A Transformer for SAG: What Does it Grade?

Nico Willms
Hochschule fiir Technik
Stuttgart, Germany

Abstract

Automatic short-answer grading aims to pre-
dict human grades for short free-text answers
to test questions, in order to support or replace
human grading. Despite active research, there
is to date no wide-spread use of ASAG in real-
world teaching. One reason is a lack of trans-
parency of popular methods like Transformer-
based deep neural networks, which means that
students and teachers cannot know how much
to trust automated grading. We probe one such
model using the adversarial attack paradigm
to better understand their reliance on syntac-
tic and semantic information in the student an-
swers, and their vulnerability to the (easily ma-
nipulated) answer length. We find that the
model is, reassuringly, likely to reject answers
with missing syntactic and semantic informa-
tion, but that it picks up on the correlation be-
tween answer length and correctness in stan-
dard training. Thus, real-world applications
have to safeguard against exploitation of an-
swer length.

1 Introduction

Automated  short-answer grading (ASAG)
promises to support or replace human grading
decisions for student-constructed answers to test
questions and in this way avoid human error and
save teachers’ time and effort. In the context of
formative testing for frequent feedback, online
teaching and self-study, ASAG is especially at-
tractive, since human grading effort is significant
due to repeated testing or large groups, and the
need for feedback can arise at any time of day
or night in the case of self-study (Burrows et al.,
2015).

ASAG models are not currently in wide-spread
use in real-world teaching contexts (e.g., Lee and
Shin (2020); Wilson et al. (2021) for the related
task of essay scoring). Three requirements for
their adoption are reliable performance on small-
scale, real-word data, ease of development for
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non-experts and transparency of model decision
making, both for teachers and students.

Transformer-based models like BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) have
been recently successfully explored for ASAG
(Camus and Filighera, 2020; Bexte et al., 2022).
Given the relatively small size of available training
data for ASAG (in the low ten thousands of data
points), the great advantage of these models is that
they are freely available pre-trained on large data
sets and require only relatively small data sets for
fine-tuning to a specific task. Another advantage is
that they require no manual feature engineering, as
relevant patterns are derived by the complex neural
networks from word distributions in the very large
pre-training data sets. Transformer-based models
therefore seem like good candidates to address the
reliability on small data sets and ease of develop-
ment criteria.

However, the grading decisions made by neu-
ral models are intransparent. This makes it hard
for teachers to understand how to best use ASAG
on specific data sets - are the predictions reliable
enough to replace human grades, should they be
manually revised, or are the available models un-
reliable altogether for their data? A related ques-
tion is what the model predictions are based on -
do they consider the content of the short answers,
as intended, or do they also rely on extraneous sig-
nals, and can they be swayed by trivial manipula-
tions of the input that would not convince a hu-
man grader? Since real-world grading applica-
tions have to gain the trust of teachers and students
alike, these questions are highly relevant for prac-
tical application. This paper aims to further under-
stand the functioning and limitations of a standard
Transformer-based ASAG model.

Since ASAG is a semantic task (similar to the
Natural Language Inference and Paraphrase De-
tection sub-tasks in the GLUE benchmark, which
BERT does well on, see Devlin et al. (2019)), we
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hope to see sensitivity to the content of the input
beyond keyword spotting. At the same time, triv-
ial manipulations of the input should not affect the
predicted grade.

One strategy for probing model behaviour and
representations are adversarial attacks (Goodfel-
low et al., 2015), modifications of the input data
that allow us to evaluate model behaviour in a con-
trolled experiment. The strategy has been used
before to establish relevant insights about neural
ASAG: Ding et al. (2020) established that a re-
cursive neural network was sensitive to combina-
tions of content words (rather than just keywords,
for example) for ASAG. Looking at the possibil-
ity of fooling the model, Filighera et al. (2020)
were able to identify two-word trigger phrases that
in some cases suffice to switch the predictions of
a BERT-based model when added to student an-
swers — while not altering the content of the stu-
dent answer in a meaningful way.

We present several experiments to investigate a
Transformer-based model’s sensitivity to syntac-
tic and semantic information in ASAG student an-
swers, as well as a confounding (and potentially
exploitable) length effect. Experiment 1 (Sec-
tion 4) investigates the system’s reaction to re-
moval of syntactic information (namely, word or-
der and function words). Experiment 2 (Section 5)
explores the extent of the system’s reliance on con-
tent words from different word classes and its ro-
bustness in case they are removed. Finally, Exper-
iment 3 (Section 6) investigates the impact of input
length.

We find that the model uses syntactic informa-
tion (such as word order and function words for
English), but its loss is not catastrophic for model
performance. Removing nouns from the input data
has the most tangible effect in Experiment 2, re-
ducing the model’s ability to identify a correct an-
swer to 50% (when a human grader would likely
be similarly affected). These results underscore
that the model does rely on the meaning of the
short answers to arrive at its grade prediction, as
we had hoped.

However, we also find that the model is easily
swayed by input length: Longer answers are much
more likely to be graded correct. This pattern is
visible in the training data and clearly picked up
by the model. This result is alarming, since the
length signal is easy to manipulate.

2 Related Work

Traditionally, extensive feature engineering on the
lexical, syntactic and semantic level has been em-
ployed for ASAG (see Burrows et al. (2015) for an
overview). More recently, neural network-based
approaches have been tested, for example in work
by Riordan et al. (2017) using an LSTM (Long
Short-Term Memory, Hochreiter and Schmidhu-
ber (1997)) or by Sung et al. (2019) or Camus
and Filighera (2020) using the Transformer-based
BERT (Devlin et al., 2019) or RoBERTa (Liu
et al., 2019) models.

While Riordan et al. (2017) report that their
LSTM-based model approaches the state of the
art, the BERT-based approach of Sung et al. (2019)
is the first to improve on the state of the art for
a standard ASAG data set. The use of domain-
specific data in pre-training and fine-tuning proves
helpful, but makes performance brittle in un-
known domains. Camus and Filighera (2020)
demonstrate that fine-tuning on tasks related to
ASAG (like Natural Language Inference, where
systems decide whether a hypothesis follows from
a premise) yields more robust improvements, even
though the fine-tuning data has little connection to
the topic domain of the test data.

To date, the state of the art on standard bench-
mark data sets is set by combinations of neural
and traditional machine learning approaches: Saha
et al. (2018) and Sahu and Bhowmick (2020) com-
bine word and sentence embeddings with string-
based similarity methods. Since these approaches
inherit both the need for feature engineering and
for extensive pre-training of the embeddings, they
are harder to re-create for the application of ASAG
methods in teaching practice. We therefore focus
on the Transformer-based models in this paper due
to their comparable ease of use.

BERT and related models have been investi-
gated extensively with different strategies over the
last years, finding that BERT learns syntactic (He-
witt and Manning, 2019; Tenney et al., 2019)
and semantic representations (Ettinger, 2020) that
are generally preserved through fine-tuning for
semantic tasks like paraphrasing (Pérez-Mayos
et al., 2021). However, Hessel and Schofield
(2021) find that on the GLUE tasks (Wang et al.,
2018), BERT is relatively insensitive to shuffling
of the input sentences, which removes many syn-
tactic clues in English. For ASAG, this behaviour
is double-edged: On the one hand, ASAG focuses
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on scoring answer content over answer form, so
insensitivity to shuffled (or syntactically incorrect)
input is an advantage. On the other hand, input
words in truly random order would certainly be
noticed by human graders and could indicate an
attempt at manipulating the grade. Insensitivity to
word order removes the system’s ability to filter
out such answers.

More problematic for the use of BERT-based
models for ASAG are results from Ettinger (2020)
that BERT is insensitive to negation in a word pre-
diction task. For a task like ASAG, the removal or
addition of negation to a student answer will likely
immediately change the correct grade, so sensitiv-
ity to this information is vital.

Adversarial attacks specifically have been a fer-
tile approach for studying neural networks in NLP
in recent years (Zhang et al., 2020). Specifically
for ASAG, Ding et al. (2020) found that attacks
randomly generated from prompt specific words
were more easily accepted by the system, more
so if longer word sequences remained intact and
most readily if the attack was generated by shuf-
fling, since all lexical material is preserved. This
is in line with the results by Hessel and Schofield
(2021) and points to semantic association at the
core of ASAG performance.

Filighera et al. (2020) identified a number of
two-word trigger sequences that would frequently
switch an ASAG grade from incorrect to correct
when simply prepended to the student answers, in-
creasing the misclassification rate of the attacked
model by about 130-160%. This is a clear attack
vector for grade manipulation, although it does not
guarantee misclassification: Adding the triggers
does not flip classification for any answer but only
for ones that were already somewhat similar to the
target answer.

3 Method

Data We work with two corpora that, to-
gether, constitute the standard English-language
SemEval-2013! data set (Dzikovska et al., 2013),
Beetle and SciEntsBank (SEB). The corpora con-
tain student answers to science domain questions;
Beetle (3.6k answers) was collected from interac-
tions with a tutoring system, while SEB (4.5k an-
swers) stems from a conventional test setting.

!Available from https://www.cs.york.ac.uk/
semeval-2013/task7/index.php%3Fid=data.
html.

Evaluation Both corpora offer in-domain and
out-of-domain test sets. For the in-domain test
sets, additional unseen answers (UA) to questions
from the training set are presented. In addition,
there are also test sets containing completely new
questions and their answers, called unseen ques-
tions (UQ). Finally, for SEB, there are also ques-
tions from an unseen domain (UD).

The task is to determine the human-annotated
grade for a student answer by comparing it to a
given correct reference answer. In the literature,
Beetle is rarely used, since it provides several ref-
erence answers per question. Here, we append
these reference answers into a single input.

We report Macro F; scores (for comparison to
the literature state of the art) and Accuracy (for
experimental evaluation) on the test sets, using the
binary classification labels. In addition to over-
all Accuracy, we also break down the results into
label-wise Accuracy. Across all data sets, the
incorrect answers are the majority class (con-
sistently at about 60% across all data subsets).

Model We aim to create a model close to the
state of the art. Given the results in Camus and
Filighera (2020), RoBERTa,s. as well as mod-
els pre-trained on the MRPC paraphrasing task
(RoBERTa,/rpc) and the MNLI Natural Lan-
guage Inference task (RoBERTa, ;) were sep-
arately fine-tuned on SEB and Beetle.

On a development set comprising 10% of the
training data, we determined the optimal number
of training epochs and compared the results for
three versions of each RoOBERTa model based on
different random seeds. The models received a
maximum of 256 tokens per input sentence. We
used the Adam optimiser with an initial learning
rate of Se-5, and e of 1e-8; batch size for training
was 8. RoBERTa), yr consistently outperformed
the other model instances on the development set,
so this model (with seed 100 and 6 epochs of train-
ing for SEB and seed 1 or 100 and 6 epochs of
training for Beetle) was chosen.

Table 1 shows that we have succeeded in train-
ing a model that closely matches or numerically
outperforms the state of the art for both corpora
using macro Fy: We compare to Saha et al. (2018)
on SEB.? and report the first results for 2-way Bee-
tle since SemEval-2013°.

Ghavidel et al. (2020) achieved a slightly higher F} score
for UA at 79.7, but lower scores for UQ and UD.
3Results for the best model for each test set from the top-
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Beetle SEB

UA UQ |[UA UQ UD
best SemEval-13  83.3 72.0 [ 76.8 73.7 705
Sahaetal. 2018 - - | 786 739 709
RoBERTay vz, 897 78.1 | 822 741 721

Table 1: Macro F} on the test sets for literature benchmarks and RoBERTay; n 7.

Adversarial Attacks We modify the SEB and
Beetle test data in different ways and compare
model performance on the original and modified
data using the difference in overall and label-
specific model accuracy. This strategy allows us to
both show the effect of the attack and to factor in
imperfect model performance on the original data.

We will create attacks to evaluate the model’s
reliance on syntactic and semantic cues. In both
cases, we will remove information from the stu-
dent answers in the official test sets. For syntactic
information, this means removing word order by
shuffling and removing function words (as iden-
tified by the NLTK* tagger). For semantic infor-
mation, we remove different content word classes
(nouns, verbs, adjectives and adverbs). Since our
strategy shortens the original student answers, we
also closely look at the influence of answer length
(by duplicating the original answers and by gener-
ating synthetic answers in different length bands).

If our attacks impair the model’s ability to
recognise the correct student answers, we expect
a drop in overall prediction Accuracy, and more
specifically, a strong decrease in prediction Accu-
racy for originally correct items (below, Acccorr)
and possibly an increase in Accuracy for originally
incorrect items (ACCjncorr)- 1f the model’s ability
to recognise incorrect answers suffers, overall pre-
diction Accuracy will drop as well, but this time
driven by lower AcCincorr-

4 Experiment 1: Syntax

Our first experiment tests the impact of deleting
syntactic information from the student answers.
We try two strategies: Shuffling the input data (so
word order information is lost), and deleting all to-
kens not belonging to the noun, verb, adjective and
adverb classes: for example, pronouns, determin-
ers, prepositions or conjunctions. In a third attack,
we delete non-content tokens and shuffle. Sample
attack items can be found in Table 2.

ranked Heilman and Madnani (2013) and Ott et al. (2013).
*https://www.nltk.org/

Table 3 shows the results: Shuffling and delet-
ing non-content words both lead to lower Accu-
racy scores for both corpora (the table shows A
Accuracy to the unaltered test data). The effect in-
creases when we combine the attack strategies and
the student answers are reduced to bags of content
words.

Interestingly, the Beetle model is much more
sensitive to the attack than the SEB model. Inspec-
tion of the data shows that Beetle contains many
questions on opened and closed electrical circuits,
where the direction of relations like connected-to
is highly relevant and often signalled through syn-
tactic means. Possibly, this is why model perfor-
mance is hurt so much when syntactic signals are
removed.

We look at the label-specific Accuracy results
(see Table 6) to determine the cause of the ob-
served drops in overall Accuracy. The results can
be summarised as follows: As hypothesised, the
drop in overall Accuracy is driven for both cor-
pora and all test sets by a strong shift towards
always predicting incorrect. For instance, look-
ing at the most extreme attack of shuffle+content
only, the label-specific Accuracy for correct in-
stances drops by 50 percentage points for Beetle-
UA while the label-specific Accuracy for incorrect
rises by almost seven percentage points. The pic-
ture for Beetle-UQ is similar, and while the drops
are generally less dramatic for SEB, the pattern
is the same. Acc.o drops by about 13 points
for SEB-UA and -UD (and by 33 points for SEB-
UD), AccCincorr rises by 2-3 percentage points.
This means that almost half of the bags of content
words created by the attack are now so dissimilar
to the reference answers that the models no longer
recognise them as a correct answer.

In sum, the impact on the Accuracy of grading
correct student answers is quite strong across all
test sets, demonstrating that the RoOBERTa mod-
els do use syntactic information in their decision-
making. However, for the SEB model, the lack
of syntactic cues is never catastrophic: The ma-
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Syntax and Semantics Attacks

Length attacks

Original there is a damaged bulb | Original there is a damaged bulb

Syntax: Shuffle bulb there damaged is a | Rand. Short  was path in is or is closed has incorrect

Syntax: delete Non-Content is damaged bulb Rand. Avg.  a affect terminal terminal by bulb [...] (34 words)
Semantics: delete Nouns there is a damaged Rand. Long  aand c path state difference bulb [...] (93 words)
Semantics: delete Verbs there a bulb Duplicate there is a damaged bulb there is a damaged bulb

Table 2: Adversarial attack items for syntax, semantics and length (Rand: randomly generated) attacks (Beetle).

Beetle SEB Beetle SEB

UA UuQ UA UQ UD UA UuQ UA UQ UD

Test data 89.7 781 | 822 741 721 Testdata 89.7 78.1 | 822 741 7T2.1
Shuffle 93 72 |37 -22 -1.8 NoAdj 17 48 |16 -1.7 21
Contentonly -9.5 -64 |-44 -03 +05 NoAdv 52 22 |-15 3.0 -02
Both -161 -11.2 | -37 -7.3 -15 NoNouns -10.2 -145|-83 -38 -23
No Verbs -43 -0.7 | -48 +04 -3.5

Table 3: Exp.l: Removing syntactic information:

Shuffling and removing non-content words from the
SEB and Beetle Unseen Answer (UA), Unseen Ques-
tion (UQ) and Unseen Domain (UD) test sets, overall
A Accuracy (lowest result in boldface).

jority of correct student answers is still recog-
nised based on shuffled content words only. For
ASAG this means that a relevant combination of
content words still has a chance of being recog-
nised as a correct answer even if it is not syntac-
tically correct. This potentially helps non-native
speakers and is in line with the focus on content in
ASAG. Looking at the attack items in Table 2, it
is likely that human graders would be able to in-
terpret some of these answers and grade them as
correct, as well - we did not investigate this point
further, however.

5 Experiment 2: Semantics

In Exp. 1, we probed the influence of syntactic in-
formation by excluding all non-content words. In
Exp. 2, we ask about the relative importance of
the different classes of content words instead. We
create four different sets of attack items by selec-
tively removing all nouns (or verbs, adjectives or
adverbs) as identified by the NLTK tagger. We
hypothesise that nouns and verbs furnish the most
crucial information for correct grading, so remov-
ing them from the test set answers should affect
grading Accuracy most. Negation expressed by
“not” will be removed with the adverbs, so grading
may suffer in this case, as well (since the mean-
ing of the student answers will be substantially
changed by the deletion).

Table 4: Exp.2: Removing various content word
classes from the SEB and Beetle Unseen Answer (UA),
Unseen Question (UQ) and Unseen Domain (UD) test
sets, overall A Accuracy (lowest result in boldface).

We find a clear impact of removing content
words (see Table 4), with the greatest effect from
deleting nouns (while the SEB-UD model does
worst without verbs). For three out of five test
sets (Beetle-UQ and SEB-UA and -UD), the per-
formance drop from removing nouns is larger than
when syntactic information was removed. This
performance drop is again caused by a tendency
of the models to label the attack items as incorrect,
which is visible in Table 6 across all data sets and
for all content-word classes. This is plausible, as
the student answers become very hard to interpret
for humans, as well (cf. the sample item “there is
a damaged” in Table 2).

Removing adverbs, and thereby negation ex-
pressed by “not”, at first glance seems to be less
damaging than removing adjectives and much less
so than removing nouns and verbs. However, note
that not all student answers contain adjectives and
adverbs in the first place, so fewer changes are
made to the test data. The fact that we still see
a noticeable effect speaks to the semantic impor-
tance of these word classes in the student data. As
for the syntactic attack items, it would be interest-
ing to see whether humans and the models accept
and reject the same attack items to gauge the im-
portance of the word classes to human interpreta-
tion versus machine grading.

We also see that model performance strongly
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Beetle SEB

UA UuQ |UA UQ UD
Test data 89.7 78.1 | 822 741 721
Repeat 1x 9.1 -6.8 | -5.2 41 -4.8
Repeat 2x -143 -108 | -9.6 -141 -8.5
Rand. Short - 97.5 | - - 95.5
Rand. Avg. - 899 | - - 83.0
Rand. Long - 430 | - - 33.0

Table 5: Exp.3: Testing the influence of answer length:
Repeating answers from the SEB and Beetle test sets
and randomly generated input sequences in three length
bands; overall A Accuracy to test data (absolute Accu-
racy for randomly generated input).

deteriorates in the UA setting for both corpora
(and for Beetle-UQ). We hypothesise that perfor-
mance in the UA setting, where the model sees
new answers to questions encountered in train-
ing, depends on keyword spotting more than in
the UQ and UD settings. This is consistent with
the well-established deterioration of performance
on the unaltered test sets when moving away from
the UA setting.

The model’s remaining robustness towards re-
moval of content words (after all, about 50% of
correct answers are still recognised by the SEB
RoBERTa model even if nouns are removed) may
be rooted in ROBERTa’s masked pre-training task
which specifically teaches the model to recon-
struct missing input.

Again, this result is reassuring in the context
of ASAG: The model uses information from all
groups of content words and is more likely to re-
ject as incorrect inputs with some missing content
words.

6 Experiment 3: Input Length

When we remove content words, we also shorten
the input. At the same time, answer length is cor-
related with grade in the training data: correct
Beetle answers have a median length of 54 charac-
ters (min: 3, max: 367), while incorrect answers
are only 41 characters long in the median (min: 0,
max: 256). For SEB, the numbers are 60 charac-
ters (min: 4, max: 532) for correct and 51 (min:
2, max: 413) for incorrect answers. Therefore it is
relevant to ask whether the models pick up on this
correlation.

We use two strategies to probe sensitivity to
length while keeping the meaning of the utterances

constant: One is to repeat the student answer, thus
doubling or tripling the input in length without
making a change to its meaning. The other is to
randomly generate synthetic test items of different
lengths (but without discernible meaning). More
specifically, we build an attack set with synthetic
length-controlled items generated randomly from
the vocabulary of the Beetle-UQ and SEB-UD test
sets (which are most different from the training
data). We generate 200 attack items for each of
three length classes: Short attack items are in the
range between the minimum and median length
of all relevant answers, average-length items are
in the range of the first to third quartile and the
length of long items is between the median and
maximum lengths for the test sets. All of these at-
tack items should be rejected as incorrect by the
model since they are nonsensical (see Table 2 for
sample items).

The results are shown in Table 5. Repeat-
ing each student answer once (doubling the an-
swer length) or twice (tripling the answer length)
clearly reduces model Accuracy. However, the re-
sult pattern at label level is inverted to the first
two experiments (see Table 6). Now, AccCcorr
increases for double- and triple-length answers,
while AcCipncorr drops by more than 20 percent-
age points for all corpora. The model now accepts
answers more easily the longer they are, although
their content has not changed.

We turn to the length-controlled synthetic items
to gauge the effect of submitting short items
(which we could not probe in the replication attack
without modifying answer meaning). The syn-
thetic items show that the shortest inputs are in fact
labelled incorrect even more frequently than the
average length ones, so short items are somewhat
at a disadvantage (the table shows absolute overall
Accuracy). Long items are again labelled correct
with very high probability (leading to low Accu-
racy, since all synthetic items are incorrect), and
this effect is much stronger than the disadvantage
for short items. This is a concerning finding for
ASAQG, since item length can easily be influenced
by test-takers independent of their understanding
of the task.

7 Word Deletion Attacks and Length

Given the results from Exp. 3, we need to re-
consider our strategies and results in Exp. 1 and
2, where our attacks rely on deleting words from
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Beetle SEB
UA uQ UA UuQ UD

corr  incorr  corr incorr | corr incorr corr  Incorr Corr incorr
Test data 88.6 905 62.5 89.5 75.1 87.6 86.6 74.7 734 745
Shuffle -30.1 +5.5 233 +44 | 4.7 -2.9 +0.2  -3.2 -1.0 -3.0
Content only -31.8 +5.3 -25. +2.0 | -10.7 +0.3 -19.3  +3.8 -7.8 +3.1
Both -50.6 +6.8 -37.5 +7.8 -126 423 -32.8 +1.2  -13.0 +35
No Adjs 227 422 -16.0 +3.1 -19.7 +26  -31.1 +9.8 -15.8 +4.5
No Advs -14.8 +1.7 -8.1 +2.0 |-1.3 -1.6 221 +1.0 -6.1 +0.7
No Verbs -13.0 +1.5 -7.3 +4.0 |-11.6 -1.0 -20.5 +56 -21.8 +6.5
No Nouns 306 +22 -39.2 +3.3 227 426 364 +9.6 274  +12.5
Repeat 1x +2.3 -16.7 +11.9 -204 | +79 -150 -45 -13.1 +54 -15.6
Repeat 2x +6.3 -28.1 +16.2 -30.6 | +13.8 -27.0 +16 -23.0 +10.6 -25.8

Table 6: Exp.1-3: Label-wise A Accuracy for different types of answer manipulation on the SEB and Beetle
Unseen Answer (UA), Unseen Question (UQ) and Unseen Domain (UD) test sets (lowest result per column in

boldface).

the student answers, thereby shortening them. In-
deed, we found for both experiments that the mod-
els showed a tendency to reject the modified stu-
dent answers, which could now also be explained
by their shorter length. Recall, however, that the
results for deleting non-content words in Exp. 1
were backed up by the shuffle attack, which pre-
serves length.

In order to gauge the effect of length reduction
in the word deletion attacks, we re-ran the ex-
periments after replacing each non-content word
rather than deleting it — e.g., nouns by “thing”,
verbs by “do”, and non-content words by the parti-
cle “to” or, alternatively, any deleted word by “—”
The attack items kept their length in this way.

Across all data sets and attacks, we found that
replacing content words with valid lexical items
generally further reduces model performance. Re-
placing words distorts the sentences even more
strongly than just deleting them, because no guess-
ing or filling in the blanks is possible (which
is the task RoBERTa was trained to do during
pre-training). There is very little difference be-
tween deleting words and replacing them by “—”
placeholders, except that the extremely low per-
formance for Beetle-QA in Exp. 2 is mitigated to
something closer to the SEB performance. We
therefore conclude that any length effect con-
founded with the deletion attacks is minor. This
is supported by our observation that short an-
swers are somewhat more likely to be graded
incorrect, while long answers are much more
likely correct (so the effect is smaller for

shorter answers). Therefore, we believe that the
results from Exp. 1 and 2 are not due to the length
effects of the word deletion strategy but indeed to
the loss of syntactic or semantic information from
the student answers.

8 Conclusions

Across our three experiments, we have observed
the performance of the ROBERTa;; 1y model on
the SAG task using the SEB and Beetle corpora.
A first, striking insight across all three exper-
iments is that the size of the impact of our at-
tacks differs strongly between corpora, while the
general patterns stay the same. Removing syntac-
tic information causes the models to label previ-
ously correct student answers as incorrect, but the
model fine-tuned on SEB is much more forgiv-
ing and ready to retain the correct label than the
Beetle model. The same is true for removing se-
mantic information. This result shows how much
of SAG model performance depends on the fine-
tuning and test data and how misleading it can be
to generalise insights from one data set to another.
Second, we saw clear evidence of RoOBERTa’s
sensitivity to syntactic information in Exp. 1 — re-
moving structural and word order clues causes the
model to no longer accept originally correct stu-
dent answers in many cases. This is plausible,
since the student answers also become harder to
interpret for humans. Model performance is not
completely impaired, however, so slightly imper-
fect syntax will likely not preclude a correct grade.
Removing semantic information (even when ut-
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terance length is preserved) in Exp. 2 is similar.
When nouns are removed, only about 50% of all
correct student answers are still recognised (for
both Beetle and SEB) — understandably so, as
the meaning of the answers is strongly distorted
also to humans. Removing all other classes of
content words showed similar effects; normalis-
ing the results by the number of affected student
answers per manipulation in order to more accu-
rately weight the influence of the word classes re-
mains for future work.

Confirming that the RoOBERTa models are sensi-
tive to the syntax and semantics of student answers
is reassuring in the context of ASAG. However,
the strong length effect shown in Exp. 3 is very
concerning for a SAG model, since it is clearly in-
dependent of content and could be used to gain an
unfair advantage. Any serious use of the models as
they stand should therefore install safeguards, for
example a human review of all unusually long an-
swers. In the long run, adversarial training (Madry
et al., 2017) could be employed to mitigate the
length effect.

While we carry out our experiments on one spe-
cific model (RoBERTa), the effects we find are
likely to generalise to other Transformer-based
ASAG models because they appear to stem from
the training data and training regime. Further, the
effect of insensitivity to word order (Hessel and
Schofield, 2021) has been observed for another se-
mantic task in previous work and the importance
of semantic information (in terms of the choice of
question-relevant lexical material) is also observed
in (Ding et al., 2020).

In both Exp. 1 and 2, we were as yet unable to
answer the question whether the attack items that
were still accepted as correct by the models would
also be acceptable to human graders or whether
they are completely spurious. Comparing human
and machine grades for these attack items is an-
other interesting avenue for future work.
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