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Abstract

This tutorial targets researchers and practition-
ers who are interested in Al and ML technolo-
gies for structural information extraction (IE)
from unstructured textual sources. In particu-
lar, this tutorial will provide audience with a
systematic introduction to recent advances in
IE, by addressing several important research
questions. These questions include (i) how
to develop a robust IE system from a small
amount of noisy training data, while ensur-
ing the reliability of its prediction? (ii) how
to foster the generalizability of IE through
enhancing the system’s cross-lingual, cross-
domain, cross-task and cross-modal transfer-
ability? (iii) how to support extracting struc-
tural information with extremely fine-grained
and diverse labels? (iv) how to further im-
prove IE by leveraging indirect supervision
from other NLP tasks, such as Natural Lan-
guage Generation (NLG), Natural Language
Inference (NLI), Question Answering (QA) or
summarization, and pre-trained language mod-
els? (v) how to acquire knowledge to guide
inference in IE systems? We will discuss sev-
eral lines of frontier research that tackle those
challenges, and will conclude the tutorial by
outlining directions for further investigation.

1 Introduction

Information extraction (IE) is the process of au-
tomatically extracting structural information from
unstructured or semi-structured data. It provides
the essential support for natural language under-
standing by recognizing and resolving the concepts,
entities, events described in text, and inferring the
relations among them. In various application do-
mains, IE automates the costly acquisition process
of domain-specific knowledge representations that
have been the backbone of any knowledge-driven
Al systems. For example, automated knowledge
base construction has relied on technologies for
entity-centric IE (Carlson et al., 2010; Lehmann
et al., 2015). Extraction of events and event chains
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assists machines with narrative prediction (Zhang
et al., 2021b; Chaturvedi et al., 2017) and summa-
rization tasks (Liu et al., 2018; Chen et al., 2019b).
Medical IE also benefits important but expensive
clinical tasks such as drug discovery and repurpos-
ing (Sosa et al., 2019; Munkhdalai et al., 2018).
Despite the importance, frontier research in IE still
faces several key challenges. The first challenge
is that existing dominant methods using language
modeling representation cannot sufficiently capture
the essential knowledge and structures required for
IE tasks. The second challenge is on the develop-
ment of extraction models for fine-grained infor-
mation with less supervision, considering that ob-
taining structural annotation on unlabeled data has
been very costly. The third challenge is to extend
the reliability and generalizability of IE systems in
real-world scenarios, where data sources often con-
tain incorrect, invalid or unrecognizable inputs, as
well as inputs containing unseen labels and mixture
of modalities. By tackling those critical challenges,
recent literature is leading to transformative ad-
vancement in principles and methodologies of IE
system development. We believe it is necessary to
present a timely tutorial to comprehensively sum-
marize the new frontiers in IE research and point
out the emerging challenges that deserve further
investigation.

In this tutorial, we will systematically review
several lines of frontier research on developing ro-
bust, reliable and adaptive learning systems for ex-
tracting rich structured information. Beyond intro-
ducing robust learning and inference methods for
unsupervised denoising, constraint capture and nov-
elty detection, we will discuss recent approaches
for leveraging indirect supervision from natural lan-
guage inference and generation tasks to improve IE.
We will also review recent minimally supervised
methods for training IE models with distant super-
vision from linguistic patterns, corpus statistics or
language modeling objectives. In addition, we will
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Figure 1: A roadmap for new frontiers of information extraction and a graphical abstract of this tutorial.

illustrate how a model trained on a close domain
can be reliably adapted to produce extraction from
data sources in different domains, languages and
modalities, or acquiring global knowledge (e.g.,
event schemas) to guide the extraction on a highly
diverse open label space. Participants will learn
about recent trends and emerging challenges in this
topic, representative tools and learning resources
to obtain ready-to-use models, and how related
technologies benefit end-user NLP applications. A
graphical abstract of this tutorial is provided as
Fig. 1, which serves as our roadmap for new fron-
tiers of information extraction.

2  Outline of Tutorial Content

This half-day tutorial presents a systematic
overview of recent advancement in IE technolo-
gies. We will begin motivating this topic with a
selection of real-world applications and emerging
challenges of IE. Then, we will introduce robust
learning methods and inference methods to tackle
noisy supervision, prediction inconsistency and out-
of-distribution (OOD) inputs. We will also discuss
about indirect supervision and minimal supervision
methods that further improves IE model develop-
ment under limited learning resources. Based on
the robust IE systems developed in close-domain
settings, we will explain how transfer learning tech-
nologies can adaptively extend the utility of the sys-

tems across domains, languages and tasks, and how
complementary information can be extracted from
data modalities other than human language. More-
over, we will exemplify the use of aforementioned
technologies in various end-user NLP applications
such as misinformation detection and scientific dis-
covery, and will outline emerging research chal-
lenges that may catalyze further investigation on
developing reliable and adaptive learning systems
for IE. The detailed contents are outlined below.

2.1 Background and Motivation [20min]

We will define the main research problem and mo-
tivate the topic by presenting several real-world
NLP and knowledge-driven Al applications of IE
technologies, as well as several key challenges that
are at the core of frontier research in this area.

2.2 Robust Learning and Inference for IE
[35min]

We will introduce methodologies that enhance the
robustness of learning systems for IE in both their
learning and inference phases. Those methodolo-
gies involve self-supervised denoising techniques
for training noise-robust IE models based on co-
regularized knowledge distillation (Zhou and Chen,
2021; Liang et al., 2021), label re-weighting (Wang
et al., 2019b) and label smoothing (Lukasik et al.,
2020). Besides, we will also discuss about unsuper-



vised techniques for out-of-distribution (OOD) de-
tection (Zhou et al., 2021b; Hendrycks et al., 2020),
prediction with abstention (Dhamija et al., 2018;
Hendrycks et al., 2018) and novelty class detection
(Perera and Patel, 2019) that seek to help the IE
model identify invalid inputs or inputs with seman-
tic shifts during its inference phase. Specifically, to
demonstrate how models can ensure the global con-
sistency of the extraction, we will cover constraint
learning methods that automatically capture logical
constraints among relations (Wang et al., 2021a,
2022c; Pan et al., 2020), and techniques to enforce
the constraints in inference (Wang et al., 2020; Li
et al., 2019a; Han et al., 2019; Lin et al., 2020). To
assess if the systems give faithful extracts, we will
also talk about the spurious correlation problems
of current IE models and how to address them with
counterfactual analysis (Wang et al., 2022b; Qian
etal., 2021).

2.3 Minimally and Indirectly Supervised IE
[35min]

We will introduce effective approaches that use al-
ternative supervision sources for IE, that is, to use
supervision signals from related tasks to make up
for the lack of quantity and comprehensiveness in
IE-specific training data. This includes indirect
supervision sources such as question answering
and reading comprehension (Wu et al., 2020; Lyu
et al., 2021; Levy et al., 2017; Li et al., 2019b;
Du and Cardie, 2020), natural language inference
(Li et al., 2022a; Yin et al., 2020) and generation
(Lu et al., 2021; Li et al., 2021b). We will also
cover the use of weak supervision sources such as
structural texts (e.g., Wikipedia) (Ji et al., 2017;
Zhou et al., 2018) and global biases (Ning et al.,
2018b). With the breakthrough of large-scale pre-
trained language models (Devlin et al., 2019; Li
et al., 2022¢), methodologies have been proposed
to explore the language model objective as indi-
rect supervision for IE. To this end, we will cover
methods includes direct probing (Feldman et al.,
2019; Zhang et al., 2020c), and more recently, pre-
training with distant signals acquired from linguis-
tic patterns (Zhou et al., 2020, 2021a).

2.4 Transferablity of IE Systems [35min]

One important challenge of developing IE sys-
tems lies in the limited coverage of predefined
schemas (e.g., predefined types of entities, rela-
tions or events) and the heavy reliance on human
annotations. When moving to new types, domains
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or languages, we have to start from scratch by creat-
ing annotations and re-training the extraction mod-
els. In this part of tutorial, we will cover the re-
cent advances in improving the transferability of
IE, including (1) cross-lingual transfer by leverag-
ing adversarial training (Chen et al., 2019a; Huang
et al., 2019; Zhou et al., 2019), language-invariant
representations (Huang et al., 2018a; Subburathi-
nam et al., 2019) and resources (Tsai et al., 2016;
Pan et al., 2017), pre-trained multilingual language
models (Wu and Dredze, 2019; Conneau et al.,
2020) as well as data projection (Ni et al., 2017;
Yarmohammadi et al., 2021), (2) cross-type trans-
fer including zero-shot and few-shot IE by learning
prototypes (Huang et al., 2018b; Chan et al., 2019;
Huang and Ji, 2020), reading the definitions (Chen
et al., 2020b; Logeswaran et al., 2019; Obeidat
et al., 2019; Yu et al., 2022; Wang et al., 2022a),
answering questions (Levy et al., 2017; Liu et al.,
2020; Lyu et al., 2021), and (3) transfer across dif-
ferent benchmark datasets (Xia and Van Durme,
2021; Wang et al., 2021b). Finally, we will also dis-
cuss the progress on life-long learning for IE (Wang
et al., 2019a; Cao et al., 2020; Yu et al., 2021; Liu
et al., 2022) to enable knowledge transfer across
incrementally updated models.

2.5 Cross-modal IE [20min]

Cross-modal IE aims to extract structured knowl-
edge from multiple modalities, including unstruc-
tured and semi-structured text, images, videos, ta-
bles, etc. We will start from visual event and argu-
ment extraction from images (Yatskar et al., 2016;
Gkioxari et al., 2018; Pratt et al., 2020; Zareian
et al., 2020; Li et al., 2022b) and videos (Gu
et al., 2018; Sadhu et al., 2021; Chen et al., 2021a).
To extract multimedia events, the key challenge
is to identify the cross-modal coreference and
linking (Deng et al., 2018; Akbari et al., 2019;
Zeng et al., 2019) and represent both text and vi-
sual knowledge in a common semantic space (Li
et al.,, 2020a; Chen et al., 2021b; Zhang et al.,
2021a; Li et al., 2022b). We will also introduce
the information extraction from semi-structured
data (Katti et al., 2018; Qian et al., 2019) and tabu-
lar data (Herzig et al., 2020).

2.6 Knowledge-guided IE [15min]

Global knowledge representation induced from
large-scale corpora can guide the inference about
the complicated connections between knowledge
elements and help fix the extraction errors. We will



introduce cross-task and cross-instance statistical
constraint knowledge (Lin et al., 2020; Van Nguyen
etal., 2021), commonsense knowledge (Ning et al.,
2018a), and global event schema knowledge (Li
et al., 2020b; Wen et al., 2021; Li et al., 2021a;
Jin et al., 2022) that help jointly extract entities,
relations, and events.

2.7 Future Research Directions [30min]

IE is a key component in supporting knowledge
acquisition and it impacts a wide spectrum of
knowledge-driven Al applications. We will con-
clude the tutorial by presenting further challenges
and potential research topics in identifying trust-
worthiness of extracted content (Zhang et al., 2019,
2020b), IE with quantitative reasoning (Elazar
et al., 2019; Zhang et al., 2020a), cross-document
IE (Caciularu et al., 2021), incorporating domain-
specific knowledge (Lai et al., 2021; Zhang et al.,
2021c), extension to knowledge reasoning and pre-
diction, modeling of label semantics (Huang et al.,
2022; Mueller et al., 2022; Ma et al., 2022; Chen
et al., 2020a), and challenges for acquiring implicit
but essential information from corpora that poten-
tially involve reporting bias (Sap et al., 2020).

3 Specification of the Tutorial

The proposed tutorial is considered a cutting-edge
tutorial that introduces new frontiers in IE re-
search. The presented topic has not been covered
by ACL/EMNLP/NAACL/EACL/COLING tutori-
als in the past 4 years. One exception is the ACL
2020 tutorial “Multi-modal Information Extraction
from Text, Semi-structured, and Tabular Data on
the Web” that is partly relevant to one of our tech-
nical sections (§2.5). That particular section of our
talk will focus on IE from visual and multi-media
data in addition to semi-structured data, being dif-
ferent from the aforementioned ACL 2020 tutorial
that has mainly covered topics on semi-structured
data.

Audience and Prerequisites Based on the level of
interest in this topic, we expect around 150 partic-
ipants. While no specific background knowledge
is assumed of the audience, it would be the best
for the attendees to know about basic deep learning
technologies, pre-trained word embeddings (e.g.
Word2Vec) and language models (e.g. BERT). A
reading list that could help provide background
knowledge to the audience before attending this
tutorial is given in Appx. §A.2.
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Open Access All the materials are openly avail-
able at https://cogcomp.seas.upenn.
edu/page/tutorial.202207.

4 Tutorial Instructors

The following are biographies of the speaker. Past
tutorials given by us are listed in Appx. §A.1.
Muhao Chen is an Assistant Research Professor
of Computer Science at USC, where he directs
the Language Understanding and Knowledge Ac-
quisition (LUKA) Group. His research focuses
on data-driven machine learning approaches for
natural language understanding and knowledge ac-
quisition. His work has been recognized with an
NSF CRII Award, a Cisco Faculty Research Award,
an ACM SIGBio Best Student Paper Award, and
a Best Paper Nomination at CoNLL. Muhao ob-
tained his B.S. in Computer Science degree from
Fudan University in 2014, his PhD degree from
UCLA Department of Computer Science in 2019,
and was a postdoctoral researcher at UPenn prior
to joining USC. Additional information is available
athttp://muhaochen.github.io.

Lifu Huang is an Assistant Professor at the Com-
puter Science department of Virginia Tech. He
obtained a PhD in Computer Science from UIUC.
He has a wide range of research interests in NLP,
including extracting structured knowledge with lim-
ited supervision, natural language understanding
and reasoning with external knowledge and com-
monsense, natural language generation, represen-
tation learning for cross-lingual and cross-domain
transfer, and multi-modality learning. He is a recip-
ient of the 2019 AI2 Fellowship and 2021 Amazon
Research Award. Additional information is avail-
able at https://wilburone.github.io/.
Manling Li is a fourth-year Ph.D. student at the
Computer Science Department of UIUC. Manling
has won the Best Demo Paper Award at ACL’20,
the Best Demo Paper Award at NAACL’ 21, C.L.
Dave and Jane W.S. Liu Award, and has been
selected as Mavis Future Faculty Fellow. She
is a recipient of Microsoft Research PhD Fel-
lowship. She has more than 30 publications on
knowledge extraction and reasoning from multi-
media data. Additional information is available at
https://limanling.github.io.

Ben Zhou is a third-year Ph.D. student at the De-
partment of Computer and Information Science,
University of Pennsylvania. He obtained his B.S.
from UIUC in 2019. Ben’s research interests
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are distant supervision extraction and experiential
knowledge reasoning, and he has more than 5 re-
cent papers on related topics. He is a recipient
of the ENIAC fellowship from the University of
Pennsylvania, and a finalist of the CRA outstanding
undergraduate researcher award. Additional infor-
mation is available at http://xuanyu.me/.

Heng Ji is a Professor at Computer Science Depart-
ment of University of Illinois Urbana-Champaign,
and an Amazon Scholar. She received her B.A.
and M. A. in Computational Linguistics from Ts-
inghua University, and her M.S. and Ph.D. in
Computer Science from New York University.
Her research interests focus on NLP, especially
on Multimedia Multilingual Information Extrac-
tion, Knowledge Base Population and Knowledge-
driven Generation. She was selected as “Young Sci-
entist” and a member of the Global Future Council
on the Future of Computing by the World Eco-
nomic Forum. The awards she received include
“AI’s 10 to Watch” Award, NSF CAREER award,
Google Research Award, IBM Watson Faculty
Award, Bosch Research Award, and Amazon AWS
Award, ACL2020 Best Demo Paper Award, and
NAACL2021 Best Demo Paper Award. Additional

information is available at https://blender.

cs.illinois.edu/hengji.html.

Dan Roth is the Eduardo D. Glandt Distinguished
Professor at the Department of Computer and In-
formation Science, UPenn, the NLP Lead at AWS
Al Labs, and a Fellow of the AAAS, ACM, AAAI,
and ACL. In 2017 Roth was awarded the John Mc-
Carthy Award, the highest award the AI commu-
nity gives to mid-career Al researchers. Roth was
recognized “for major conceptual and theoretical
advances in the modeling of natural language under-
standing, machine learning, and reasoning.” Roth
has published broadly in machine learning, NLP,
KRR, and learning theory, and has given keynote
talks and tutorials in all ACL and AAAI major con-
ferences. Roth was the Editor-in-Chief of JAIR
until 2017, and was the program chair of AAAI'11,
ACL’03 and CoNLL’02; he serves regularly as an
area chair and senior program committee mem-
ber in the major conferences in his research areas.
Prof. Roth received his B.A Summa cum laude
in Mathematics from the Technion, and his Ph.D.
in Computer Science from Harvard University in
1995. Additional information is available at http:
//www.cis.upenn.edu/~danroth/.
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Ethical Considerations

Innovations in technology often face the ethical
dilemma of dual use: the same advance may of-
fer potential benefits and harms. For the IE tech-
nologies introduced in this tutorial, the distinction
between beneficial use and harmful use depends
mainly on the data. Proper use of the technology
requires that input text corpora, as well as other
modalities of inputs, are legally and ethically ob-
tained. Regulation and standards provide a legal
framework for ensuring that such data is properly
used and that any individual whose data is used has
the right to request its removal. In the absence of
such regulation, society relies on those who apply
technology to ensure that data is used in an ethical
way. Besides, training and assessment data may be
biased in ways that limit system accuracy on less
well represented populations and in new domains,
for example causing disparity of performance for
different sub-populations based on ethnic, racial,
gender, and other attributes. Furthermore, trained
systems degrade when used on new data that is
distant from their training data. Thus questions
concerning generalizability and fairness need to be
carefully considered when applying the IE tech-
nologies to specific datasets.

A general approach to ensure proper, rather
than malicious, application of dual-use technol-
ogy should: incorporate ethics considerations as
the first-order principles in every step of the system
design, maintain a high degree of transparency and
interpretability of data, algorithms, models, and
functionality throughout the system, make software
available as open source for public verification and
auditing, and explore countermeasures to protect
vulnerable groups.
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A Appendix

A.1 Past Tutorials by the Instructors

The presenters of this tutorial have given the follow-
ing tutorials at leading international conferences
and venues in the past:

¢ Muhao Chen:
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