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Abstract A variety of NLP applications use word2vec skip-gram, GloVe, and fastText word embeddings. These models learn two
sets of embedding vectors, but most practitioners use only one of them, or alternately an unweighted sum of both. This is the
first study to systematically explore a range of linear combinations between the first and second embedding sets. We evaluate
these combinations on a set of six NLP benchmarks including IR, POS-tagging, and sentence similarity. We show that the default
embedding combinations are often suboptimal and demonstrate up to 12.5% improvements. Notably, GloVe’s default unweighted
sum is its least effective combination across tasks. We provide a theoretical basis for weighting one set of embeddings more than
the other according to the algorithm and task. We apply our findings to improve accuracy in applications of cross-lingual alignment

and navigational knowledge by up to 15.2%.

1 Introduction

Static word embeddings are used in a broad range of
NLP applications, including conversational gameplay
(Andrus and Fuldal 2020), text categorization (Minaee
et al., 2021} |Mitra et al.,|2016), translation (Sabet et al.|
2020; [Jansen| 2017} Pourdamghani et al, [2018), affor-
dance detection (Fulda et al.l|2017a)), and semantic anal-
ysis (Hamilton et al.,[2016). In addition to using static
embeddings directly, researchers often combine them
with contextualized models or use them for embedding
initialization of downstream tasks (Kocmi and Bojar,
2017) such as summarization (Lin et al.,[2021) and neu-
ral machine translation (Qi et al} 2018). The persis-
tence of static embeddings is due in part to their ease of
use and low computational requirements. Rather than
needing a forward pass through a neural network to em-
bed each word, pre-trained embeddings can be stored
in memory and retrieved with complexity O(l)m
outlines more advantages of static embeddings.

This is assuming a default Python or Java hash map. The worst
case would be O(n) with vocabulary size n, in the case of a trivially
slow hash map, which is still well under transformer-based embed-
ding retrieval complexity.

We propose an augmentation of three popular em-
bedding methods (word2vec skip-gram, GloVe, and fast-
Text). Word2vec skip-gram (Mikolov et all|2013a) is a
neural word context predictor, GloVe (Pennington et al |
2014) is a log-bilinear model that includes global con-
text information with a co-occurrence matrix, and fast-
Text (Bojanowski et al.;|2017) incorporates sub-word in-
formation via character n-grams with a skip-gram ob-
jective to expedite training and handle unseen words.
More details about these algorithms are in Each
of them produces two separate embedding sets ("tar-
get" and "context”, see Figure 1) that we combine in
previously unexplored ways. We show that these typ-
ically unexplored target and context combinations re-
veal much about embedding effectiveness. Our key con-
tributions are as follows:

1. We provide a theoretical and empirical analysis of
static embedding performance across weighted
linear combinations of embedding sets ("target"
and "context").

2. We generate 126 embedding sets from 6 corpora
and show that the default target/context combi-
nation for each embedding algorithm is often sub-
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Figure 1: lllustration of "target" vectors (black lines, left)
and "context" vectors (blue lines, right) produced by
the word2vec skip-gram algorithm. Similar embedding
pairs exist for fastText and GloVe. These are sometimes
called "in" and "out" weights, respectively.

optimal.

3. We demonstrate improvements on analogies, tex-
tual similarity, IR, POS-tagging, cross-lingual
alignment, and robotics navigation via embed-
ding combinations and provide best practice rec-
ommendations.

We demonstrate up to 12.5% improvements over
baseline performance on a diverse set of NLP bench-
marks by combining target and context vectors. (See
§5]) We analyze embeddings statistically and show that
(1) word2vec target vectors encode better word-to-word
relationships while context vectors are better suited for
bag-of-words representations, (2) GloVe default vectors
perform well on tasks for which they were tuned but
under-perform generally, and (3) fastText target vectors’
sub-word encodings are useful in many tasks but coun-
terproductive for bag-of-words representations. (See
§6l) Finally, in §7] we employ our methods practically
to improve performance on MUSE (Lample et al.l[2018)
cross-lingual alignment by 0.69-1.56% and navigational
robotics benchmarks by up to 15.2%

2 Background

We overview three common static embedding algo-
rithms: word2vec skip-gram with negative sampling,
fastText, and GloVe. Each of these algorithms has the
same output: a set of embedding vectors, each corre-
sponding to a word in a vocabulary. We outline applica-
tions that employ these different algorithms, but note
that any task that uses vectors from one of these algo-
rithms could just as feasibly use the vectors from an-
other of them.

Mikolov et alfs (2013a) word2vec skip-gram
model learns embeddings as a neural regression prob-
lem: predicting each word’s context. Each word in ques-
tion is called the target, and its neighbors are called
context. The model learns two sets of embeddings,
corresponding to target and context words, though
only the first is typically used. Word2vec is employed

in many tasks, including measurement of MWE can-
didates (Pickard, 2020) and epidemic-related twitter
stream classifications (Khatua et al.,[2019). In our ex-
periments we used skip-gram with negative sampling
(rather than [Mikolov et al.’s CBOW model) because
of its comparability to GloVe and fastText. (See §3))
Throughout the text we refer to this algorithm simply
as "word2vec'

The fastText algorithm (Bojanowski et al) |2017)
integrates sub-word information into the skip-gram
framework. It embeds character n-grams, and a word’s
embedding is the sum of its sub-word vectors. The con-
text vectors are not composed of sub-words. Many ap-
plications use fastText, including hyperbolic word repre-
sentations (Zhu et al.l[2020) and low-resource sentence
similarity (Khalid et al.,|2021;|Akhtar et al.,2017).

Popular GloVe embeddings (Pennington et al,|
2014) are used for sarcasm detection (Khatri and P,
2020), emotion detection (Gupta et all [2021), and lex-
ical semantic analysis (Jain| |[2020). GloVe’s log-bilinear
model learns two embeddings from word co-occurrence.
By default, most public GloVe implementations sum the
embeddings evenly. However, our study shows that this
unweighted sum often does not maximize performance.
(See §5)

Our work challenges the assumption that the de-
fault combinations or selections of target and context
vectors (target only for word2vec and fastText and an
unweighted sum for GloVe) are optimal for any task, or
even across tasks in general. We methodically explore a
spectrum of target/context combinations for each algo-
rithm and show that the default embedding selection is
often not the best.

Although not directly studied here, other static
embedding algorithms such as ConceptNet Number-
batch (Speer et all[2017), hyperbolic word embeddings
(Zhu et al}2020), and word2vec-CBOW (Mikolov et al.,
2013a) exist and merit study.

2.1 Contextual Embedding

The uses of static embeddings overlap with contextu-
alized embedding models such as BERT (Devlin et al.
2019), ELMo (Peters et al., |2018), BART (Lewis et al.|
2020), and others (Liu et all 2019b; |Robinson et al.|
2021). These networks are adaptable to a variety of NLP
tasks, from translation evaluation (Yuan et all 2021}
Zhang et al.l|2019) to semantic tagging (Liu et al.l[2019a).
Some researchers have scrutinized them for consuming
too many resources and lacking interpretability (Ben+
der et al.,|2021;|Brown et al., |2020; Strubell et al.,[2019).
Static embeddings are employed instead in many prac-
tical NLP tasks because they are fast, computationally
inexpensive, and intuitive.

Static embeddings are particularly suited to tasks
that restrict predictions to a candidate set, such as word
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analogies, since embeddings from these smaller mod-
els have a defined vocabulary that can be queried in
nearest-neighbor search. |Dufter et al. (2021) verified
this trend for question answering and advocated for
use of static embeddings because of their low compu-
tational cost: “‘green’ baselines are often ignored, but
should be considered when evaluating resource-hungry
deep learning models”

2.2 Prior Investigations of Context and
Target Combinations

We are not the first to combine target and context em-
beddings. As mentioned in §2| GloVe implementations
(Pennington et all|2014) sum them by default. |Nalis{
nick et al.[(2016) used target vectors for queries and con-
text vectors for documents in information retrieval (IR).
They did not explore summing the two vector sets how-
ever.

Fulda and Robinson|(2021) explored concatenating
and summing word2vec skip-gram target and context
vectors for analogies and sentence similarity. They
found that with sufficiently large training corpora,
target-context sums can outperform target embeddings
(the default) and target-context concatenations. Their
analysis reveals a theoretical advantage for summed
embeddings in analogy tasks with dot-product-based
similarity metrics: with target-context sums, the dot
product between vectors for words a and b is (t, +
ca)T (tp+cp) = tIty+tley+clt,+clcy, where t and c are
target and context vectors. This is significant because,
as |Nalisnick et al|(2016) point out, the outer terms of
this expression encode paradigmatic relations (e.g. ma-
son and carpenter), while the inner terms encode syn-
tagmatic relations (e.g. mason and stone). These differ-
ent relations are relevant in analogies like mason : stone
: carpenter : wood.

Our work expands on and differs from these exam-
ples in four main ways: (1) we systematically explore
multiple combinations of target and context vectors (e.g.
80% target added to 20% context, which we show in
may be conceptually closer to a true sum), (2) we apply
these changes uniformly across word2vec, GloVe, and
fastText on multiple training corpora and a variety of
NLP tasks, (3) we provide a theoretical analysis of the
properties of target and context vectors by task type,
and (4) we identify a set of best practices and recom-
mended embedding combinations for practitioners ap-
plying these algorithms in the wild.

3 Theoretical Motivation
This section shows that while the target and context

vectors produced by the GloVe algorithm are fundamen-
tally equivalent to each other, the same does not hold

true in the cases of word2vec and fastText. This in-
sight informs and motivates our analysis of various con-
text/target embeddings in §6|

Word2vec Skip-gram Training The skip-gram
model processes a corpus, considering each word as a
target and its surrounding words within a window size
w as context. For each step, the weights are updated
for two objectives:

« Objective 1: Maximize the dot product between
the target embedding for the target word and the
context embeddings for its neighbors

« Objective 2: Negative sampling, or minimize the
dot product between the target embedding for
the target word and the context embeddings of
random words

Theorem [T shows that objective 1 cannot account for
any difference between target and context space. We
outline terminology for the theorem below.

Terminology for Theorem [l Let the operation
close(v1,0v2) indicate an action: that of model weight
updates to increase the dot product between vectors v;
and v,. All of the model’s actions for objective 1 as it
processes the corpus once are

{{p(1j — iDclose(t;, cp) iy, . 1057 (1)

where t; and c; are the target and context embedding
for the word appearing in the ith position of the cor-
pus, and M is the corpus length. The function p(¢) is
a Bernoulli c.d.f. that returns 0 with probability “;Wl)
This expresses how the skip-gram model probabilisti-
cally drops objective 1 actions for context words far
from the target. We require that close(v;,v;) represent
no action if either i or j is below zero or greater than
M — 1. Note that the arguments of close may be com-
muted.

Given Theorem[] all of the differences between tar-
get and context structure are due to objective 2. We
show how common word context vectors behave like
magnets for target vectors to cluster around, because
of objective 2 action distribution.

Let far(vy,v,) indicate the action of weight updates
to decrease the dot-product between v; and v, (the op-
posite of close). All objective 2 actions from one read-
ing of the corpus are

{{far(ticx)) Y0 M ®)

where 5 is the set number of negative samples per word,
r is a random integer 1 < r < w that depends on the
output of p in Equation [1| and each cy; denotes the
context vector for a word at index x; drawn randomly
from a distribution X of square-rooted word frequen-
cies. Let Xt be the distribution of actual word fre-
quencies from the corpus. When sampling from square-
rooted word frequencies X, the most common words in
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Theorem 1. Objective 1 does not cause any differences between target and context vector construction.

Proof. Define f(v;,v;) := p(|j—il)close(v;, v;) for convenience, and note f(v;,v;) = f(v;,v;). The set of total objective
1 actions performed by the model as it reads the corpus once is then

i M-1
{F (b ep) o jeitico

= {f(t ) timwejziot {f (1 ¢)) Yivr<jzivwhing |

={f(ci,tj)}j-wei<j—1. {f (ci, tj)}j+1sisj+w}§w:61

={{f(ci,tj)}j-wei<j-1

= {{f(ci- tj) Yiri<j<itw fﬁ:zw

PO (i t)} jrrsiz i il

U {{f(eit))}imwejeiot iy ™

= {f(ci, tj)) Yiv1<j<ivw ?;161 U {{f(ci, tj)}ifwsti—l}?ial
= {f(c, tj)}i—wsjsi—l}?ial U {{f(c, tj)}i+1sjsi+w}?;[(;l

A Mo
= {f (et Y5 i iz

which is the original expression with the roles of t and ¢ vectors reversed. Therefore ¢ and t are reversible without
changing the total objective 1 actions performed by the model. l.e. their roles are identical in this process. O

the corpus will be less frequent, and the least common
words will be more frequent, than when sampling from
XTrue. In Equation we have t;,¢; ~ Xtrue. However,
in Equation [2] we have t; ~ Xt but ¢y, ~ X. This
means that the context vectors ¢ corresponding to fre-
quent words will appear more often in the close func-
tion and less often in far (and context vectors for in-
frequent words will appear more often in far than in
close). Therefore the target vectors will be biased to be
more similar to the context vectors of high frequency
words.

A brief analysis shows this. Let Syo9 be the 100 most
common words in a corpus from the vocabulary V. For
word2vec embeddings trained on three corpora, (Web
Scraped, WikiReddit, and Wikipedia, described in
we calculated the cosine scores between all target vec-
tors and the 100 context vectors for the words in Siq,
scores; = {cos(ty,cs) : v € V,s € Sygp,v # s} and the
corresponding scores where target vectors came from
S100, scoress = {cos(cy,ts) : v € V,s € Sipp,0 # S}
For each corpus, over 90% of the 100 highest scores
in scores; U scores; were from scoresy, indicating that
target vectors are clustered around common-word con-
text vectors (more so than context vectors are clustered
around common-word target vectors).

fastText vectors are trained using this same
paradigm but with an additional difference between the
embedding sets that is likely more important in appli-
cations: target vectors are composed by summing sub-
word embeddings, while context vectors are not.

GloVe vectors are constructed differently than
word2vec or fastText. Their training objective
i fXa)(ifej + bi + by — log(X;;))?) is log-
bilinear for target and context vectors. Thus there
is no difference between target and context vector

construction, short of random initialization. Analyses
of vector space clustering and magnitude for GloVe,
including the analysis described in the previous para-
graph and statistics outlined in Table reveal no
notable differences between GloVe target and context
distributions.

4 Methodology

We conduct experiments to answer three core ques-
tions: (1) How does task performance vary across lin-
ear combinations of target/context vectors, and do the
default settings work generally well? (2) Is the pattern
of performance (as a function of target/context weight-
ings) similar in all three embedding algorithms? If not,
what are the differences? (3) Are optimal weighting
schemes data- and task-specific? If so, to what extent?

To answer these, we trained target and context em-
beddings for each of three algorithms (word2vec skip-
gram, GloVe, fastText) on six corpora. We then pro-
duced more embeddings by combining each pair of tar-
get t and context c as foIIowsE] 8t +.2¢, .6t + .4c, t +c,
A4t + .6¢, and .2t + .8c. We refer to these combinations
respective[y as 80:20-sum, 60:40-sum, true sum, 40:60-
sum, and 20:80-sum, in addition to target and context
vectors alone. We generated 126 embedding sets total
(six training corpora X three embedding algorithms x
seven weighted sums). This spread of linear combina-
tions has not been studied previously.

We insist that the target and context weights sum
to 1 for the sake of uniformity and clarity in drawing

2t + ¢ is a stand-in for .5¢ + .5¢, since our NLP tasks rely on
magnitude-agnostic cosine similarity. We use ¢ + ¢ to compare di-
rectly with existing methods.
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conclusions from our experiments. Since our NLP appli-
cations employ magnitude-agnostic cosine distance as
a similarity metric, allowing the weights to range from 0
to 1is largely equivalent to letting them range from 0 to
N for any positive real number N. We set N = 1 across
all experiments to allow fair comparisons of weight val-
ues. It is worth noting that weights could also be nega-
tive, a possibility that is beyond the scope of our current
study but that could be explored in future work.

Linear combinations are a form of summation. Sum-
mation is an established method for combining vec-
tor information, as discussed in The fastText al-
gorithm relies on sums of subword target vectors (Bo+
janowski et all[2017). GloVe vectors are often target-
context sums by default (Pennington et all[2014). Tar-
get and context vectors ought to be reasonably well
aligned for summation, since the objective of a static
embedding model is to increase the dot products be-
tween target and context vectors, and the dot product is
based on component-wise multiplication. This provides
a theoretical motivation for our focus on target-and-
context vector summation. Note, however, that sum-
mation is not the only possible way to combine target
and context embeddings. As discussed in Fulda
and Robinson|(2021) explored concatenating the embed-
dings instead. However, they found that summation
yielded better results, a conclusion that they verified
both theoretically and experimentally.

Despite the theoretical basis for their alignment, tar-
get and context vectors may not be perfectly aligned for
summation in practice. One could employ a more intri-
cate approach to align them, such as a linear mapping
or an encoder/decoder reconstruction method such as
MUSE (Lample et al.[2018). This is a potentially promis-
ing area of future research.

Note that our experimentation over a range of seven
different target/context weighting values is compara-
ble to performing a course grid search for this parame-
ter in each task. Another more computationally expen-
sive and task-specific method to tune this parameter is
meta-learning. Our objective in our main experiments
is to learn generalizable principles across a variety of
tasks, which may be of value to other researchers, for
which purpose we determined that this grid search ap-
proach would suffice. However, we do explore an appli-
cation of optimizing the weighting via differentiation.

See §7.2)for analysis.

Training hyperparameters We used embedding di-
mension 300. For GloVe: we used window size 10, min-
imum word count 5, and 25 training iterations. These
have been shown to achieve optimal results (Penning;
ton et al.l|2014). The "minimum word count" mentioned
is minimum frequency for a word in the corpus to in-
clude it in the model’s vocabulary. For fastText: we

used window size 10, minimum word count 5, 5 train-
ing epochs, and 3-6 character n-grams, as standard (Bo{
janowski et al.;|2017). For word2vec: we used window
sizeﬂ 5 and 3 epochs, as recommended by |Fulda and
Robinson| (2021). Due to the Web Scraped corpus’ size
and computing restraints, we opted for minimum word
count 100.

4.1 Training Corpora

Our six training corpora are in Table The Web
Scraped corpus was generated to imitate the unre-
leased WebText data used to train OpenAl’s GPT-2 (Pet
terson, [2019; Radford et al.| 2019). The Wikipedia cor-
pus is a collection of all text on Wikipedia from 2004.
The WikiReddit dataset is the concatenation of the
Wikipedia corpus with text from Reddit. The Toronto
Books Corpus contains 11,038 books collected by the
University of Toronto (Zhu et al., |2015). The smallest
corpus consists of classic books from Project Gutenberg
(Lahiri, [2014). Spanish Wikipedia was the dump from
October 20, 2021 collected using the WikiExtractor tool
(Attardil |2015).

We had the majority of these corpora on hand and
used them to reduce computational expense. Though
the NER task could potentially have benefited from us-
ing newer corpora, such as a more recent download of
English Wikipedia, we did not see a clear theoretical
impact from using newer corpora on the other evalua-
tion tasks. We provide a brief analysis of the interaction
between embedding performance and corpus choice in
An in-depth analysis of this interaction is outside
the scope of this paper, but we recommend it as an area
of further study.

In Table[2) we show the vocabulary sizes for the em-
bedding sets trained using the three embedding algo-
rithms and the six training corpora in our experiment
set.

Corpus Size Tokens
Web Scraped 59.0 GB 9.6B
WikiReddit text 21.0 GB 4.1B
Wikipedia text 16.7 GB 2.8B
Toronto Books 4.6 GB 984M
Classic Books 20.3 MB <M
Spanish Wikipedia 4.5 GB 667M

Table 1: Training corpora (five English, one Spanish).
Novel corpora will be released upon acceptance.

30ur word2vec implementation denotes unidirectional window
size. This value is equivalent to the bi-directional window size 10 for
fastText and GloVe.
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word2vec | fastText | GloVe
Web Scraped 408K 3.36M 3.36M
WikiReddit text 530K 2.51M 2.51M
Wikipedia text 432K 1.95M 1.95M
Toronto Books 92.3K 315K 315K
Classic Books 5.69K 36K 36K
Spanish Wikipedia 347K 2.24M 2.24M

Table 2: Vocabulary sizes for each embedding set
trained on each of the corpora, using the hyperparam-
eters delineated in §4|(using 3 significant figures)

4.2 Evaluation Tasks

We evaluated each embedding set on six NLP tasks cho-
sen to represent a broad sampling of static embedding
uses, conducting over 650 evaluations. We describe task
details below for reproduction.

We employed two analogy question evaluations.
The Google Analogy Test Set (Mikolov et al.;[2013c|b)
is a common embedding evaluation benchmark. It con-
tains 19,544 analogy questions in 14 categories: six se-
mantic (e.g. family relationships, countries and capi-
tals) and eight grammatical (e.g. adjectives with su-
perlatives). GloVe vectors were tuned for this bench-
mark.|Turney/s (2006) set of SAT questions was used
by Fulda and Robinson|(2021) to evaluate static embed-
dings. It contains 374 analogy questions with semantic
relationships like the mason/carpenter example in

Selection of analogy candidates: Given analogy
A :B: C:D,inthe Google test, embeddings predict D
given A, B, and C from d= argmaxges cos(b—a+c,d’),
where a, b, and ¢ are vectors corresponding to their re-
spective words, and S is the set of all vectors in the
embedding. cos denotes cosine similarity. In the SAT
test, embeddings predict C and D given A and B from
&d = arg max(y ¢yes cos(b — a,d’ — c¢’), where S is a
set of four multiple-choice candidate pairs (c;, d;). To il-
lustrate more intuitively, say we have the example anal-
ogy mason : stone :: carpenter : wood. In the Google
test paradigm, our task is to predict "wood" given "ma-
son," "stone," and "carpenter.” And we do this by finding
the word in our vocabulary whose vector is closet to
Ustone = Umason + Ucarpenter- 1IN the SAT paradigm, we
are given the pair "mason" and "stone," along with a
list of multiple-choice options, each containing a pair
of words and one of which contains the pair "carpen-
ter" and "wood." We select the option whose pair-wise
difference vector is closest to the difference vector for
the given pair. Because of the high propensity of es-
oteric words in SAT analogies, we skip SAT questions
with out-of-vocabulary words.

SemEval 2013 (Wilson et all|[2013) is a sentence
textual similarity (STS) set of 1,379 sentence pairs with
human-given similarity scores. We sum word vectors
to obtain sentence vectors, then measure how well pair-

wise cosine similarity correlates with gold similarity us-
ing Spearman’s rho.

We adapt Nalisnick et al.[s (2016) IR method, the
Dual Embedding Space Model (DESM). We collected
36,701 queries and 3.2 million documents from |Ni
(2015). Each query is mapped to a list of 100 rel-
evant documents with relevance scores. For query-
document similarity we calculate a modified DESM

D
score DESM(Q, D) = |—é| 2qe0 IM:HW’ where Q and
D are matrices of vectors for the query and document
words respectively, and D = ﬁZdeD d. We rate
embeddings by average Spearman’s Rho correlation be-
tween DESM scores and ground truth document rele-
vance scores across queries.

Our method for POS tagging is adopted from|Pre{
mjith|(2019). We predict eight POS categories (noun, ad-
jective, adverb, adposition, determiner, pronoun), using
the highest-performing of five classifiers: K-neighbors,
decision tree, random forest, multi-layer perceptron,
and Gaussian naive Bayes. These are the models and
parameters used by Premjith| (2019). In recent years,
other models such as LSTM and encoder/decoder mod-
els have been commonly used for POS-tagging. We
opted to keep the NLP applications we gathered as
close to their original form as possible, for the sake
of uniformity, and as such we do not augment the
model list with these additional architectures. We ac-
knowledge that a POS-tagging embedding evaluation
employing LSTM and seq2seq models could be worth-
while in future studies. In all cases, embedding vectors
were used as input to the tagging models. We evaluate
both classifiers and embeddings with POS prediction
weighted-averaged F1 score.

Our cross-lingual alignment task is adapted from
Jansen| (2017). We train a transition matrix between
English and Spanish Wikipedia embeddings on a 2894-
word English-Spanish dictionary with a 64-16-20 train-
dev-eval split. We train for 10 epochs with learning rate
.001 and the Adam optimizer (Kingma and Bal |2015).
We rate embeddings by validation accuracy. In each
test, the settings of Spanish and English embedding
training are identical (same embedding algorithm and
target/context combination).

Tasks summary: This set of evaluations contains
both common embedding benchmarks and practically
relevant tasks. Static embeddings are particularly
suited to multiple of these tasks because they involve
context-less word relationships and proximity searches
across stored embedding sets.

4Excluding stop words such as "and," "that,' or "may", as defined by
SpaCy model en_core_web_sm. See https://spacy.io/models/en,
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5 Results

Our results show that the default settings of each al-
gorithm for combining target and context vectors do
not always perform best, and often perform worst, on
NLP tasks. Figure [2| shows the performance of 7 tar-
get/context combinations across the 5 English corpora
and 3 embedding algorithms.

In summary, for word2vec, context vectors per-
form best on IR, but target vectors are best on SAT and
Google analogy tasks and cross-lingual alignment, and
summed vectors excel in STS. GloVe vectors exhibit two
major trends. Summed vectors perform best in STS
but worst in other tasks: SAT analogies, POS tagging,
and IR. fastText target vectors perform best on Google
analogies and POS tagging, but in IR and cross-lingual
alignment, summed vectors excel.

Table 3| shows the percentage improvement from
tuning the target/context weighting over default
weighting for each embedding algorithm and evalua-
tion task. These values represent the improvement
from the highest performance using the default tar-
get/context setting to the highest performance after our
search over linear combinations. We see the largest per-
formance increase, 12.5%, in the case of word2vec on
the STS task.

Patterns across target and context combinations are
dependent on the NLP task and algorithm. This sug-
gests that tuning the target/context summation weight
(rather than using defaults) can improve performance
markedly. For example, GloVe’s default true sum does
well on the STS task but under-performs on SAT anal-
ogy, POS, and IR. Word2vec and fastText’s default tar-
get embeddings perform well on the Google Analogy
and POS tasks but under-perform on the IR task.

Performance trends are generally consistent across
our five training corpora. There are some notable excep-
tions to this generality, which we discuss in

Average Effect of Target/Context Weighting
Across Corpora and Tasks  Figure[3[shows the aver-
age performance of each algorithm across all corpora
and tasks. Results suggest fastText performs optimally
with a 20:80 target/context combination rather than
the default setting of 100% target. GloVe performance
is highest at 80:20 and 20:80. These results suggest that
a 20:80 or 80:20 combination of target and context may
be an advantageous default for future embedding sets,
especially in settings where hyperparameter tuning is
not possible. (E.g. because embeddings are pre-trained
or due to computational constraints.) In §6] we analyze
results, and in §7] we present practical applications for
these observations.

6 Analysis

This section provides theoretical backing for the ob-
served performance of target vs. context vectors on spe-
cific types of tasks. We analyze the advantages of using
weighted target and context combinations for specific
use cases and offer recommendations for best practices
in static embedding research.

6.1 Word2vec Analysis

Word2vec target vectors outperform their context coun-
terparts in analogy tasks, implying that the phenomena
described in §3] encode stronger word relationships in
target space. We show how word2vec target vectors
are advantaged in word-search style tasks like analo-
gies and cross-lingual alignment, while context vectors
have the advantage in document-level tasks like STS
and IR.

Because context vectors do not attract and repel
target vectors with equal frequency (see §3), there is
higher variability in their length; vectors likely become
large to produce high positive dot-products with neigh-
bors or low negative dot-products with non-neighbors.
Figure[4]shows that the norms of context vectors are an
order of magnitude larger than those of target vectors.
This justifies the use of weighted sums. An unweighted
addition of small target and large context vectors re-
sults in a set that resembles context space. An 80:20-
sum may be closer to the ideal of an even sum.

Further analysis suggests that context vectors are
ill-equipped for some semantic tasks. Table [4 shows
that context space has higher inertia in k-means clus-
tering, indicating that it is harder to cluster into mean-
ingful semantic groups.

Further statistics gathered from word2vec target
and context spaces are surprising. (See Table [4]) The
extremely small mean, minimum, and maximum co-
sine distances from the centroid vector and the small
standard deviation imply that context vectors are clus-
tered tightly in cosine distance around a centroid. The
high skewness and extremely high kurtosis indicate ex-
istence of extreme outliers. These properties increase
the likelihood of selecting an incorrect vector in tasks
that search the vocabulary space, such as analogies and
cross-lingual alignment (where context vectors perform
worst). Target vectors show none of these disadvan-
tages.

In contrast, although context vectors perform worse
on these word-search tasks, they are well-suited to
tasks in which word vectors within a sentence or doc-
ument are summed to form bag-of-words representa-
tions, such as STS or IR. Context vectors’ more vari-
able norms play to their advantage here, making them
preferable to target vectors. Table [5| shows how con-
text vectors for stop words (defined by SpaCy model
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Figure 2: Algorithm performance grouped by task. X-axis ticks correspond left to right to (target, context) weightings
of (1.0,0.0), (0.8,0.2), (0.6,0.4), (0.5,0.5), (0.4,0.6), (0.2,0.8), and (0.0,1.0). Results for the smallest corpus are omitted when
they are so poor that they impair the visible contrast between other scores.

SAT Ana. Google Ana.  STS IR POS EN-ES
word2vec 0% 0% 12.5% 527% 0% 0%
fastText 4.39% 0.2% 390% 1.52% 0% 9.72%
GloVe 5.22% 0.9% 0% 3.00% 8.8% 2.52%

Table 3: Percentage improvement by target/context weight tuning, over default target/context weighting, for each
embedding algorithm and task shown in Figure[2] Improvement of 0% indicates that the default weighting performed
best.

en_core_web_sm) are smaller than average. This
equips context vectors for tasks involving sums of word
vectors. It means that vectors carrying less semantic
information will be play a less significant role in bag-of-
words sentence representations, which will then be less
noisy and more closely resemble the vectors for their
meaningful keywords.

6.2 fastText Analysis

The fastText algorithm constructs vectors in a similar
way to word2vec. However, fastText vectors display
different performance patterns from word2vec across
tasks. Recall from §3|that fastText target vectors (and
not context) benefit from sub-word information. This
seems to play a large role in their performance. Sub-
word information is useful in POS-tagging, where En-
glish morphology can indicate part of speech, and
Google analogies, which involve both derivational and

Northern European Journal of Language Technology



Z scores averaged across corpora and tasks

glove word2vec fasttext
050 050 050
@
S 025 025 0.25
o
a 000 0.00 0.00
N 25 -0.25 -0.25
o
O -0.50 -0.50 -0.50
©
T 075 -075 -0.75
>
X -1.00 -1.00 -1.00
-125 -125 -125
S DN S & DS S DN S S DS S DN D S DS
o0 m@bnﬂb m"hs‘»’ e o0 nj’b&‘ a‘f’ha?’ S o c’»:m»“ n“"bm@ SN
RIS N O e ® e oY

(target,context) ratios (target,context) ratios (target,context) ratios

Figure 3: Average Z-scores (standard deviations from
the mean) across all training corpora and all tasks in

Figure2}

w2v w2v GloVe  GloVe fT fT

tgt ctx tgt sum tgt ctx
mean 0.74 0.03 0.76 0.73 0.53  0.29
std. dev. 0.18 0.03 0.20 0.23 0.06 0.13
skewness -0.04 7.63 -0.18 -0.12 0.22 0.75
kurtosis -0.31 le+2 0.06 -0.18 0.15 0.61
min. 0.16 3e-3 0.06 0.04 0.21 2e-3
max. 1.36 0.96 1.90 1.89 0.87 1.26
mode. 1.15 0.46 1.50 1.67 0.56 1.10
inertia (1e6) 1.13 5.31 3.73 11.0 248  28.3

Table 4: Statistics on cosine distances from
each vector to centroid for embeddings trained on
Wikipedia, and average inertia for k-means clustering
over 6 values of k (k € {5, 10, 15, 20, 25, 30}).

w2v tgt  w2v ctx

Stop word avg. norm 2.70 7.07
Content word avg. norm 2.22 19.66

Stop norm as % of content norm 122% 36.0%

Table 5: In context space (and not target), stop words
have smaller norms than other words.

inflectional morphological processes. It also appears
useful for semantic textual similarity whenever large
training corpora are used.

Interestingly, context vectors perform best in the

word2vec norms, Wikipedia, target vectors ~ word2vec norms, Wikipedia, context vectors

50

vector L2 norm
vector L2 norm
8 &

o 50000 100000 150000 200000 250000 o 50000 100000 150000 200000 250000
word index word index

Figure 4: Norms of word2vec target and context vec-
tors trained on Wikipedia, ordered from most common
tokens to least

IR test, which involves summing the word vectors in
long documents to form (bag-of-words) document rep-
resentations D. Since fastText target vectors are already
bag-of-subwords representations (as noted in §2), the
treatment of documents as large bags of unordered sub-
words may dilute the usefulness of the representation.

A particularly notable trend is performance on the
cross-lingual alighnment task. As expected from its
widespread application to multilingual settings, fast-
Text outperforms GloVe and word2vec. But in contrast
to the conventional use of target vectors, target-context
sums are the best-performing combinations. (In
we apply these vectors to a similar application and find
80:20 sums to be the best combination.) We hypoth-
esize that this is because of morphological differences
between Spanish and English. Sub-word information is
useful for interpreting meaning in both languages, but
over-dependence on these characteristics may cause
failures due to distributional differences in morphology.
Analysis of these trends across more language pairs is
a topic for future research.

6.3 GloVe Analysis

As discussed in §3] GloVe target and context space are
structurally similar. As a result, GloVe performance
graphs in Figures[2and 3] are mostly symmetrical. This
leaves the question of why sums perform well on some
tasks and poorly on others.

Recall from that the Google Analogy Test is
composed of nine sub-tests of grammatical analogies
and five of semantic analogies. We analyzed vector per-
formance on a fine-grained breakdown of Google Anal-
ogy subsets and found that in individual sub-tests, per-
formance varies in a regular way: sums perform well on
semantic analogies and poorly on grammatical analo-
gies. Results from two sub-tests are in Figure It
appears GloVe’s true sum vectors (its default) config-
ured to these semantic questions when the algorithm
was tuned on Google analogies, perhaps because the
two largest sub-tests in the test set are capital-country
and city-state relations. Observe the high accuracy
achieved by GloVe default on the semantic task in Fig-
ure (90-98%). Trends suggest, however, that the de-
fault sum performs worse more generally: In grammat-
ical Google analogy sub-tests, SAT analogies, IR, and
POS. Analysis backs this finding: True sum space has
higher inertia in k-means clustering than target space
(see Table [4), suggesting it is more difficult to cluster
meaningfully, and it is the least robust GloVe combina-
tion (see Figure )

6.4 Corpus Effect

Performance trends in our experiments are generally
consistent across training corpora. Because of the few
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Figure 5: Example GloVe results across embedding com-
binations for grammatical (left) and semantic (right)
analogies

exceptions to this generality and our primary focus on
target/context weighting, we did not conduct an in-
depth analysis of their causes. Here we note some ob-
servations briefly.

For fastText on SAT Analogies, Web Scraped and
WikiReddit exhibit different trends from the other cor-
pora. As Table 2| shows, these two corpora yield larger
vocabularies than the others. Since SAT analogies rely
on embeddings for less frequent vocabulary words, this
could be a cause for the trend difference.

We see an aberration from general trends in the
performance of fastText vectors trained with Toronto
Books on STS. The STS test consists of many pairs of
photo captions. The Toronto Books Corpus consists of
61.2% fiction books (Bandy and Vincent; [2021), which
is likely rich in descriptive language. The STS test suite
also contains answer comparisons and news captions.
Dialogue in fiction books could be beneficial for detect-
ing answer similarity. And non-fiction books may be
particularly helpful for news caption comparisons. It is
difficult to discern why these benefits would be man-
ifest in the case of fastText and with an aberrant tar-
get/context trend. Drawing more conclusions may re-
quire a more in-depth study into corpus effect on these
summed embeddings.

Note that in some experiments, the weighting of
target and context determines whether performance
from the Classic Books corpus can be comparable to
the other corpora. This suggests an opportunity for
target/context weight tuning to improve results in very
low-resource settings. We discuss this more in

7 Applications

Based on our findings, we recommend that practi-
tioners tune the target/context embedding weight for
downstream applications. The following two exam-
ples demonstrate that by doing so, it is possible to im-
prove upon default vector performance using applica-
tions from published literature.

Note that our baselines differ from published re-
sults, which employed downloadable pre-trained em-
beddings that were extensively optimized. This ap-
proach yields high-quality results, but it does not
allow for comparison of target/context combinations
since only one combination is typically released online.
We therefore used our own embeddings, trained on
the Wikipedia corpus, to explore relative performance
across a spectrum of target/context combinations. We
encourage future practitioners to release both embed-
ding sets.

7.1 MUSE Cross-lingual Alignment

Cross lingual alignment is a popular approach to multi-
lingual text representations. Algorithms learn a trans-
formation matrix to map embeddings from one lan-
guage into another.|Lample et al.|(2018) accomplish this
via an unsupervised adversarial algorithm, MUSE.

Using [Lample et al.s methods, we present results
for different target/context combinations of fastText
vectors. We selected fastText for this experiment to
match |Lample et al./s (2018) implementation, and ad-
ditionally because fastText performed the best on su-
pervised cross-lingual alignment in (the true sum
combination, to be precise). To score in this unsuper-
vised case, we query a fixed number of source word
embeddings and measure accuracy for correct target re-
trieval for k = 1, 5, 10 nearest neighbors. In this task, we
found that the 80:20 sum outperformed all other com-
binations. See Table[6] Interestingly 20:80 sum and con-
text vectors perform significantly worse than the other
combinations we tested, suggesting that the absence
of the sub-word enriched target embeddings leads to
degradation of performance.

7.2 Harvesting Common-sense Naviga-
tional Knowledge for Robotics

In this section we present an additional recommen-
dation to practitioners. When optimizing for tar-
get/context weight via differentiation, take care with
the choice of objective function, and consider the com-
plexity of high-dimensional vector spaces.

Fulda et al. (2017b) used a novel distance metric
to extract navigational relationships between objects
for robotics applications, the Directional Scoring
Method (DSM). They evaluated this method on a
series of ground-truth object relations, contained
in the BYU Analogical Reasoning Dataset. (See
https://github.com/NancyFulda/BYU-Analogical-
Reasoning-Datasetl) Using word2vec skip-gram
vectors as the original authors did, we ventured to
find the optimal target/context weight A € [0,1]
for this application (where for each word w, the
embedding vector v,, = At,, + (A — 1)c,,). We grid
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default  80:20 sum  60:40 sum  50:50 sum  40:60 sum  20:80 sum  context

k=1 64.14% 65.70% 65.55%
k=5 81.02% 81.83% 81.75%
k=10 84.91% 85.60% 85.50%

63.69% 62.49% 58.02% 51.34%
80.52% 79.56% 75.94% 69.56%
84.57% 83.86% 80.72% 75.25%

Table 6: MUSE alignment accuracy percentages with fastText English and Spanish vectors. Best results are bold. The

80:20 combination outperforms all others.

searched over eleven A values to maximize accuracy
(A € {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}). The
default target vectors were quite effective for this
application. A = 1.0 scored highest for 6 of the 11
analogy categories (accessing containers, affordance,
causation, containers, locations for objects, rooms for
containers). Results for the other 5 categories are in

Table[7]

rooms trash
belong objects tools treas. travel

default  6.21% 21.1%  3.57% 37.0% 17.6%
AGS  9.66% 21.5%  690% 52.2% 18.4%
A= 0.9 0.8 0.8 0.4 0.9

Table 7: DSM scores where A grid search (GS) improved
performance. Default indicates A = 1.

We found that optimizing A via differentiation was
not effective. We constructed an objective, the sum of
directional scores for each of the ground-truth analogy
answers in a training set, 60% of analogical questions,
and maximized the objective over A. Because this ob-
jective minimized DSM-distance between ground truth
vectors and DSM-hypothesis vectors, the optimal value
of A defaulted to the most tightly clustered vector space
available. In our case with word2vec, A = 0 was se-
lected every time, since word2vec context vectors are
tightly clustered in DSM space. This did not maximize
the probability of choosing the correct vector.

Modifying the objective function by subtracting di-
rectional scores for all incorrect answers circumvented
this issue and allowed for more diverse selections of op-
timal A, but it still was not effective. We found that the
value of A that maximizes DSM scores for all correct
answers and minimizes scores for all incorrect answers
does not necessarily result in higher answer accuracy,
regardless of whether we used a subset of questions
for training or the whole set. This is likely due to in-
tractable subtleties in high-dimensional vector geome-
tries, a phenomenon for further investigation.

The results from this application do not preclude
the use of differentiation or other meta-learning tech-
niques to tune the target/context weight A for other
tasks. We strongly encourage such investigations. But
until further conclusions, we urge that objectives to op-

timize A be attempted with caution and thorough veri-
fication.

7.3 Summary Recommendations

Our observations suggest that values in Table[8|may be
the most reasonable choices of target/context combina-
tions for each embedding algorithm and task. Because
even similar tasks may differ in nature, however, we
encourage all practitioners to optimize target/context
weights via grid search whenever possible.

While our recommendation is to tune/optimize, we
recognize that many researchers, especially those ap-
plying word embeddings in research areas outside of
computational linguistics, may not have the resources
to tune their own weight parameters. We therefore pro-
vide recommendations on which simple linear combina-
tions are broadly applicable to various task types.

7.4 Potential for Low-resource and Mul-
tilingual NLP

Our results suggest that tuning target/context weight
can, in some cases, elevate the performance of low-
resource embeddings to the level of higher-resource sys-
tems. One of the most promising areas for improve-
ment of static word representations is NLP for low-
resource languages. Many low-resource languages do
not have high-quality contextual embedding tools such
as BERT (Devlin et al.,|12019) and lack the resources to
train data-hungry BERT-like models. Many of these lan-
guages rely on improvements in static embedding tech-
nologies for accurate representations in NLP.

Multiple of the word2vec, GloVe, and fastText ap-
plications listed in §1 and §2] are for low-resource do-
mains. Among the works referenced in this paper alone,
we find examples of static embeddings applied to tech-
nologies for Amharic, Azerbaijani, Belarusian, Bengali,
Galician, Gujarati, Hausa, Marathi, Punjabi, Somali,
Tamil, Telugu, Uighur, Urdu, Uzbek, Yoruba, and more
(Qi et all|2018;|Pourdamghani et al.||2018; Khalid et al.|
2021; /Akhtar et al.| [2017).

A major limitation of our study is that, given the
large number of independent variables we tested al-
ready, we were constrained to applications involving
English (and some with Spanish, another high-resource
language). Unfortunately, this limitation inhibits us
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word2vec

word search tasks target

sentence textual similarity true sum
bag-of-words representations context
semantic Google analogies target
grammatical analogies target
other analogies target
cross-lingual alignment target

POS tagging target/context

overall target

fastText GloVe

target-heavy/true sums target/context

target/20:80 sum true sum
context-heavy sums target/context

target-heavy/true sums true sum
target-heavy/true sums target/context
target-heavy/true sums target/context

80:20 sum/true sum 80:20 sum

target target-/context-heavy

target/20:80 sum 80:20 sum/20:80 sum

Table 8: Recommended target/context embedding usage by task and embedding algorithm. The algorithm that per-
formed best on each task type in our experiments is bold. Practitioners are cautioned that even similar tasks may differ
in nature, and that the general trends indicated here may not hold in all use cases.

from drawing concrete conclusions about performance
trends and their dependence on training language. This
is a primary area of potential for future research. We
hope to see more targeted studies addressing the ef-
fectiveness of target/context weight tuning on low-
resource tasks, particularly for fastText vectors, which
are often used in multilingual settings. Since fastText
vectors formed by target-context sums combine mor-
pheme information with full word information, they
could be valuable in applications for morphologically
rich languages, such as Arabic, Finnish, and Quechua.

8 Conclusion

By leveraging unconventional combinations of target
and context vectors learned by GloVe, fastTest, and
word2vec, we achieve improvements of up to 12.5% on
common word embedding tasks such as POS-tagging
and IR, thus elevating the usefulness of these popular
and inexpensive word representations for NLP tasks.
Experiments with 126 embedding sets on six generic
tasks and two downstream applications show that tun-
ing the hyperparameter of target and context weight
for downstream tasks can improve performance signif-
icantly over default settings, increasing accuracy by
0.69% to 1.56% on MUSE cross-lingual alignment and
by up to 15.2% on navigational robotics benchmarks.
Analysis suggests that target-heavy word2vec com-
binations are most suited to tasks involving single-word
relationships, while context vector information is use-
ful in summed sentence representations. We further ob-
serve that GloVe default settings perform best on tasks
for which GloVe was tuned but tend to perform poorly
on others, and that fastText target vectors excel in tasks
such as POS-tagging, where sub-word information is
particularly relevant. These findings reveal a disconnect
between the maximum potential of static embedding al-
gorithms and the ways in which they are typically used.
In a majority of cases, the performance of pre-trained

word embeddings could be improved by tuning the tar-
get/context weight hyperparameter. Furthermore, be-
cause a target/context weighting is typically chosen
prior to the release of extensively pre-trained word vec-
tors, the possibility of exploring various target/context
weightings has typically not been made available to sub-
sequent researchers. In alignment with our results, we
urge those who design and train static word embedding
models to release both target and context vector sets.
The software and embeddings used in our experi-
ments will be released publicly under the MIT license.
Given the widespread use of GloVe, word2vec, fastText,
and other static embeddings, there is a need for deeper
understanding of target and context interactions. Direc-
tions of future work in this area include the semantic
content contained in context and target embeddings;
the interplay between embedding algorithm, corpus
size, and corpus genre; vector normalization methods
to avoid norm imbalance; distance metrics not based
on cosine similarity; and paired-embedding algorithms
where context and target spaces are used individually.
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