-
plicates were excluded, leaving this set signifi-
cantly smaller and unbalanced.

In test set 3, we balanced test set 2 (the set
without duplicates) by adding correct sentences
from the original SweL.L-gold corpus. These are
not part of the DalLAJ training and validation

sets, so they are unseen by the models, but come
from the same domain as the other test sentences.
One drawback here is that there are not enough
intermediate-level sentences in the replacements,
so they were supplemented with advanced-level
sentences to make up for the difference. Table 2
gives an overview of all training, validation, and
test sets.

3.3 Features

Different features were used in our models, alone
or in combination, and with varying degrees of
success. In all of them, we used white-space to-
kenization and padded to the maximum length of
50 with zeros on the left side of the sentence, un-
less otherwise specified.

FastText: First, words were converted into
300-dimensional pretrained FastText embeddings”
(Grave et al., 2018). Pseudo-random vectors were
used for infrequent words (UNK) and words that
are not part of the embedding vocabulary (ERR).
Missing words in the incorrect sentences were rep-
resented by ”§§”-tokens. In the training and val-
idation sets, they got the "UNK”-label and vec-
tor, in testing they got skipped, since adding them
would have given away information about the er-
ror to the model.

FastText + error word: FastText embeddings like
above were used, but with the error word explicitly
added to the end of the sentence. For training and
validation, we got the embeddings for the sentence
as well as the error word(s) as described above and
then concatenated the two vectors. For testing,
the "ERR”-embeddings were added when out-
of-vocabulary words occurred. Otherwise, only
padding was added to the sentence embedding.
BERT: Contextualized word embeddings from
Swedish BERT® (Malmsten et al., 2020) were
used. A pretrained BERT-tokenizer split the sen-
tences into words or subwords, which were then
put through the pretrained Swedish BERT model.
For the embeddings, we summed the hidden states
of the last four encoder layers for each word.
This resulted in 768-dimensional word embed-
dings. The BERT embeddings were padded on
the right side to be compatible with the BERT to-
kenizer.

Word indices: Each word was simply converted
to an index in the vocabulary and later turned into

Zhttps:/fasttext.cc/docs/en/crawl-vectors.html
3https://huggingface.co/KB/bert-base-swedish-cased

Proceedings of the 11th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2022)

87



Set # sen total # beginner sen # intermediate sen # advanced sen vocab
Train (dupl.) 32,394 12,890 5,766 13,738 10,826
Train (COCTAILL) 32,394 12,890 5,766 13,738 21,936
Val (dupl.) 4,008 1,576 722 1,710 2,922
Val (COCTAILL) 4,008 1,576 722 1,710 6,203
Test (dupl.) 3,884 1,439 659 1,786 2,677
Test (no dupl.) 2,573 1,001 437 1,135 2,677
Test (SweLL) 3,884 1,564 518 1,802 4,005

Table 2: Dataset and vocabulary sizes

100-dimensional embeddings by an Embedding
layer* in the neural network. Words that occurred
less than three times were regarded as unknown.

Character embeddings/indices: The sentences
were converted into sequences of character in-
dexes. They were transformed to 50-dimensional
embeddings by an Embedding layer in the neural
network. The threshold for unknown characters
was set to five occurrences.

One-hot encodings for error words: Finally,
one-hot vectors were used to indicate the problem-
atic parts of each sentence. For training and val-
idation, the word(s) between the §-markers were
represented by 1, all other words and padding with
0. For testing, only words that do not occur in the
FastText vocabulary were marked as 1 based on
the assumption that these are spelling mistakes; all
other words - as 0.

In addition to the word representations, we tried
adding explicitly linguistic features, POS-tags and
dependency relations. These tags were extracted
with the Sparv pipeline’ (Borin et al., 2016), con-
verted into numbers by indexing the respective
tags, and also padded to a length of 50 with zeros
on the left side.

For the gold standard and for analysing the re-
sults, each sentence has two labels. One is the bi-
nary gold target indicating whether a result should
be predicted as correct (0) or incorrect (1). The
second is the SweLL error tag, indicating what ex-
actly is wrong in the sentence. Correct sentences
do not have an error tag.

The PyTorch Dataset and Dataloader classes®
were used to shuffle and batch the data (batch size
32) and load it to the models.

*https://pytorch.org/docs/stable/generated/torch.nn.Em-
bedding.html

Shttps://spraakbanken.gu.se/verktyg/sparv

Shttps://pytorch.org/docs/stable/data. htmH#torch. utils.
data.Dataloader

3.4 Models

All models are based on a bidirectional LSTM
layer and a linear layer. The choice of bi-LSTM
classifier is based on its previous successful uses
for binary error detection reported in literature
(Rei and Yannakoudakis, 2016; Kaneko et al.,
2017; Kasewa et al., 2018; Bell et al., 2019; Dek-
sne, 2019). BILSTMs are useful for sequential
data when long-distance dependencies also play a
role and context on both sides of a token should be
taken into account.

To get predictions from the output logits, soft-
max and argmax functions were used. The Adam
optimizer was used with different learning rates.
Loss was calculated with the Cross-Entropy Loss
function. All models were trained for a maxi-
mum of 75 epochs with early stopping after 15
epochs without improvements in validation loss.
The models differ in their specific hyperparame-
ters, input, and structure. Many of the features and
feature combinations did not give meaningful re-
sults or did not improve the results reached with
simpler models. In the following, the successful
models are described in more detail. For these, the
respective results are discussed in section 4.

3.4.1 Model 1 & 2: FastText

The first two models took pretrained FastText em-
beddings as input with a hidden size of 100 and
the learning rate 0.0001. Model 1 used the regular
DalLAJ 2.0 data including duplicate correct sen-
tences. Model 2 used the training and validation
sets in which duplicate correct sentences were re-
placed by sentences from COCTAILL.

3.4.2 Model 3 & 4: BERT

Models 3 and 4 had the same basic structure but
used contextualized BERT embeddings instead of
FastText. The hidden size was 100, like in the
models above, but the learning rate was reduced to
0.00005. As above, model 3 was trained using the
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regular single-error dataset without additional sen-
tences, while model 4 used additional COCTAILL
sentences in training and validation.

3.4.3 Other models

Further experiments included adding linguistic
features (such as parts of speech and dependency
relations, character embeddings, word indices,
one-hot encodings for error words) to test if they
can improve the performance. They have in gen-
eral failed compared to Models 1-4, and we there-
fore do not report them here, but outline in an Ap-
pendix.

4 Results and analysis

The models were evaluated in multiple ways.
First, an overall quantitative analysis compared the
different models. In the second and third part, the
best-performing model was analyzed in more de-
tail, considering error types and education levels.
Finally, a qualitative analysis of the best models’
predictions was conducted.

For the quantitative analysis, the main focus is
on the accuracy score. However, since related
work is often evaluated with other metrics such as
F1-score, FO.5-score, or precision and recall, these
scores are also reported for the best-performing
model.

4.1 Opverall quantitative analysis

There are three things to consider in the overall
results in Table 3: The comparison between dif-
ferent embeddings, different training and valida-
tion sets, and between different test sets. First,
regarding the embeddings, the models trained on
BERT embeddings (Model 3 and Model 4) clearly
outperformed the ones trained on FastText across
all combinations of training and test sets. Sec-
ond, the highest score (for both embedding types)
was reached on models trained and validated on
the dataset where duplicates were replaced with
sentences from COCTAILL. Third, the differences
between test sets show that models performed bet-
ter on test sets without duplicates. This pattern
was not as clear in the models trained on data in-
cluding duplicates.

Table 4 contains the full classification report
for the best model on the best test set. A look
into these more detailed results shows significantly
higher precision, recall, and F-scores for the in-
correct sentences than the correct ones. This indi-
cates that the model learned more from the incor-

rect than the correct samples in the training, po-
tentially because there is more variation in the in-
correct sentences. A comparison between the in-
dividual scores shows very stable results. Within
the two classes, precision and recall lie very close
together. In binary classification, there is usually a
certain trade-off between precision and recall, and
which one is more important depends on the task
and application. Our model here turned out to be
very balanced in this regard, so the F1- and F0.5-
scores are almost identical.

4.2 Performance by error type

For all further analysis, only Model 4, which has
the best overall performance, is considered. The
following results are taken from test set 2.

Due to our filtering and preprocessing steps, we
used only 18 of the total 35 SweLL error types
in our experiments. Table 5 shows the accuracy
and number of samples in the test set for each of
them, along with a short explanation of the types.
For a table explaining all error types we refer the
reader to the appendix of Volodina et al. (2021a).
More detailed information can be found in the full
correction annotation guidelines’ (Rudebeck and
Sundberg, 2021). This only takes the incorrect
sentences into account, since the correct ones do
not have an error type. Both the individual scores
and the ranking of error types differed between
different models. Therefore, the following obser-
vations only allow conclusions about this specific
model.

First, the types with the highest accuracy are
considered. Some of them are expected. O, L-Der,
and M-F8, for example, are types that often result
in "words” that do not exist in correct Swedish and
are thus not part of the word embeddings used to
train the models. Other high-performing groups
were more surprising. The high scores for S-
Clause, S-Ext, and S-Msubj indicate that the model
learns about more complex aspects of language,
such as word order. The fact that P-W errors are
among the most successful groups further supports
the conclusion that this model has a decent under-
standing of Swedish sentence structure.

Second, O-Comp and M-Num are the types with
the lowest accuracy in this model. O-Comp might
be more difficult to predict than other errors since
this aspect of a language often does not follow

"https://spraakbanken. github.io/swell-project/Correction-
annotation_guidelines
8 All correction codes are briefly explained in Table 5
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Model data embeddings test1 (dupl.) test2 (nodupl.) test3 (SwelLL)
1 Dal.AJ FastText 0.61 0.42 0.53
2 DalLAJ + COCTAILL FastText 0.59 0.62 0.66
3 DalLAJ BERT 0.66 0.67 0.65
4 DalLAJ + COCTAILL BERT 0.61 0.73 0.69
Table 3: Accuracy of models 1-4 in three different test sets

Class Precision Recall Fl-score F0.5-score Sample number Accuracy

0 (correct) 0.43 0.39 0.41 0.42 631 0.39

1 (incorrect) 0.81 0.83 0.82 0.81 1942 0.83

Total 2573 0.73

Table 4: Classification report for model 4 on test set 2

strict rules. For M-Num errors, there might be
difficulties in learning longer-distance agreement
when determiners, nouns, and adjectives are not
directly adjacent. However, it is somewhat sur-
prising that the related errors M-Def and M-Gend
perform significantly better.

Model’s performance by error group does not
show a very clear pattern. Most groups include
mixed success rates across their respective types.
That being said, lexical and punctuation errors are
generally closer to average, while morphological
errors tend to perform lower and syntactical ones
perform above average.

A last perspective for comparison is the number
of samples of each type in the dataset. One might
expect a strong positive correlation between num-
ber of samples and prediction accuracy of an error
type. However, this was not quite the case here. It
is true that the error types with low accuracy scores
generally also have a low number of samples (e.g.
O-Comp). This pattern does not hold for the entire
set of results though, since some of the types with
very high accuracy, such as S-Ext or S-Msubj, also
have relatively low number of samples. Finally,
P-M and S-M are two types with above-average
sample sizes, but merely average accuracy scores,
indicating that identifying missing tokens in a sen-
tence might be inherently more difficult than iden-
tifying incorrect ones.

4.3 Performance by education level

Table 6 shows clear performance differences be-
tween sentences written by learners at different ed-
ucation levels. Beginner sentences are predicted
with distinctly higher success than intermediate
and advanced ones. This might partly be explained
by the under-representation of intermediate-level

sentences. Another reason is the unequal distri-
bution of error types across levels. Some of the
types that proved to be most successful in the sec-
tion above, such as O, O-Cap, or M-F occur with
higher frequency in the beginner set. At the same
time, some of the overall less successful types,
such as M-Case, M-Num, or L-W, occur more
frequently in the sentences written by advanced
learners.

4.4 Qualitative analysis

In this section we take a closer look at the predic-
tions, especially the false negatives, of Model 4.
Numbered example sentences can be found at the
end of the section.

First, there are small issues in the dataset. Some
sentences were apparently incorrect when anno-
tated in the context of their text, but are correct
when considered independently. Example [1] is
one case which the model therefore “misclassi-
fies” as correct. Another problem is that some sen-
tences have essay titles or headings incorrectly at-
tached to them, like in [2].

Apart from these issues, there are some specific
errors the model frequently misses. One of them
is agreement with longer distances between the re-
spective words, for example in [3]. Another diffi-
culty for the model seem to be preposition choices.
Incorrect usage of for example ”i”, "pa”, "for”,
or "med” is often not predicted as an error. Sen-
tences in which the pronoun case is incorrect also
appear frequently among the false negatives. One
last group of errors that are not recognized well by
the model are spelling mistakes in names.

One step in preprocessing, the naive replace-
ment of pseudonymization tokens with city, coun-
try, or place names, resulted in some sentences of
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Error tag Explanation #sen #true Acc
O-Comp  Orthography: Problem with compounding 18 13 0.72
O-Cap Orthography: Wrong capitalization 29 25 0.86
O Orthography: Regular spelling correction 261 235 0.90
L-Der Lexical: Word formation problem (derivation or compounding) 58 49 0.84
L-Ref Lexical: Choice of anaphoric expression 59 48 0.81
L-W Lexical: Wrong word or phrase 319 257 0.81
M-Case Morphology: Noun case correction (nom vs gen; nom vs acc) 31 24 0.77
M-Def Morphology: Definiteness (articles; noun & adj forms) 280 222 0.79
M-F Morphology: Grammatical category kept, form changed 24 21 0.88
M-Gend  Morphology: Gender correction 81 67 0.83
M-Num Morphology: Number correction 81 59 0.73
M-Verb Morphology: Verb corrections (inflections, auxiliaries) 202 173 0.86
P-M Punctuation: Punctuation missing (added) 134 113 0.84
P-w Punctuation: Wrong punctuation 38 33 0.87
S-Clause  Syntax: Change of clause structure, incl. synt. function 66 61 0.92
S-Ext Syntax: Extensive and complex correction 26 24 092
S-M Syntax: Word missing (added) 196 157 0.80
S-Msubj  Syntax: Subject missing (added) 39 36 092

Table 5: Accuracy and number of samples by error type (in the test set) in Model 4

Education level # Samples Accuracy
Beginner 1001 0.77
Intermediate 437 0.69
Advanced 1135 0.70

Table 6: Accuracy and number of samples (in the test
set) by education level in Model 4

questionable logic, like [4]. Looking at the re-
sults, it does not seem to disturb the classifier, but
more research into it would be needed to be sure.
Finally, we found a pattern that longer sentences
tend to get predicted as incorrect more often than
shorter ones. This is not conclusive by itself but
invites further research into the effect of sentence
length on the models.

[1] Jag §drS vildigt bra .

[Eng. I §am§ very good .]
[2] Skrivuppgift 3 , 3 april 2018 Politiker som
foredomen Far politiker vara §gott§ foredomen
for medborgarna ?

[Eng. Writing task 3 , 3 April 2018 Politicians
as models Are politicians allowed to be §good§
models for citizens ?]

[3] Han har svart har , morka égon och en mun
som alltid §ville§ skratta .

[Eng. He has black hair , dark eyes and a mouth
that always §wanted§ to smile .]

[4] Ruinen ligger mellan Spanien och Danmark
och §den§ hade inte tak §utan§ bara fyra viggar .

[Eng. The ruins lie between Spain and Denmark
and §it§ has no roof §but§ only four walls .]

5 Discussion

The first conclusion to be drawn from the results
is that there are significant differences in the ef-
fectiveness of different types of word embeddings.
The fact that the models trained on BERT em-
beddings perform higher than the ones trained on
FastText across all combinations of training and
test sets presents them as the better choice overall.
Reasons for this could be the differences in train-
ing data, dimensionality, and that the method of
getting embeddings from the context itself works
better in this task.

Our second insight is that there are clear differ-
ences in how successfully each error type is pre-
dicted. These differences are only partially corre-
lated with the types’ representation in the training
data. As a general tendency, spelling mistakes and
simple word-order errors are predicted with excep-
tionally high success rates while morphological er-
rors (especially agreement of non-adjacent words)
perform worse. These trends have to be taken with
caution, however. Some error types occur in very
few samples in the test set, which might impact the
score’s reliability in these cases.
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Furthermore, we found that there are differ-
ences in performance depending on the sentences’
education level. Sentences written on the be-
ginner level proved to be classified with signifi-
cantly higher success than those on the intermedi-
ate and advanced level. One explanation could be
the under-representation of intermediate-level sen-
tences. Another one is that the distribution of error
types is not equal across the proficiency levels.

A comparison with similar studies on English
shows that our work lies well within the range of
their results. For example, in the AESW 2016
task, teams reached Fl-scores of up to 62% on
sentence-level classification of scientific writing
(Daudaravicius et al., 2016). Warstadt et al. (2019)
reached 73% to 77% accuracy on their CoLA
dataset. Their data consists of sentences that were
purposefully written to illustrate certain errors and
that are not originally embedded in the context of
a text, which is a big difference to the DalLAJ data.

The fact that our results compare favorably to
similar studies in English proves that the novel
approach used to create DalLAJ dataset was suc-
cessful. As explained in more detail in Volodina
et al. (2021a), there are several advantages to us-
ing a dataset based on learner data for this task.
Not only is the data realistic, it is also generally
annotated by experts, and often includes detailed
error labels. Advantages of the hybrid approach
between authentic and synthetic data are that the
number of available sentences is higher with this
method, sentences are more informative than au-
thentic ones, but still very similar to the originals.
A minor drawback of this dataset is that the sen-
tences were originally written and normalized (i.e.
re-written in correct Swedish) in the context of a
full essay and then classified in isolation, which
caused some difficulties with predicting the cor-
rectness of for example anaphoric references.

The experiments with different training, valida-
tion, and test sets gave a clear indication that re-
placing duplicate sentences with unique ones from
another source results in better models and bet-
ter scores. By replacing the duplicates with cor-
rect sentences from a second corpus, they have far
more relevant input and are able to generalize bet-
ter.

6 Conclusions and future work

We presented promising benchmark results on the
linguistic acceptability task in Swedish. The com-

parison of different input features showed that pre-
trained word embeddings, especially contextual-
ized BERT embeddings, are very successful while
other ways of representing the sentences did not
yield good results, and additional linguistic fea-
tures did not improve the embedding-based model.
Overall, the dataset proved to be big and informa-
tive enough to train such models, despite some mi-
nor drawbacks.

In future experiments, we plan to use this
dataset for multi-class classification of errors, for
token-level error detection, and for error correc-
tion. These experiments would be an important
step towards a functioning automatic writing eval-
uation (AWE) system for Swedish, where feed-
back generation will need to rely on correctly de-
tected and labeled error types. In connection to
this, we will need to see whether models trained on
distilled hybrid data like DalLAJ can be success-
fully applied to authentic data containing multiple
errors per sentence. Finally, we will experiment
with generation of synthetic data to study its in-
fluence over model performance and to improve
our chances of getting accurate tools for language
learners.
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Appendix A. Failed experiments

Character embeddings/indices: Since words
with orthographic and morphological errors often
do not occur in the word embeddings used, we
hypothesized that character-level representations
might be better-suited. Therefore, we trained a
model on character instead of word embeddings.
Apart from that, it had the same structure as the
models with pretrained word embeddings. This
model performed better than chance, but clearly
worse than the FastText and BERT models, reach-
ing accuracies of 55% to 64%. A possible rea-
son for the low performance is the relatively low
amount of data for training embeddings. Fu-
ture approaches might be to separately train a
character-level language model on a bigger correct
dataset and use that for the embeddings or to try
other methods of capturing subword information,
such as byte-pair encodings.

Word indices: The next experiment used the
same index-based approach, but on the word
level again. Since the word embeddings used in
this experiment are trained on very different data
(Wikipedia, newspaper articles, etc.) than learn-
ers’ essays, we tried using in-domain embeddings.
Similar to the model above, it reached accuracy
scores of 52% to 60%, possibly also due to the
comparatively small dataset.

FastText + error word: We had two reasons
for adding the error word to the FastText embed-
dings. First, it introduced more variety among
the correct sentences in the models with dupli-
cates. Second, repeating the wrong word could
have helped the model learn what exactly is wrong
in a sentence. This model did reach higher valida-
tion accuracy (up to around 70%), but accuracy
on the test set remained at or around 50%. This
indicates that the additional information is useful
to the model to some extent, but it cannot transfer
that knowledge to sentences where the error word
is not explicitly repeated.

One-hot encodings for error words: This fea-
ture was again combined with the pretrained word
embeddings. Both input vectors went through sep-

arate biLSTM layers, and the outputs were con-
catenated before the linear layer. Validation accu-
racy improved, but not test accuracy, so the prob-
lem seems to lie in the transfer of information to
the test sentences, which mainly consist of only
zeros (except for spelling errors). An idea for im-
proving this is to randomly replace the one-hot
vectors for some sentences in the training and val-
idation data with zeros-only vectors, forcing the
model to generalize to data with only zeros. An-
other approach might be to use a more advanced
model with an attention mechanism instead.
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