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Abstract

A computational system implemented exclu-
sively through the spiking of neurons was re-
cently shown capable of syntax, that is, of car-
rying out the dependency parsing of simple
English sentences. We address two of the most
important questions left open by that work:
constituency (the identification of key parts of
the sentence such as the verb phrase) and the
processing of dependent sentences, especially
center-embedded ones. We show that these two
aspects of language can also be implemented
by neurons and synapses in a way that is com-
patible with what is known, or widely believed,
about the structure and function of the language
organ'. Surprisingly, the way we implement
center embedding points to a new characteriza-
tion of context-free languages.

1 Introduction

How does the brain make language? Even though
it is universally accepted that language is produced
through the activity of the brain’s molecules, neu-
rons, and synapses, there has been extremely slow
progress over the past decades in the quest for pin-
pointing the neural basis of language, that is, the
precise biological structures and processes which
result in the generation and comprehension of lan-
guage — see Friederici (2017) for an excellent
overview of a major direction in the theory of
the language organ. In a recent advance in this
direction, a parser of English was implemented
(Mitropolsky et al., 2021) in the computational sys-
tem known as the Assembly Calculus (AC) (Pa-
padimitriou et al., 2020), a biologically plausible
computational framework for implementing cog-
nitive functions. The basic data structure of the
AC is the assembly of neurons, a large set of neu-
rons representing an idea, object, episode, word,
etc. — a brief description of the AC and its brain-
like execution environment is given in Section 2.1.

!Code  available https://www.github.com/
dmitropolsky/assemblies.

The Parser is implemented through assembly oper-
ations, and thus ultimately by the actual spiking of
stylized neurons. Its input is a sequence of words,
and in response to it the Parser produces, as a de-
tectable substructure of the neural circuit, a cor-
rect dependency parse of the sentence. For this to
happen, neural representations of the words are as-
sumed to be already in place in a brain area called
LEX (for lexicon). For each new word, all neurons
in the corresponding representation spike, and the
representations contain enough grammatical infor-
mation to cause a cascade of neural activity which
results in the correct parsing of the sentence. It was
shown through experiments in Mitropolsky et al.
(2021) that several simple classes of sentences can
be parsed this way. It is important to remember
that the Parser in Mitropolsky et al. (2021) works
exclusively through the spikes of biologically plau-
sible neurons, and hence it can be seen as a proof
of concept — a concrete hypothesis even — about
the way syntactic analysis of language happens in
the brain.

Several research directions were left open in
Mitropolsky et al. (2021), and preeminent among
them were these two: (a) how can the parser be
extended so that dependent clauses, and especially
center-embedded ones, are parsed correctly? and
(b) how could the constituency representation of
the sentence (the tree with "Sentence" and "Verb
Phrase" as its internal nodes and the “Subject,”
“Verb,” and “Object” as leaves) be produced —
there is experimental evidence that the main con-
stituents of a sentence are indeed created in Broca’s
area during sentence processing (e.g. Zaccarella
and Friederici (2015)).

Parsing center-embedded sentences presents a
serious conceptual difficulty: the parsing of the em-
bedding sentence must be interrupted, and then be
continued after the embedded sentence is parsed.
This is the nature and essence of recursion. A mech-
anism for recovering the state of the parser at the
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moment of the interruption seems thus necessary.
It would be tempting to posit that recursion in the
brain happens as it does in software, through the
creation of a stack of activation records, but as we
shall discuss this is not biologically plausible.

In this paper we pursue these two unresolved re-
search goals and make significant progress on both.
We start our description with constituents, which
is the simpler narrative. The Parser in Mitropol-
sky et al. (2021) consists of the brain area LEX
where the lexicon resides (believed to be a part of
the medial temporal lobe, MTL), as well as sev-
eral other areas labeled SUBJ, VERB, OBJ, DET
etc. corresponding to syntactic roles, believed to
be subareas of Wernicke’s area; this is where the
dependency parse is created. We show that this
architecture can be augmented by new areas and
fibers in such a way that the basic constituency
tree of the sentence (the three-leaf tree that has in-
ner nodes Sentence and Verb Phrase) can be also
built “on the side” while the sentence is parsed.
This entails two new brain areas denoted S for sen-
tence and VP for verb phrase. The brain areas in
our model are intended to correspond to two well
known subareas of Broca’s area, BA 43 and BA 44,
respectively, where such activity is thought to take
place (Friederici, 2017).

Coming now to the problem of dependent
clauses, to handle clauses that are not embedded
(say“if dogs are angry, they chase cats”), the Parser
needs only one extra brain area beyond the areas
needed by the original (Mitropolsky et al., 2021),
namely an area labeled DS for “dependent seg-
ment.”

To see the problem with embedded sentences,
consider the variant “dogs, when they are angry,
chase cats.” The Parser would recognize “dogs” as
the subject of the sentence and project the assembly
for “dogs” to the SUBJ area and change the state
as appropriate (inhibit a fiber). Upon encounter-
ing the first comma, the parsing of the sentence
is curtailed, and the parsing of a new clause will
be initiated. This is not a problem, since brain ar-
eas can contain many assemblies at the same time,
and the two verbs, subjects, etc. will not interfere
with each other. However, upon the second comma
(for simplicity we assume that these clues are al-
ways available— in speech, they may, for instance,
by indicated using prosodic or pausal cues), the
Parser needs to continue the parsing of the outer
clause (that is, the main sentence), and for this it

needs to restore the state at the moment the parsing
was interrupted by the embedding sentence. We
could have the state saved in a pushdown store
and retrieve it at this point, but we can see no bio-
logically plausible implementation of either Parser
state records or a pushdown store. As we shall
point out, the Parser so far is a finite automaton,
and thus it is not surprising that it has trouble han-
dling embedded clauses.

The question is, which biologically plausible de-
parture from finite state machines, and from the
model in Mitropolsky et al. (2021), can handle em-
bedding? We propose the following: The Parser
stores the part of the utterance already parsed in
some working memory (as in Awh et al. (2006), for
example). When the embedded clause has been
parsed, the Parser returns to the beginning of the
outer sentence in the working memory and repro-
cesses it (up to the comma) to restore the state. We
only need to execute the action sets of the words in
the first part of the sentence, an activity that we we
call rouching, which is, in terms of elapsed time,
an order of magnitude faster than parsing the first
time. Once the first comma is seen, the embedded
clause is skipped (without state changes) until the
second comma, and parsing of the outer sentence is
resumed from the recovered state. Any embedded
clause can be handled with the touching maneu-
ver — non-embedded dependent clauses are much
simpler.

We show by processing several examples that
several forms of dependent and embedded clauses
can be correctly parsed (that is, a correct depen-
dency graph of the whole sentence can be retrieved
from the device after processing). If the embedded
clause has its own embedded clause, the trick can
be repeated.

Very surprisingly to us, this extension of the
Parser, arrived at strictly through considerations
of biological plausibility and ease of implementa-
tion, yields a rather unexpected theorem in formal
language theory: if one defines an extension of
nondeterministic finite-state automata to capture
the operation of the enhanced Parser, with the extra
capabilities of (a) marking the current input symbol
and (b) reverting from the current input symbol to
the previously marked symbol that is closest to the
current one, then the class of languages accepted
by these devices — call them fallback automata —
coincides with the context-free languages!



2 Background
2.1 The Assemblies Model

How does the brain beget the mind? How do
molecules, neurons, and synapses effect reasoning,
planning, emotions, language? Despite tremendous
progress in the two extremes of scale — cognitive
science and neuroscience — we do not know how
to bridge the scales. According to Nobel laureate
Richard Axel (A, 2018), “We don’t have a Logic for
the transformation of neuronal activity to thought
and action. I consider discerning (this) Logic as
the foremost research direction in neuroscience.’
Notice the use of the word “Logic” whereby a dis-
tinguished experimentalist dreams of a formal sys-
tem...

Recently, a computational framework called the
Assembly Calculus (AC) was proposed whose pre-
cise intention is to be this Logic: to model the
brain at the level of cognitive function through the
control of a dynamical system of spiking neurons.
This section describes the variant of the AC used
in Mitropolsky et al. (2021) and the present paper.

We start with a mathematical model of the brain:
a finite number a of brain areas A, B, ... each con-
taining n excitatory neurons. Every two neurons
1, 7 in each area have a probability p of being con-
nected by a synapse. Each synapse (i, ) has a
nonnegative weight w;; > 0, initially 1, say, which
changes dynamically. For certain unordered pairs
of areas (A, B), A # B, there is a fiber connecting
them, a random directed bipartite graph connect-
ing neurons in A to neurons in B and back, again
with probability p independently for each possible
synapse. Thus, the brain is a large directed graph
with an nodes and random weighted edges.

Time is discrete (in the brain each time step is
throught to be about 20 ms). The state of the dy-
namical system at time ¢ has two components: the
weights of the synapses wfj, and the set of neurons
that fire at time ¢. That is, for each neuron ¢ we
have a state variable f! € {0, 1} denoting whether
or not ¢ fires at time ¢. The state transition from
time ¢ to time ¢ + 1 is computed thus:

B

1. For each neuron ¢ compute its synaptic input
t_ t :
SI; = Z(jﬂ-)eE’f;:l w};, that is, the sum to-
tal of all weights from pre-synaptic neurons
that fired at time ¢.

2. For each neuron ff“ = 1 —that s, ¢ fires at
time ¢ + 1 — if ¢ is among the k neurons in its

area with the highest ST} (breaking any ties
arbitrarily).

3. For each synapse (i,j) € E,

wf-;-rl = wi;(1+ fff;“ﬁ); that is, a synaptic
weight increases by a factor of 1 + 3 if and
only if the post-synaptic neuron fires at time
t + 1 and the pre-synaptic neuron had fired at

time ¢.

These are the equations of the dynamical system.
The AC also has commands for the high-level con-
trol of the system. A fiber can be inhibited (that is,
prevented from carrying synaptic input to other ar-
eas) and disinhibited (inhibition is canceled). Also,
a set « of k£ neurons in an area can be made to fire
by the command fire(x) (this is most relevant in
connection to assemblies, defined next.

The state of the system contains the firing state
of each neuron, the edge weights w;;, and inhibi-
tion information.

Assemblies of neurons are a critical emergent
property of the system. An assembly is a special set
of k neurons, all in the same area, that are densely
interconnected — that is, these k neurons have far
more synapses between them than random, and
these synapses have very high weights. This ren-
ders assemblies stable representations for repre-
senting in the brain objects, words, ideas, etc.

How do assemblies emerge? Suppose that at
time 0, when nothing else fires, we execute fire(z)
for a fixed subset of k& neurons x in area A (these k&
neurons will always correspond to a previously cre-
ated assembly?), and suppose that there is an adja-
cent area B (connected to A through a disinhibited
fiber) where no neurons currently fire. Since assem-
bly x in area A fires at times 0, 1, 2, . . . (and ignor-
ing all other areas), it will effect at times 1,2, . ..
the firing of an evolving set of k£ neurons in B, call
these sets ', 42, .. .. It is shown in Papadimitriou
et al. (2020) that, with high probability (where the
probability space is the random connectivity of the
system), the sequence {y'} eventually converges to
a stable assembly y in B, called the projection of x
in B. The new assembly will be strongly intercon-
nected, and also has strong connections from with
xz: If one of the two assemblies henceforth fires,
the other will follow suit.

In Mitropolsky et al. (2021) this operation was
generalized for the paper’s purposes. Suppose an

Initially, assemblies are created by projection from stimuli
from the outside world coded in the sensory cortex.



assembly x in area A fires repeatedly and there are
many areas downstream — not just a single area
B as before — and these areas are connected by
disinhibited fibers in a way that forms a tree. Then
a sequence of project operations, denoted project®,
creates a tree of assemblies, with strong synaptic
connections between them. In (Mitropolsky et al.,
2021), it is these synaptic connections between
projected word assemblies that constitute the valid
dependency parse tree created by the Parser.

2.2 The Parser

The basic architecture of the Parser in Mitropolsky
et al. (2021) consists of several brain areas con-
nected by fibers. LEX special, and contains repre-
sentations of all words. Upon input of a new word
(in brain reality, read or heard) the corresponding
representation is excited, and upon firing it exe-
cutes the action set of the word, commands which
capture the grammatical role of the word. These
commands open and close (disinhibit and inhibit)
certain fibers. Then the project* operation is exe-
cuted: all active assemblies fire. By this scheme, it
was shown in Mitropolsky et al. (2021) that many
categories of English sentences (and Russian as
well) can be parsed correctly (the correctness can
be verified because the running of the parser on an
input sentence leaves a retrievable graph structure
within and between brain areas, which constitute
a correct dependency graph of the sentence). This
completes the description of the Parser’s architec-
ture. We provide a figure with an example sentence
parsed, and refer the interested reader to Mitropol-
sky et al. (2021).

2.3 Neuroscience

We believe that our Parser represents a reasonable
hypothesis for parsing in the brain. The neurobio-
logical underpinnings of Assembly Calculus, with
which our model is built, and the original Parser
of Mitropolsky et al. (2021), which ours extends,
are presented more fully in that paper. Briefly, As-
sembly Calculus is based on established tenets of
neuron biology, including that neurons fire when
they receive sufficient excitatory input from other
neurons, the atomic nature of neuron firing, and a
simplified narrative of synaptic Hebbian plasticity
(see for instance Kandel et al. (1991), Chapters 7,
8, and 67). Assemblies, in turn, are an increasingly
popular hypothesis for the main unit of higher-level
cognition in modern neuroscience— first hypothe-
sized decades ago by Hebb, they have been identi-

fied experimentally (Harris, 2005) displacing pre-
viously dominant theories of information encoding
in the brain, see e.g. Eichenbaum (2018). With
what regards the higher-level Parser architecture,
language processing appears to start with access
to a lexicon, a look-up table of word representa-
tions thought to reside in the left medial temporal
lobe (MTL), motivating the inclusion of an area
LEX. After word look-up, activity in the STG is
thought to signify the identification of syntactic
roles. Overall, the Parser generates a hierarchical
dependancy-based structure that from a sentence
that is processed incrementally, which we believe
models something like the creation of hierarchical
structures in Broca’s areas in experiments such as
Ding et al. (2016).

3 Constituency

Constituency parsing revolves around the idea that
words may lump into a single assembly. The noun
subject of a sentence — along with its dependent
adjective(s) and determinant(s) if any — form the
“Subject," while the verb and object form the “Verb
Phrase." At the coarsest level, the “Subject" and
“Verb Phrase" then form the “Sentence." We modify
the underlying framework of the Parser to assign
this syntactic structure to a sentence.

We add two new brain areas that hold the “Verb
Phrase" and “Sentence," VP and S respectively,
as well as fibers between VERB and VP, OBJ and
VP, SUBJ and S, and VP and S. These fibers re-
main disinhibited throughout parsing so that the
constituency tree is built concurrently as we parse
the sentence. That is, when the verb is processed, a
corresponding assembly is formed in VP, and upon
encountering the object, the assemblies in VERB,
OBJ, and VP fire together to form in VP what is
now the merge of assemblies representing the verb
and object. Parallel to this process, assemblies fire
along the SUBJ to S and VP to S fibers so that the
final assembly in S represents the joining of the
“Subject" and “Verb Phrase."

Experiments. We extend the implementation of
the Parser in Python to incorporate these new abili-
ties. Additionally, we tailor the readout algorithm
(which in Mitropolsky et al. (2021) recovers the
dependency tree) to output the desired tree rooted
in S. To verify that the Parser produces the cor-
rect constituency tree, we provide a test set of 40
sentences constructed from 20 syntactic patterns
that include variations in word orderings; additions



of determinants, adjectives, adverbs, and prepo-
sitional phrases; and both transitive and intransi-
tive verbs. The Parser generates the correct con-
stituency trees on all of our given test cases. Im-
portantly, the constituency Parser can handle any
sentence structure that the original Parser can han-
dle.

As in the original parser, we execute 20 firing
epochs of project® to allow the dynamical system
to stabilise. The multiple concurrent projections
into S and VP cause a slowdown by a factor of
2.5 relative to the dependency parser, resulting in a
frequency of 0.5-1.3 seconds/word.

4 Embedded Sentences

To handle embedded sentences, the Parser requires
anew area DS (for dependent segment) to handle
dependent and embedded clauses. Additionally,
we need modifications that recover the state before
an embedded clause (which we recover when we
finish parsing an embedded clause, i.e., upon a
“right comma").

In particular, we assume that there is a working
memory area which holds the words which have
already been processed, in sequence. We assume
for simplicity that the parser can always recognize
the beginning of a dependent sentence — that this
is always possible through simple clues such as a
comma (in text), prosodic cues (in speech), and/or
a complementizing pronoun or preposition, such as
who”, “if”, or “that". We also assume that there is
a unique sentence or clause at each depth, though
with minor modifications we can handle the more
general case.

To handle center-embedded clauses, the parser
utilizes a limited working memory: it must remem-
ber the sentence up to the point when an embedded
clause begins in order to efficiently reprocess these
words after parsing the embedded clause. More
concretely, when a center embedding is detected,
the Parser “cleans the slate"; that is, the Parser
state (the fiber and area states) is reinitialized in
order to parse the new embedded clause, which is
parsed normally until its end is detected. At this
point the Parser has to restore its last state when it
was parsing the outer clause. To do so, it reinitial-
izes the state again and reprocesses the sentence
from the beginning of the outer clause up to the
interruption. However, this re-processing is spe-
cial: the parser only “touches” the words, by which
we mean that for each word we apply its action
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sets (inhibiting or disinhibiting areas/fibers), fire
the entire system exactly once to reactivate existing
assemblies that were formed in the initial parse of
the fragment (when we initially parsed this part
of the sentence, we used project®, which fires the
entire system 20+ times in order for assemblies to
form and converge). In this way, touching is by an
order of magnitude faster than parsing on initial
input of the word — both in our simulation and
in the hypothesized language organ — since it is
only recovering the preexisting structure. Note that
when the first comma is scanned, the parsing of
the outer sentenced is resumed from the second
comma, skipping the (already parsed) embedded
clause.

The remaining difficulty is in linking the outer
and inner clauses. The last word of the outer clause
before the inner sentence functions as a ‘““signa-
ture" for the outer clause. This signature may re-
side in SUBJ or OBJ, for instance. After parsing
the fragment of the outer clause pre-interruption,
we project from the relevant signature area to DS.
Then, on the verb of the inner clause, we project
from both LEX and DS into VERB simultane-
ously. This way, we can later recover the root verb
of the inner clause via the signature assembly of
the outer sentence (through projection into DS and
subsequently VERB). to DS, and then to VERB.

Experiments. We extend the implementation of
the dependency Parser in Python to incorporate
touching, linkage, and recursion within the main
Parser loop. In principle, the developed Parser
can handle arbitrarily many levels of embedding.
We test on 20 sentences sampled from 5 differ-
ent embedding structures, with depths 0, 1, and 2
(informed by the lack of three or greater depth sen-
tences in ordinary language). Our test cases feature
center-embedding, edge-embedding, mixed embed-
ding, and relative clauses modifying the subject
or the object. We assume there is a unique clause
at each depth. The Parser generates the expected
dependency tree on all of our given test cases.

Again, we execute 20 firing epochs of project®.
The modified parser preserves the speed of the orig-
inal, with a negligible increase in time for linkage
projections and touching. Despite several chal-
lenges created by the added complexity of sentence
embedding, the linkages between projected assem-
blies correspond to the correct dependency graph
in all sentences.
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Figure 1: Snapshots of the Parser while processing the center-embedded sentence “dogs, when they run, chase
cats." Green arrows represent fibers that have been disinhibited between each stage; red arrows represent inhibited
fibers. Purple dotted arrows indicate assemblies that have been connected through project®. Pink dotted arrows
indicate assemblies touched through activating their corresponding assemblies in LEX. (a) Outer sentence, up until
beginning of inner sentence, parsed; (b) Assemblies in the signature and DS areas linked; (c) Fiber and area states
reset in anticipation of a new sentence; (d) Inner sentence parsed and linked to outer sentence through the DS area;
(e) Outer sentence revisited: each word prior to dependent sentence is touched, restoring Parser state of stage (a); (f)
Remainder of outer sentence parsed.



Algorithm 1: Enhanced Parser, main loop

input :a sentence s, depth d
output : representation of dependency parse
of s, rooted in VERB
Function parse (s, d < 0):
foreach word w in s do
if (d + 1)-depth clause begins after
w then
disinhibit(DS) ;
disinhibit(DS, AREA(w)) ;
project® ;
inhibit(DS, AREA(w)) ;
inhibit(DS) ;
else if w begins (d+1) depth clause
then
d«—d+1;
clear the slate ;
else if w ends embedded sentence
then
d+—d-1;
foreach word y before w do
activate y in LEX ;
fire DISINHIBITED AREAS ;
if d > 0, AREA(w) = VERB then
disinhibit(DS) ;
disinhibit(DS, VERB) ;
execute w actions and project* ;
inhibit(DS) ;
inhibit(DS, VERB) ;

5 A Little Formal Language Theory

The Parser, without the embedded sentence mod-
ule, is a finite state device. The reason is that the
Parser’s state is an acyclic subgraph of the graph
of brain area and fibers (excluding LEX). It is no
wonder then that sentence embedding (intuitively,
a feature involving recursion and therefore moving
us out of the realm of regular languages) requires
an extension, and among many other options that
seemed to us less biologically plausible we chose
to revisit the outer sentence and restore the state
of the Parser. It is now natural to ask: Can the
operation of the Parser when handling embedded
sentences be seen as a more powerful genre of au-
tomaton? This is the motivation for the results in
this section.

Definition: A fallback automaton (FBA) is a tuple
A= (X, K,I,F,A), where (as in a nondetermin-
istic finite-state automaton) X is a nonempty finite
set of symbols, K is a set of states, [ is the set of
initial states, F’ is the set of accepting states, and A
is the transition relation.

Define the type set T = {f,s} U K. Whereas
in nondeterministic FSAs A C (¥ x K) x K, the
transition relation of FBAs is more complex.

AC((ExTxK)x (K x{sv,+})

The automaton is nondeterministic, reflecting
the nondeterministic nature of parsing in general,
due to ambiguity and polysemy. The transition
relation can be understood thus: symbols on the
tape are marked by a type, either f (for fresh),
s (for seen), or by a state ¢ € K. Initially, all
symbols are fresh and hence marked f. When a
symbol is marked s or by a state of K, it is not
being scanned for the first time — the automaton
may scan a symbol multiple times. The first time a
symbol is scanned, its type is changed from f to s,
or, if the rule outputs v/, it is set to the current state
q. Subsequently, after a symbol marked by a state
is scanned, the type reverts to s.

To formalize the operation of the automaton, at
each step, there is a tape x € (X x T')*; we denote
its ith symbol as z; = (03, t;), where o; € ¥ and
t € T. The automaton is in a state ¢ € K and the
1th symbol z; is scanned. The overall configuration
is thus (z, ¢, 7). In the initial configuration, the type
of every symbol is f,q € I and ¢ = 1.

If the next configuration after (z, q,14) is (y,7,7)
then:



* yisidentical to x except that the type of the ith
symbol may have changed: f must become s
or the machine’s current state g, s stays s, and
q € K always become s.

* unless this is a fallback step, j =i + 1.

* Fallback. When scanning a fresh symbol, the
automaton may return to a position j < 1,
where j is the largest position j that was
marked — that is, £; € K. Notice that in the
next step, t; = s— the symbol is unmarked.

* When scanning a symbol with type ¢ € K,
i.e., a symbol fallen back to, the transition can
map to only s or <—— that is, it can fallback
again, but it cannot mark the symbol again for
fallback.

e In all cases, the corresponding pair
((zi,q)(r,o)) must be in A. o = s
means that the ¢-th symbol’s type is changed
to s, 0 = v/ means it is changed to the state g,
and o0 =< means the step is a fallback.

This concludes the definition of the FBA. We say
that a string « in ¥* is accepted by FBA A if there
is a sequence of legal steps from a configuration
with state in I and tape x with all symbols fresh to
a configuration in which the state is in F'.

Note that when the FBA falls back to a previous
tape location j < ¢, it then passes again over the
seen symbols (marked s) between z; and x;, and
may do meaningful computation upon this revisit-
ing. Furthermore, an FBA can fallback repeatedly,
immediately after a fallback move. Our Parser
more closely corresponds to an FBA without this
abilities. Hence it is interesting to define a weaker
model without this ability:

A weak-FBA is an FBA with the additional re-
quirements that 1) for any symbol marked s, tran-
sitions cannot change the state (that is, for all
a € X, g€ K and (a,s,q9) X (¢,s) € A, we
require ¢ = g, in effect, skipping over all s sym-
bols) and 2) for any symbol marked with ¢ € K,
the transition must output (¢’, s) (that is, there are
no repeated fallbacks).

It may seem that FBAs can do more than weak-
FBAs. Consider the following language over ¥ =
{0,1,,8}, L = {a™zp™ : z € {0,1}*}. By
marking every « and falling back on every (3, an
FBA can read through z at least n times, a linear
dependence. However, a weak-FBA can read each
symbol in the tape exactly 1 or 2 times.

Perhaps surprisingly, it turns out that the ability
to do additional computation on revisited symbols
offers no additional power. More importantly, it
turns out that both models recognize a fundamental
class of formal language theory. Denote the class of
languages accepted by FBAs as FBA, that by weak-
FBAs as weak-FBA, and the class of context-free
languages as CFL. We can prove the following:

Theorem: weak-FBA = FBA = CFL

Proof outline: To show that weak-FBA O CFL,
we recall the classic theorem of Chomsky and
Schiitzenberger (Chomsky and Schiitzenberger,
1963) stating that any context-free language L can
be written as L = R N h(Dy,), where R is a reg-
ular language, Dy, denotes the Dyck language of
balanced parentheses of & kinds, and A is a homo-
morphism, mapping any symbol in the alphabet of
Dy, to a string in another alphabet. Let us take a
context-free language in this form. Note that FBAs
are ideal for accepting h(Dy). The machine uses
non-determinism to guess which symbol is repre-
sented by the next sequence of characters. When
it guesses that it will see the image of a left paren-
thesis, say ‘{’, it checks each symbol of h({) (and
rejects if the sequence of symbols is not ~({)), and
marks the final character (with the state q{)). For a
right parenthesis, after checking for the sequence
h(}), it falls back and checks that the symbol fallen
back to is marked ¢y). Intersection with the regular
language R is done by simultaneously maintaining
the state of the automaton accepting R in a sep-
arate component of the FBA’s state (in fact, one
can show that the languages accepted by FBAs are
closed under intersection with regular languages).

To show that FBA C CFL, we emulate the ex-
ecution of a FBA with a push-down automaton
(that is, a non-deterministic finite state automaton
with the additional computational power of one
stack). By the classic result proved independently
by Chomsky (1962); Schiitzenberger (1963); Evey
(1963), the languages recognized by push-down
automata are exactly CFL. The emulation uses the
following trick: the stack is composed of vectors
of states of length |K|. These vectors keep track of
the execution of the FBA on every possible state on
the sequence of symbols between consecutive pairs
of marked symbols, and between the most recent
marked symbol and the head. Whenever the FBA
falls back and is in state ¢ where g corresponds to
the i-th coordinate in the stack vectors, the emu-
lation pops the top vector on the stack and jumps



to the state in the 7-th coordinate, as this would
be the resulting state had the machine re-read the
seen symbols starting in state q. The full proof is
technical, and is given in the Appendix.

6 Discussion

The Parser in Mitropolsky et al. (2021) can be seen
as a concrete hypothesis about the nature, structure,
and operation of the language organ. Here we elab-
orate on this hypothesis: First, rough constituency
parsing (the creation of the two highest layers of
the syntactic — or constituency — tree of the sen-
tence) can be carried out simultaneously with the
main dependency parsing. Second, dependent sen-
tences can also be parsed. For center-embedded
sentences, a significant extension of the Parser is
required: A working memory area stores the whole
utterance, and the parser returns to the beginning
of the utterance to recover the state of the Parser
after processing the outer sentence, and and then
skips the embedded sentence and continues parsing
the outer one.

Even though this maneuver was motivated by
biological realism and programming necessity, we
showed that it transforms the device from one that
handles only regular languages to one capable of ac-
cepting all context free languages — and just these.
We find this quite surprising, and possibly signif-
icant for the history of linguistic theory: Seven
decades ago, Noam Chomsky sought to formalize
human language and in the mid 1950s introduced
CFLs expressly for this purpose. In the following
two decades, this choice was criticised as too gen-
erous (not all features of CFLs are needed) and
also as too restrictive (some aspects of natural lan-
guage are not covered by CFLs). Arguably, this
criticism was accepted by Chomsky’s school of
thought: Grammar remained important, of course,
but context-free rules besides S — N PV P (right-
hand side unordered) were not used often. Much
of NLP centered around the dependency formu-
lation of syntax. Two-thirds of a century later,
computer scientists speculating about syntax in the
brain came up with a computational trick in order
to handle center recursion. And this maneuver,
when formalized properly, leads to a device that
can recognize all CFLs.

Besides speculating on the meaning of this the-
oretical result, our work suggests a major open
problem: If we assume that syntax in the brain is
handled in a way similar to the one suggested by

the Parser’, and all humans are born with a system
of brain areas and fibers in their left hemisphere
capable of such operation, how do babies learn to
use this device? How are words learned and pro-
jected, presumably from the hippocampus, where
they are associated with world objects and episodes,
to the LEX in the medial temporal lobe? And how
is each of them attached to the correct system of
interneurons that are capable of changing the in-
hibited/disinhibited status of fibers and possibly of
brain areas?
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8 Appendix

Here we give the full proof of our main theoretical
result:

Theorem: weak-FBA—=FBA—=CFL.

Note: We say a symbol on the tape is “marked’
whenever its type is some ¢ € K.

Lemma: For any strong-FBA, there exists a strong-
FBA recognizing the same language that is deter-
ministic whenever the input symbol is marked s
(that is, for every state and symbol pair ¢, c, there
is at most one rule ((«, s, q), (¢/,s)) € A.

Proof: this is shown using essentially the same
reduction from non-deterministic to deterministic
finite state automata (FSA), since when at a seen
symbol, the FBA cannot mark or fallback and is
hence in a FSA-like regime. Concretely, if K is the
original state set, the state set of the new FBA is
2K A contains the same rules when the input is
in state f or is marked (we represent states of the
original FBA with the singleton of that state in 27)—
whenever the input is in state s, it transitions to the
e-closure of the subset represented by the state (i.e.,
(a,8,5) — (S5',s) iff S is the set of all states
that can be reached from a state of S on symbol «,
before or after any epsilon transitions). Addition-
ally, whenever the FBA reads symbol marked with
anything other than s, or reaches the end of the
tape, if the current state-set .S is a non-singleton,
it non-deterministically transitions to the single-
ton of any ¢ € S (thereby returning to a “regular”

state of FBA, and moving all the non-determinism
away from s symbols). The new FBA is determin-
stic on s-inputs and recognizes the same language:
any transition through a sequence of s-states cor-
responds to a specific non-deterministic transition
to a single state from the final state-set at the first
non—s symbol. [

The main technical result is showing that a push-
down automaton (PDA) can simulate a strong-
FBA, i.e., that strong-FBA C CFL.

Proof of theorem: By the lemma, without loss
of generality we can assume that the strong-FBA
is deterministic when the input has type s. Let
K = {qi,...,q} be the state set of the strong-
FBA. The PDA will have state set K, and stack
alphabet X x K x K K1, that is, tuples of a symbol, a
state, and state vectors. We define the “s-transition
on «" of a state ¢ to mean the (deterministic) FBA
transition rule with left-side («, s, q).

The PDA simulates the execution of the strong-
FBA. When in state ¢’ and on fresh tape symbol «,
the PDA will:

1) Non-deterministically select a rule with left
side («, f,q’) on the left-hand side. Let (¢, o) be
the right-hand side. Thatis, o € {s, v, +}.

2) Update the state to q.

3) If the stack is non-empty, pop the top element
(8,p, (r1,...,7)) from the stack. For each vector
coordinate ¢ € [t], apply the s-transition on « to
each r;— push the updated tuple (53, p, (r],...,7}))
back to the stack.

4)if o = v, push (a,q,(q1,-..
stack.

5) if 0 =<, the corresponding PDA transition
does nothing else, but enters the following loop:

5.1) Pop the top element (3, p, (r1,...,7¢)) of
the stack and sample a rule of the FBA that transi-
tions on the marked symbol, that is, a rule of the
form (8,p,q) — (¢',0). Note that o € {s,+}.
If the stack is non-empty, pop the next element,
(v,w, (u1,...,u)) and “apply” (r1,...,7¢) to the
state vector— that is, for each i € [t], if u; = gj,
replace u; with u := r;. Push the resulting pair
(7, w, (u), ..., u;)) back onto the stack.

5.2) if 0 =< (which we call a “fallback-again"
rule of the FBA), the PDA updates the state to ¢/,
and returns to the beginning of 5.1). If 0 = s
(which we call a non-“fallback-again" rule), the
PDA updates the state to r; (that is, the ¢-th co-
ordinate in the stack-vector from 5.1), where ¢ is
the index of ¢/, i.e. ¢ = ¢;. Because the FBA

,qt)) to the
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can have “fallback-again" rules, the PDA can re-
peat 5.1 multiple times, and stops when it selects a
non-‘“fallback-again" rule (or rejects).

For any execution of the PDA, it will have |z| 4+
F' + M transitions, or steps, where x is the input,
F'is the number of times the PDA repeated step 5.1
(i.e. executed a “fallback-again" rule of 5.2), and
M is the number of times it ends the loop of 5), i.e.
selects a non-“fallback-again" rule. Each step 7 will
correspond to a “strong"-step of an equivalent FBA
execution, which is a transition where the input
symbol has type not equal to s (in other words, a
step where the FBA either processes a fresh symbol,
or falls back to a marked symbol).

Claim: There is a one-to-one correspondence be-
tween executions of the FBA on x with executions
of the PDA on z, such that, for each such pair, the
PDA simulation maintains the following invariant
at each step ¢ with respect to the FBA:

a) the PDA state after the i-th step is equal to the
FBA state immediately before the ¢ + 1-th strong
step (or the final state, if ¢ = |z|), and the position
of the PDA head is equal to the position of the last
f-symbol seen by the FBA.

b) the PDA stack has [ elements, where [ is the
number of marked symbols after the i-th strong-
step of the FBA, and

¢) the k-th stack element consists of the k-th
marked symbol and type in the FBA execution,
and a vector that contains for each state ¢;, the
execution of s-transitions starting from the symbol
immediately after the k-th marked symbol, up to
and including either the (k + 1)-th marked symbol,
or the head, whichever comes first.

Note that if the claim is true, by part a) of the
invariant, the final state of the PDA is an accept
state iff the equivalent FBA execution accepts x, so
the theorem is proved.

We prove the claim recursively. It is trivially
true at the beginning. Now, assume that after ¢ —
1 steps of execution, the FBA corresponds to an
execution of ¢ — 1 strong-steps of the PDA, and that
the invariant is true.

At step 7, we consider all possible strong-steps
of the FBA.

First, for any rule of the type
(e, £,4)),(q,8)) € A: by a) of the invari-
ant the FBA and PDA must both be scanning a new
symbol « and are in state ¢’. The PDA simulation
can sample this rule by step 1), which results in
updating the state ¢’ to ¢, satisfying a). Since no

marked symbols were added or removed by this
kind of FBA transition, b) is trivially satisfied.
Finally, 2) updates the top state vector on the stack
with the s-transitions on a— since it previously
represented the s-transitions from the most recent
marked symbol to the previous tape symbol, it now
represents an execution up to and including the
current symbol, that is, ¢) is maintained.

For any rule of the type ((«, f,4¢'), (g, m)) € A:
similarly, the PDA simulation can select this rule
in 1), updating the state to ¢’, giving a). The
number of marked symbols in the FBA execution
changes if this rule were applied, so invariants b)
and c¢) must be checked. By step 3), we push
(o, q,(q1,-..,qt)) to the stack, immediately sat-
isfying b). Note that the penultimate element of
the stack is now “frozen", showing an execution of
s-transitions from the previous marked-symbol up
to and including «, the new marked symbol. The
vector of the top element of the stack, (q1, ..., q),
trivially represents an execution of every state from
the new marked symbol to the head (since it is
empty). Hence c) is satisfied.

For any rule of the type ((a, f,q'), (¢,4)) € A:
again both the PDA and FBA are at a fresh tape
symbol, but after this step, the FBA head will be
at the previously marked symbol. By step 1) the
PDA can sample this rule, updating the state to g,
which satisfies a). Note that b) and c) are trivially
satisfied.

Next for any strong rule of the type
((B,p,4),(q,+)), the FBA head must be at
a marked symbol, and immediately before the
next strong step, it will be at the previous marked
symbol in state ¢. Indeed, the FBA can sample this
rule in 5.1, updates state to g satisfying a), pops
the top stack vector satisfying b), and as for c), the
PDA “applies” the state vector of the popped tuple,
(r1,...,7¢), to the next state vector on the stack,
(v,w, (u1,...,u)). If u; is the s-transition of ¢;
from the symbol after y up to and including 3 (this
is guaranteed by the invariant) and u; = g;, then
r; 1s exactly the s-transition of ¢; from the symbol
after 8 up to and including the head, ensuring c).

Finally if the rule is of the type ((5,p,q'), (g, $),
the FBA head must be at a marked symbol, and
immediately before the next strong step it passes
through every s-symbol between the marked symbol
and the fresh symbol. The corresponding PDA tran-
sition satisfies b) and c) as in the previous case (a
marked symbol is removed and the other vectors in



the stack are updated), but this time, we also update
the current state based on the popped vector; since,
by b), it contained the s-transition of each state
from the marked symbol to the head, it correctly
yields the state of the FBA before the next fresh
symbol.



