
Learning Knowledge with Neural DTS

Daisuke Bekki and Ribeka Tanaka and Yuta Takahashi
Ochanomizu University

{bekki|tanaka.ribeka|takahashi.yuta}@is.ocha.ac.jp

Abstract

Neural DTS is a framework that combines logic
and machine learning by fusing dependent type
semantics (DTS) and deep neural networks. In
this paper, we propose a learning algorithm for
Neural DTS, in which a collection of semantic
representations of DTS is obtained from text
through syntactic parsing and semantic compo-
sition, and the collection of positive predicates
is generated through the deduction of DTS. We
will also discuss the advantages of this method
and the challenges it shall face.

1 Introduction

In the field of natural language understanding
(NLU), type-logical semantics and neural language
processing exhibit complementary benefits: The
former has advantages in the systemic prediction
of complex linguistic phenomena such as negation,
conditional, quantification, anaphora, presupposi-
tion, and modality as they appear in various syn-
tactic structures including embeddings, while the
latter has a wide range of applications including
similarity calculations, summarization, translation,
dialogue processing, and even multimodal infer-
ence, as well as being robust and able to quickly
process real texts. In recent years, hybrid methods
that utilizes both of the techniques have been ex-
plored in neighboring fields of NLU, and methods
adopted in previous studies can be roughly classi-
fied as follows:

1. Emulating symbolic reasoning by embedding
into neural networks:

• knowledge graphs (Guu et al., 2015)(Das
et al., 2017)(Takahashi et al., 2018)

• SAT problems (Selsam et al., 2019)
• first-order logic (FoL) (Demeester et al.,

2016)(Šourek et al., 2018)

2. Introducing a similarity measure between
symbols by using distributional representa-

tions instead of symbols (Lewis and Steed-
man, 2013)(Rocktäschel and Riedel, 2017).

3. Controlling the direction of proof search
guided by neural networks (Wang et al.,
2017).

One method that differs from these approaches
is Neural DTS (Bekki et al., 2021). Compared with
previous studies, Neural DTS is unique in its use of
DTS (Bekki and Mineshima, 2017), a higher-order
type-logical semantic framework. Since DTS is
based on Martin-Löf type theory (MLTT; Martin-
Löf (1984)), a framework for intuitionistic math-
ematics, it allows for the construction of the real
numbers necessary for developping deep neural net-
works.1 Neural DTS replaces all of the predicates
of DTS with neural classifiers, which provide the
soft symbols that are required for soft reasoning.
Nevertheless, the entire system is still within the
framework of MLTT, and all of the components of
the neural networks, such as loss functions, have
proof terms.

In this paper, we propose a learning algorithm for
Neural DTS that fits the parameters for the names
and predicates of Neural DTS to the data generated
by the proof system of DTS from the propositions
obtained from the real texts. Using this algorithm,
we investigate the claim of Bekki et al. (2021) that
the symbols (names and predicates) of Neural DTS
are learnable, one of the criteria for soft reasoning
systems.

1.1 Dependent Type Semantics (DTS)
DTS is a framework for the proof-theoretic se-
mantics of natural language. Unlike similar proof-
theoretic attempts2, DTS takes a verificationist ap-
proach, in which the meaning of a proposition in a
given context is a collection of proofs of that propo-
sition in that context. This position shows sharp

1See Appendix A.4 for details.
2cf. Francez and Dyckhoff (2010); Francez (2014).

contrasts to most of the standard model-theoretic se-
mantics, but it provides a more fine-grained notion
of meaning than the model-theoretic approaches in
the following sense.

1. In model-theoretic semantics, all tautologies
have the same meaning (i.e., the set consisting
of all models), but in DTS, tautologies with
different proofs have different meanings. The
same is true for contradictions.

2. There are pairs of sentences that are indistin-
guishable in their truth conditions but which
have different anaphoric potentials. For exam-
ple (cf. Kamp et al. (2011)):

(1) a. Some student did not show up.
They must have overslept.

b. Not every student showed up.
*They must have overslept.

To explain this contrast, DRT uses an ex-
tra layer called Discourse Representation
Structure (DRS), where the difference in the
anaphoric potential is explained via the notion
of accessibility defined on DRS. In DTS, on
the other hand, the difference is explained by
the constructivity of the proofs, without intro-
ducing another layer to the semantic theory
(Bekki, 2014). It has been pointed out that
the extra-representational layer in DRT com-
plicates the compositionality problem (Yana
et al., 2019), while compositionality is pre-
served in DTS.

With these features, DTS opens up the analy-
ses of many linguistic phenomena, some of which
were previously unexplained by model-theoretic
semantics, based on a proof-theoretic perspective
where one can refer to a proof as an object.3 There
have also been studies on implementations of type
checking (Bekki and Sato, 2015) and proof search
(Daido and Bekki, 2020) in DTS, with the goal of
developing a research program in which the predic-
tions of formal semantics can be verified through
implementation.

To supplement the DTS specifications that are
relevant to the main purpose of this paper, first,

3For recent developments regarding the semantic analyses
in DTS, see the discussions on the overwriting problem (Yana
et al., 2019), generalized quantifiers (Tanaka, 2021), proviso
problems (Yana et al., 2021), and weak crossover (Bekki,
2021).

the enumeration type4 entity plays the role of type
e in the standard semantics. Second, the role of
type t (or type prop) in the standard semantics is
played by the type type (namely, propositions, un-
der the Curry-Howard isomorphism between types
and propositions). Consequently, an n-place predi-
cate has a type entityn → type. For example, dog
is a unary predicate with type entity → type and
the name john has type entity. The dog(john)
has type type, which is a collection of proofs that
John is a dog. The truth condition in DTS tells us
that dog(john) is true if and only if it is inhabited
by at least one proof.

From the perspective of fusing symbolic and soft
reasoning, however, this kind of specification by
DTS shares a crucial property with the standard se-
mantics, despite the differences between type e and
type entity, and type t and type type: the symbols
in DTS are neither comparable nor learnable when
compared with the distributional representations
that are often found in neural networks, which have
become a trend in recent neural language process-
ing technology. These properties are often consid-
ered to be shortcomings of symbolic reasoning but
the advantages of soft reasoning.

1.2 Neural DTS
Bekki et al. (2021) proposed Neural DTS as a
framework for combining DTS with some aspects
of soft reasoning. Neural DTS is obtained by re-
placing n-place predicates in DTS (that is, con-
stant symbols of type entityn → type) with neu-
ral classifiers, which are also DTS terms of type
entityn → type. Since the descriptive power of
DTS allows for the construction of real numbers
and real functions (or complex numbers and com-
plex functions, if necessary) internally through the
notion of setoids5, it also allows for the implemen-
tation of neural networks and neural classifiers in
the following way.

Consider DTS with a given signature where:

1. the type entity has n-introduction rules
(namely, entity has the form {a1, . . . , an}).

2. there are k-many unary predicates P1, . . . , Pk,
each of which is of type entity → type.

Let ENT be a setoid (entity,=entity), and let
onehot be a setoid function from ENT to Rn

4See Appendix A.2 for the definition of the enumeration
type.

5See Appendix A.3 for the definition of setoid in DTS.

Γ, pemb_ent ∈ Rn×m, pemb_pred ∈ Rk×l, phidden ∈ R(m+l)×o, pout ∈ Ro×1

⊢ pred(ai, j)
def
≡ sigmoid(Wout(sigmoid(Whidden(Wemb_ent(onehot(ai))⊕Wemb_pred(ej))))) ∈ R

Figure 1: Neural predicate in DTS

Γ, pemb_ent ∈ Rn×m, pemb_pred ∈ Rk×l, phidden ∈ R(m+l)×o, pout ∈ Ro×1

⊢ λx.pred(x, j) ≥ threshold : entity → type

Figure 2: Neural classifier in DTS

that maps each entity (namely, each element ai of
{a1, . . . , an}) to the i-th element in the standard ba-
sis e1, . . . , en of an n-dimensional real vector space
(defined as a product setoid). Additionally, let W
be a linear setoid function from Rn to Rm that
maps e1, . . . , en to their respective embeddings in
an m-dimensional real vector space.

Next, let assume the following parameters:

pemb_ent ∈ Rn×m

pemb_pred ∈ Rk×l

phidden ∈ R(m+l)×o

pout ∈ Ro×1

by which we define the following matrices as linear
setoid functions:6

Wemb_ent ∈ Rn → Rm

Wemb_pred ∈ Rk → Rl

Whidden ∈ R(m+l) → Ro

Wout ∈ Ro → R

Non-linear functions such as sigmoid ∈ R → R
can also be defined as setoid functions. By com-
bining these components, a simple neural predicate
with only one hidden layer can be defined as in
Figure 17. Note that neural predicates with more

6From the theoretical point of view, it is worth not-
ing that all of these are defined within the framework of
MLTT. However, from the perspective of implementation,
we may simply import an off-the-shelf deep learning library
such as pytorch (https://pytorch.org/) or tensorflow
(https://www.tensorflow.org/), and use arrays in-
stead of product setoids. In other words, we don’t have to
implement setoids on top of the implementation of the DTS’s
type system.

7sigmoid is a sigmoid function defined as a setoid function.
The one applied to the hidden layer is broadcasted to Ro. The
⊕ operator is the vector concatenation.

complicated structures such as RNNs and Trans-
formers, are also definable in the same manner as
the setoid functions in DTS.

Let us call this setoid function pred(ai, j),
where ai is an entity and j indicates that this is the
j-th unary predicate (1 ≤ j ≤ k) in the signature.
Suppose that threshold is a real number hyperpa-
rameter between 0 and 1. Then the inequality be-
tween pred(ai, j) and threshold is a DTS relation.
Thus, a neural classifier of type entity → type
obtained, as in Figure 2. Since entity → type is
a type for one-place predicates in DTS, we may
safely replace it with a corresponding neural classi-
fier. It is straightforward to implement n-ary classi-
fiers in a similar manner.

2 Learning Algorithm for Neural DTS

The next step for Neural DTS, which is absent in
previous work, is to fit the parameters to data. The
main contribution of this paper is to propose such
an algorithm. We consider a setting where knowl-
edge is given via real texts with credible content,
and where “true” (or grounded) propositions can be
extracted from the syntactic-semantic theory of nat-
ural language (this will be done in practice by CCG
parsers). The algorithm optimizes the parameters
in Neural DTS to make this set of propositions true.
DTS is the best framework candidate since it has
a proof theory (unlike most of the model-theoretic
semantics) that enables this kind of proposition ex-
traction, which has already been implemented, as in
Bekki and Sato (2015) and Daido and Bekki (2020).
The learning algorithm is described as follows.

2.1 Preprocessing

First, we prepare a collection of texts (TXTd)d∈D
whose contents we assume to be correct. This will

be used as the training data for Neural DTS. Also,
let each

pe ∈ R(n×m)+(k×l)+((m+l)×o)+(o×1)

be the parameter of the neural network at epoch e.

1. Perform syntactic analysis on each
(TXTd)d∈D by using CCG parser. Let
(SYNd)d∈D be the resulting (1-best) syntactic
structures.

2. Perform semantic composition on each
(SYNd)d∈D. Taking DTS to be the semantic
theory, it is ensured that a syntactic structure
will yield a well-formed semantic representa-
tion via syntax-semantics transparency. Let
(SEMd)d∈D be the resulting DTS representa-
tions, where each SEMd is a type that contains
the parameter p1 (the initial parameter) as a
free variable.

2.2 Training Loop
Let e be the epoch. Loop the following steps, start-
ing from e = 1.

1. Obtain a collection of positive predicates
(pred(a, j))(a,j)∈T+ , where T+ is a subset of
entity × {1, . . . , k}, each of which being de-
duced from one of the (SEMd)d∈D by using
only the elimination rules (such as (ΠE) and
(ΣE)).

2. Prepare a collection of negative predicates
(pred(a, j))(a,j)∈T− , where T− is a randomly
selected subset of (entity×{1, . . . , k})−T+

such that |T−| = |T+|.

3. The loss function losse is a setoid function
defined for each epoch e as follows:

losse
def
≡

∑
(a,j)∈T+

|1− pred(a, j)|2

+
∑

(a,j)∈T−

|0− pred(a, j)|2

losse is minimized when each of
(pred(a, j))(a,j)∈T+ is 1 and each of
(pred(a, j))(a,j)∈T− is 0.

Notice that losse contains a free variable pe.
We need to show that Γ ⊢ λpe.losse ∈ R is a
differentiable function, which is a repetition
of the standard argument in analysis but in
terms of setoids.

4. Update the parameters. Stop the loop if losse
falls below a certain threshold; or if e reaches
a certain value. Otherwise set e = e+ 1 and
go to the step 1.

We refer to this set of procedures as one round.

The reason for using only the elimination rules
in step 1 is that it is computationally faster, in the
sense that substitution does not arise in the premise
part of the elimination rules. At the same time, how-
ever, this restricts the deduction power of DTS at
the minimum level. Looser restrictions with greater
computational burden should also be investigated.

Note that in this algorithm, the value of the loss
function is not guaranteed to converge since the
logical deduction of DTS is used in the training
loop to generate the training data for each epoch.
This feature of the algorithm is a drawback from an
engineering viewpoint, but from a cognitive view-
point, it may reflect the process of how humans
learn knowledge, where our beliefs do not always
converge by the increase of knowledge. Also, this
algorithm proposes a particular method for the in-
teraction of logical deduction and machine learning
at the level of the training loop. These are left as
topics for further study.

2.3 Evaluation Methods
One way to evaluate this learning algorithm is to
check its soundness and completeness: the direct
computation is compared with the training set. In
this case, precision corresponds to soundness and
recall to completeness.

Next, for the embedding of predicates, we would
evaluate whether empirically similar predicates
have similar embeddings on the Neural DTS. This
would follow the standard methods, where mea-
sures like 5best, 1best, among others, are valid.

3 Discussion

The advantage of Neural DTS over other repre-
sentation learning methods using DNN is that it
is sensitive to polarities such as negation and con-
ditional clauses in the text. For example, when
the proposition A is included in the scope of the
negation in one of (SEMd)d∈D, as in the example
below, it is not added to the training data since A
is not deduced from ¬(A×B).

¬(A×B) ̸⊢ A

Also, A is not added to the training data when it
is included in the antecedent part of the conditional

sentence, as in the example below, since A is not
deduced from A → B.

A → B ̸⊢ A

In other words, due to the soundness of the log-
ical deduction, once the mapping from text to se-
mantic representation is performed, the set of pos-
itive predicates obtained from it by deduction is
guaranteed to be correct, as long as the text is cor-
rect. This is a major advantage of having a logic
system like DTS at the core of the knowledge learn-
ing system.

On the other hand, the reliability of the train-
ing data is sensitive to the validity of the syntactic
theory that generates the semantic representations
in DTS; here, the CCG parser and the lexicon do
the job. Given that the accuracy of off-the-shelf
CCG parsers is not yet sufficient, one might rather
consider methods that use only dependency parsers
more prospective, or even an end-to-end neural
system that does not assume the division of labor
among these modules from the beginning, that is, a
language model such as an RNN or a transformer
whose final layer is trained as classifier for pred-
icates. These approaches may seem more robust
for some researchers, but less precise for the rest
of the researchers. Comparing these approaches is
methodologically difficult since they are based on
different views on language faculty.

However, using the CCG parser and the ap-
proach of making lexical semantics more precise
is the study of formal syntax and of formal seman-
tics itself. In other words, in this enterprise, the
improvement of the formal syntax and the formal
semantics is directly related to the improvement of
the lexical semantics and the cognitive capacity.

4 Conclusions and Future Work

This paper proposed a learning algorithm for Neu-
ral DTS for acquiring knowledge representations
from text, and discussed its features, expected ad-
vantages, and difficulties.

The next step is to implement, experiment with,
and evaluate this algorithm. Some difficulties are
expected to be caused by errors in the syntactic
parsing, by ambiguity of predicate symbols, and by
the problem of entity size (namely, the number of
entities forming the enumeration type).

Moreover, many of the philosophical issues
raised in Bekki et al. (2021) are left open. For
example, unlike DTS, all predicates have canonical

proofs in Neural DTS, the implication of which is
still an open question.

We would like to leave these issues, both com-
putational and philosophical, for future discussion.

Acknowledgments We sincerely thank the
anonymous reviewers of NALOMA22 for their
comments. This work was partially supported by
the Japan Science and Technology Agency (JST),
CREST Grant Number JPMJCR20D2.22.

Appendix

A Dependent Type Theory (DTT)

A.1 Syntax

Definition A.1 (Alphabet) An alphabet is a pair
(Var, Con) where Var is a collection of variables
and Con is a collection of constant symbols.

Definition A.2 (Preterms) The collection of
preterms of DTT (notation Λ) under an alphabet
(Var, Con) is defined by the following BNF
grammar, where x ∈ Var and c ∈ Con.
Λ := x | c | type
| (x : Λ) → Λ | λx.Λ | ΛΛ
| (x : Λ)× Λ | (Λ,Λ) | π1(Λ) | π2(Λ)
| Λ⊕ Λ | ι1(Λ) | ι2(Λ) | unpackL (M,N)
| {a1, . . . , an} | a1 | . . . | an | caseΛ

Λ (Λ, . . . ,Λ)

| Λ =Λ Λ | reflΛ(Λ) | idpeelΛΛ (Λ)

| N | 0 | s(Λ) | natrecΛΛ(Λ,Λ)
Free variables, substitutions, β-reductions are de-

fined in the standard way. The full version of DTT
also employs well-ordered types and universes, as
adopted in Martin-Löf (1984), the detail of which I
omit here for the sake of space.

Definition A.3 (Vertical/Box notation)[
x : A
B

]
def
≡ (x : A)×B

Definition A.4 (Logical operators) 8

A → B
def
≡ (x : A) → B where x /∈ fv(B).[

A
B

]
def
≡

[
x : A
B

]
where x /∈ fv(B).

⊥
def
≡ {}

¬A
def
≡ A → ⊥

8⊥ is defined as an empty enumeration type.

A.2 Type System

Definition A.5 (Signature) A collection of signa-
tures (notation σ) for an alphabet (Var, Con) is
defined by the following BNF grammar:

σ ::= () | σ, c : A

where () is an empty signature, c ∈ Con and ⊢σ

A : type.

Definition A.6 (Context) A collection of contexts
under a signature σ (notation Γ) is defined by the
following BNF grammar:

Γ ::= () | Γ, x : A

where () is an empty context, x ∈ Var and Γ ⊢σ

type.

Definition A.7 (Judgment) A judgment of DTT is
the following form

Γ ⊢σ M : A

where Γ is a context under a signature σ and M
and A are preterms, which states that there exists
a proof diagram of DTT from the context Γ to the
type assignment M : A. The subscript σ may be
omitted when no confusion arises.

Definition A.8 (Truth) The judgment of the form
Γ ⊢ A true states that there exists a term M that
satisfies Γ ⊢ M : A.

Definition A.9 (Structural Rules)
A : type
x : A

(V AR)

c : A
(CON)

where σ ⊢ c : A.

type : kind
(typeF)

M : A N : B
M : A

(WK)

M : A
M : B

(CONV)
where A =β B.

Definition A.10 (Π-types)

A : s1

x : A
i

....
B : s2

(x : A) → B : s2
(ΠF),i

where (s1, s2) ∈
{

(type, type),
(type, kind)

}
.

A : type

x : A
i

....
M : B

λx.M : (x : A) → B
(ΠI),i

M : (x : A) → B N : A

MN : B[N/x]
(ΠE)

Definition A.11 (Σ-types)

A : type

x : A
i

....
B : type

(x : A)×B : type
(ΣF),i

M : A N : B[M/x]

(M,N) : (x : A)×B
(ΣI)

M : (x : A)×B

π1(M) : A
(ΣE)

M : (x : A)×B

π2(M) : B[π1(M)/x]
(ΣE)

Definition A.12 (Disjoint Union Types)
A : type B : type

A ⊎B : type
(⊎F)

M : A
ι1(M) : A ⊎B

(⊎I)

N : B
ι2(N) : A ⊎B

(⊎I)

L : A ⊎B
P : (A ⊎B) → type
M : (x : A) → P (ι1(x))
N : (x : B) → P (ι2(x))

unpackPL (M,N) : P (L)
(⊎E),i

Definition A.13 (Enumeration Types)

{a1, . . . , an} : type
({}F)

ai : {a1, . . . , an}
({}I)

M : {a1, . . . , an}
P : {a1, . . . , an} → type
N1 : P (a1)
. . .
Nn : P (an)

caseP
M (N1, . . . , Nn) : P (M)

({}E)

Definition A.14 (Intensional Equality Types)
A : type M : A N : A

M =A N : type
(=F)

M : A
reflA(M) : M =A M

(=I)

E : M =A N
P : (x : A) → (y : A) → (x =A y) → type
R : (x : A) → Pxx(reflA(x))

idpeelPE (R) : PMNE
(=E)

Definition A.15 (Natural Number Types)

N : type
(NF)

0 : N
(NI) n : N

s(n) : N
(NI)

n : N
P : N → type
e : P (0)
f : (k : N) → P (k) → P (s(k))

natrecPn (e, f) : P (n)
(NE)

A.3 Setoids

Definition A.16 A setoid is a pair (X,∼X) con-
sisting of a type X and an equivalence relation ∼X

on X .

Definition A.16 can be rewritten in the form of the
formation rule as follows.

Definition A.17 (Setoid formation)

X : type
∼X : X ×X → type
equiv(∼X) true

(X,∼X) setoid

Definition A.18 (Setoid membership)
(X,∼X) setoid x : X

x ∈ (X,∼X)

Definition A.19 (Setoid function) A setoid func-
tion f from a setoid X to a setoid Y is a pair
(f, extf) consisting of a function f : X → Y and
a proof term extf that proves the extensionality of
f :

extf : (x, y : X) → (x ∼X y) → (fx ∼Y fy)

Definition A.20 (Exponential of setoids) The ex-
ponential of setoids X ≡ (X,∼X) and Y ≡

(Y ,∼Y) is (X → Y ,∼E) (notation: X → Y),
where X → Y is a type defined as:

X → Y
def
≡

(
f : X → Y

)
× (x, y : X) →

(x∼Xy) → (fx∼Y fy)

and ∼E is a binary relation defined as:

(f, _) ∼E (g, _)
def
≡ (x : X) → fx ∼Y gx

A function application operator ev is defined for
each domain-codomain pair of setoids.

(f, _) ∈ X → Y a ∈ X

evX,Y ((f, _), a)
def
≡ fa ∈ Y

Definition A.21 (Product of setoids) The prod-
uct of setoids X ≡ (X,∼X) and Y ≡ (Y ,∼Y) is
the pair (X × Y ,∼P) (notation: X × Y), where
X × Y is a type defined as:

X × Y
def
≡ X × Y

and ∼P is a binary relation defined as:

(x, y) ∼P (u, v)
def
≡ (x ∼X u)× (y ∼Y v)

Projections work as expected.
p ∈ X × Y

π1(p) ∈ X

p ∈ X × Y

π2(p) ∈ Y

Definition A.22 (Relation on setoids) A binary
relation R between setoids X and Y is a pair
(R, extR) consisting of a binary relation R such
that x : X, y : Y ⊢ R(x, y) : type together with a
proof term extR that proves the extensionality of
R:

extR :
(
x, x′ : X

)
→

(
y, y′ : Y

)
→

x∼Xx′ → y∼Y y
′ → Rxy → Rx′y′

Definition A.23 (Quotient setoids) Let X ≡
(X,∼X) be a setoid and ∼ be a binary relation
on X such that x : X, y : X ⊢ x ∼ y : type.
If ∼ is an equivalence relation on X , we define a
quotient setoid X/ ∼ as:

X/ ∼
def
≡ (X,∼)

with a setoid function q : X → X/∼ defined by
identity function on X and its extensionality.

Remark A.24 By the extensionality of the relation,
the following holds for any x, y ∈ X:

x ∼X y → x ∼ y

Thus the equivalence relation ∼X is finer than ∼
on the type X .

Definition A.25 (Subsetoids) Let X be a setoid.
A subsetoid of X is a pair (∂S, iS), where ∂S is
a setoid and iS : ∂S → X is an injective setoid
function.

Definition A.26 (Subsetoid membership) Let X
be a setoid. An element a ∈ X is a member of the
subsetoid S of X if there exists an element s : ∂S
such that a ∼X i(s), namely:

a ∈X (∂S, iS)
def
≡ (s : ∂S)× (a ∼X iS(s))

Note that a ∈X (∂S, iS) is a type. If A and B
are subsetoids of X , then

A ⊆X B
def
≡ (x : X) → x ∈X A → x ∈X B

Definition A.27 (Separation of subsets) Let
X = (X,∼X) be a setoid and A a type. A subset{

x ∈ X A
}

of X is defined as:{
x ∈ X A

} def
≡ (((x : X)×A,∼S) , i)

where (x, _) ∼S (y, _)
def
≡ x ∼X y

i(x, _)
def
≡ x

A.4 Setoids of Natural Numbers, Integers,
Rationals, and Reals

Definition A.28 The setoid of natural numbers N
is obtained by embedding the natural number type
N with its intensional equality.

N
def
≡ (N,=N)

Definition A.29 The setoid of integers Z is defined
as:

Z
def
≡ (N× N)/ ∼Z

where ∼Z is defined as (m,n) ∼Z (p, q)
def
≡ m +

q =N p+ n.

Definition A.30 The setoid of rational numbers Q
is defined as:9

Q
def
≡ (Z×

{
z ∈ Z ¬(z ∼Z 0Z)

}
)/ ∼Q

where ∼Q is defined as

(a, (b, _)) ∼Q (c, (d, _))
def
≡ a · d =∼Z c · b

Definition A.31 (Cauchy sequence)
Cauchy(seq) is a proposition that a sequence
seq ∈ N → Q is a Cauchy sequence, defined as
follows:10

Cauchy(seq)
def
≡

(i : N) → (i ̸= 0) → (k : N)×
(j1, j2 : N) → (j1 > k) → (j2 > k)

→ |(seq(j1))− (seq(j2))| <
1

asRational∗(i)

Definition A.32 The setoid of real numbers R is
defined as:

R
def
≡

{
seq ∈ N → Q Cauchy(seq)

}
/ ∼R

where ∼R is defined as:

s1 ∼R s2
def
≡

(i : N) → (i ̸= 0) → (k : N)× (j : N) → (j > k)

→ |π1(s1)(j)− π1(s2)(j)| <
1

asRational∗(i)

90Z is defined as (0, 0) : Z.
10The function asRational∗ is defined as a compostion:

asRational∗
def
≡ asRational ◦ asInteger : N → Q

where each casting function is defined as follows:

asInteger
def
≡ λn.(n, 0) : N → Z

asRational
def
≡ λz.(z, 1Z) : Z → Q

References
Daisuke Bekki. 2014. Representing anaphora with de-

pendent types. In Logical Aspects of Computational
Linguistics (8th international conference, LACL2014,
Toulouse, France, June 2014 Proceedings), LNCS
8535, pages 14–29. Springer, Heiderburg.

Daisuke Bekki. 2021. Proof-theoretic analysis of weak
crossover. In Logic and Engineering of Natural Lan-
guage Semantics 18 (LENLS18), pages 75–88.

Daisuke Bekki and Koji Mineshima. 2017. Context-
passing and Underspecification in Dependent Type
Semantics, Studies of Linguistics and Philosophy,
pages 11–41. Springer.

Daisuke Bekki and Miho Sato. 2015. Calculating pro-
jections via type checking. In TYpe Theory and LEx-
ical Semantics (TYTLES), ESSLLI2015 workshop.

Daisuke Bekki, Ribeka Tanaka, and Yuta Takahashi.
2021. Integrating deep neural network with depen-
dent type semantics. In the Symposium Logic and
Algorithms in Computational Linguistics 2021 (LA-
CompLing2021), page p.37. Stockholm University,
2021, DiVA Portal for Digital Publications.

Hinari Daido and Daisuke Bekki. 2020. Development
of an automated theorem prover for the fragment of
dts. In the 17th International Workshop on Logic
and Engineering of Natural Language Semantics
(LENLS17).

Rajarshi Das, Arvind Neelakantan, David Belanger, and
Andrew McCallum. 2017. Chains of reasoning over
entities, relations, and text using recurrent neural net-
works. Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Volume 1, Long Papers, pages
132–141. Association for Computational Linguistics.

Thomas Demeester, Tim Rocktäschel, and Sebastian
Riedel. 2016. Lifted rule injection for relation em-
beddings. Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing,
pages 1389–1399. Association for Computational
Linguistics.

Nissim Francez. 2014. The Granularity of Meaning in
Proof-Theoretic Semantics, pages 96–106. Springer,
Toulouse.

Nissim Francez and Roy Dyckhoff. 2010. Proof-
theoretic semantics for a natural language fragment.
Linguistics and Philosophy, 33(6):447–477.

Kelvin Guu, John Miller, and Percy Liang. 2015.
Traversing knowledge graphs in vector space. Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 318–327.
Association for Computational Linguistics.

Hans Kamp, J. van Genabith, and Uwe Reyle. 2011.
Discourse Representation Theory, volume 15, pages
125–394. Springer, Doredrecht.

Mike Lewis and Mark Steedman. 2013. Combined
distributional and logical semantics. Transactions of
the Association for Computational Linguistics, 1:179–
192.

Per Martin-Löf. 1984. Intuitionistic Type Theory, vol-
ume 17. Italy: Bibliopolis, Naples.

Tim Rocktäschel and Sebastian Riedel. 2017. End-to-
end differentiable proving. In the 31st International
Conference on Neural Information Processing Sys-
tems. Curran Associates, Inc.

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy
Liang, Leonardo de Moura, and David L. Dill. 2019.
Learning a SAT solver from single-bit supervision.
In ICLR (Poster).

Ryo Takahashi, Ran Tian, and Kentaro Inui. 2018. Inter-
pretable and compositional relation learning by joint
training with an autoencoder. Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2148–2159. Association for Computational Linguis-
tics.

Ribeka Tanaka. 2021. Natural Language Quantification
and Dependent Types. Doctoral dissertation.

Gustav Šourek, Vojtěch Aschenbrenner, Filip Železný,
Steven Schockaert, and Ondřej Kuželka. 2018. Lifted
relational neural networks: efficient learning of latent
relational structures. J. Artif. Int. Res., 62(1):69–100.

Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng.
2017. Premise selection for theorem proving by deep
graph embedding. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing
Systems, pages 2783–2793. Curran Associates Inc.

Yukiko Yana, Koji Mineshima, and Daisuke Bekki.
2019. Variable handling and compositionality: Com-
paring drt and dts. Journal of Logic, Language and
Information, 28(2):261–285.

Yukiko Yana, Koji Mineshima, and Daisuke Bekki.
2021. The proviso problem from a proof-theoretic
perspective. In Logical Aspects of Computational
Linguistics (LACL) 2021, pages 159–176.

