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Abstract

Despite their outstanding performance, large
language models (LLMs) suffer notorious flaws
related to their preference for simple, surface-
level textual relations over full semantic com-
plexity of the problem. This proposal investi-
gates a common denominator of this problem
in their weak ability to generalise outside of the
training domain. We survey diverse research
directions providing estimations of model gen-
eralisation ability and find that incorporating
some of these measures in the training objec-
tives leads to enhanced distributional robust-
ness of neural models. Based on these findings,
we present future research directions towards
enhancing the robustness of LLMs.

1 Introduction

The advances in language processing that we ob-
serve in recent years, mostly led by the instances of
large language models (LLMs) based on the trans-
former architecture (Vaswani et al., 2017) raise a
deserved attention of the scientific community. We
find studies concluding that LLLMs fine-tuned for
a specific task can align with, or even outperform
human accuracy on complex tasks such as ques-
tion answering (Rajpurkar et al., 2016), paraphrase
identification (Bowman et al., 2015), machine trans-
lation (Bahdanau et al., 2016) and others.

In contrast, critical studies demonstrate that
many of the models reaching a state-of-the-art on
a given task perform poorly on data sets drawn
from different distribution(s). This is due to var-
ious reasons, such as training data set biases in-
cluding spurious linguistic correlations (McCoy
et al., 2019), different text stylistics or typos (Be-
linkov and Bisk, 2018), where a broad preference
of LLMs towards fitting non-representative, yet
easy-to-learn surface-level relations cause them to
under-perform even shallow networks (Bojanowski
et al., 2016). A lack of generalisation can also
be caused by procedural reasons, such as training
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process instability, causing a convergence to local
minima of distinct generalisation quality (McCoy
et al., 2020). Low robustness of the consequential
model towards out-of-distribution (OOD) samples
limits their practical usability to the samples drawn
from the training distribution, which is often im-
possible to ensure.

Despite that the complex language models strike
an impression of a black-box, an extensive branch
of research demonstrated that internal representa-
tions of LLMs correspond well to a human tax-
onomy in terms of morphological and syntactic
decomposition (Clark et al., 2019a), or that the
depth of the internal representation correlates well
with the complexity of the problem as perceived by
humans (Tenney et al., 2019).

The reported agility support the central presump-
tion of this proposal; that LLMs can avoid the prob-
lems mentioned above under additional regularisa-
tion. We argue that such regularisation could also
strenghten the implicit property of LLMs learning
compositional language features and thus enhance
an interpretability of their decision-making.

In this proposal, we survey literature from the
broader area of neural networks for the reasons
for better generalisation of the neural model. We
find that many measures reported to correlate well
with model’s OOD performance can also enhance
neural model generalisation when utilised within
the model’s training objective, as regularisers, or
additional components of the training cost function.
Inspired by this finding, this proposal outlines a
path towards identification and utilisation of gener-
alisation measures aimed to enhance robustness of
LLMs towards distribution shift.

RQ1: “Can we estimate the performance of LLMs
on data from OOD, without a collection of
annotated data or expert feedback?”

RQ2: “Can we adjust the process of training
LLMs to perform better on OOD samples?”
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In Section 2.1 we survey the studies aiming to
estimate robustness of neural models with no re-
strictions on a domain of application. Subsequently,
in Section 2.2, we survey the training techniques
reported to enhance the robustness of the trained
model. Based on these findings, in Section 3 we
identify promising directions and respective chal-
lenges specific for estimating (§3.1) and enhancing
(§3.2) the robustness of LLMs.

1.1 Applicability

This proposal grounds the notion of model gener-
alisation to its ability to perform well on samples
drawn from distributions different than the training
distribution (OOD). In this context, the term of a
distribution, used interchangeably with domain, is
commonly described by a specific shared property,
such as topic, style, genre, or linguistic register
(Ramponi and Plank, 2020).

This proposal focuses on distributional robust-
ness in two branches of applications of current
LLMs: generative tasks, where the problem is to
generate a sequence of tokens, and discriminative
tasks, where the task is to infer a discrete decision
for each token or a sequence of tokens. Generative
tasks include summarization, dialogue generation
or machine translation, while discriminative tasks
include classification, extractive question answer-
ing or named entity recognition.

In both cases, we propose to estimate the impact
of given adjustment on model generalisation by
measuring a difference in the model’s performance
on a set of distinct OOD domains. We note that
such estimation is still only a pointwise estimation
of model generalisation as some properties of the
domains drawn for evaluation remain uncontrolled.

2 Background

2.1 Estimating Model Robustness (RQ1)

Having a set of true labels for some set of OOD
samples X; of target domain(s) D;, the robustness
of the model M can be estimated using standard
qualitative measures, such as accuracy. This raises
questions about the representativeness of the draw
of X;: do these cover all the domains of application
of M, and are these domains accurately weighted
in evaluation?

The problem is circumvented by generalisation
measures based on latent properties of M, that do
not require any labelled data of D;. However, such
an approach might come at the price of accuracy:
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according to Jiang et al. (2020), the Spearman’s
rank correlation of any unsupervised measure with
out-of-distribution accuracy does not exceed 0.5 on
average. The accuracy of the estimator improves
using supervised approaches (Stefanik et al., 2021),
but these already require some labelled data.

The situation presents a common dilemma in ro-
bustness evaluation: Ground-truth evaluation must
involve a representative selection of test data. This
problem can be avoided with unsupervised esti-
mations based on the model properties, but such
proxies are burdened by a certain level of inac-
curacy. In the following sections, we review the
measures introduced directly for evaluating model
generalisation (§2.1.1) and for estimating model’s
expected output quality (§2.1.2), more commonly
used in NLP.

2.1.1 Generalisation Measures

Traditionally, the ability of neural networks to gen-
eralise was related to the measures of their capac-
ity, where the lower capacity might imply the lower
generalisation gap (Jiang et al., 2020), i.e. a drop of
performance under distribution shift. The capacity
can be quantified in terms of complexity given by a
number of model parameters, expressive power or
others. A standard example of such a measure is a
degree of a polynomial; the higher the degree, the
better is the fit, but it comes at the price of generali-
sation loss. This group of measures is referred to as
Vapnik—Chervonenkis dimension (VC-dimension),
introduced by Vapnik (1999).

A large body of work aims to find such VC-
dimensions that correspond well with OOD per-
formance even with modern, over-parametrised
networks. For instance, norm-based approaches
(Neyshabur et al., 2015b) propose to use the p-
norms used in regularisation of the training as the
anchor value of generalisation and support this in
theory by connecting such measure with a limi-
tation of network capacity. Bartlett et al. (2017)
conclude that a spectral complexity measure, that
is inferred from eigenvalues of a matrix of the net-
work weights, can be used as one of such complex-
ity measures.

A collateral line of work, starting with Shawe-
Taylor et al. (1998) show that generalisation
bounds, denoting a range of expected performance
of the given model on an arbitrary test set, can be
provably associated with VC-bounds. Harvey et al.
(2017) show that the tightness of such bounds for a
linear subset of networks can be theoretically found.



Furthermore, Dziugaite and Roy (2017) propose a
method to optimize PAC-Bayesian bounds, optimis-
ing the model for as tight bounds as possible.

Despite these proofs, error bounds based on VC-
dimensions remain vacuous in practice (Dziugaite
and Roy, 2017; Jiang et al., 2020): such estimates
of OOD performance are too wide to be used in
practice. Additionally, it is now widely observed
(Novak et al., 2018; Neyshabur et al., 2015a), that
in practice, an effect of over-parametrisation is in
contrast with traditional VC-dimension theory and
in multiple cases, over-parametrisation leads to bet-
ter reported generalisation (Neyshabur et al., 2019).

Existing work attempts to ground error bounds
in the underlying causal model that describes the
target domains of interest. Meinshausen (2018)
introduces a term of Structural equation model
(SEM) defining the causal interventions consistent
with a given world and relates domain general-
isation to the model’s robustness to the interven-
tions defined by such SEM. Additionally, given that
SEM produces a class of distributions Q, a model
M robust on Q is a causal inference model for
Q, connecting distributional robustness to a weak
form of causal inference (Dziugaite et al., 2021).
Similarly, Bithimann (2018) ascribes the ability of
causal inference on Q to any model whose repre-
sentation is invariant to any domain D € Q and
proposes a method of selecting a subset of invariant
features that picks such subset of attributes from a
given set.

Practical observations of errors suggest that em-
pirical error bounds are in fact significantly tighter
than what can be proven in theory. Dziugaite et al.
(2021) locate all bounds between the two extremes:
theoretically-supported, yet vacuous bounds of
methods based solely on the model property (VC-
bounds) or behaviour (PAC-Bayesian bounds) and
empirical, yet strictly data- and model-dependent
evaluation on sample set(s) X; € D;.

2.1.2 Quality Estimation

Quality estimation (QE) measure predicts model
output quality in the absence of ground-truth refer-
ence (Fomicheva et al., 2020). Although not com-
monly used in this manner, QE measures also re-
flect on model robustness, making this branch of
research applicable for OOD performance estima-
tion (RQ1).

A significant line of work grounds quality es-
timation in model confidence, which can be esti-
mated using Bayesian networks (Mackay, 1992)
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where standard scalar weights of the network are
replaced with random variables, modelling the out-
put distribution. This approach is accurate but
not computationally feasible for larger networks.
A branch of work approximates parametric distri-
butions (Graves, 2011; Tran et al., 2019) making
such uncertainty estimation practically feasible.

Model uncertainty can also be computed by en-
sembling variations of a given model in multiple
trials, commonly referred to as Monte Carlo (MC)
methods. Monte Carlo dropout (Gal and Ghahra-
mani, 2016) applies dropout on inference randomly
among multiple inference trials yielding an estima-
tion of the distribution of network output, based on
which the uncertainty is approximated. Lee et al.
(2015) build such ensembles of estimators using
bagging, i.e. training the ensembled models on
different train sub-sets.

Model-variational methods fit well into the cen-
tral PAC-Bayesian theory (Valiant, 1984), stating
that if the error of the classifier can be bound, then
also a performance of an ensemble of such clas-
sifiers can be upper-bound with arbitrarily-small
bound e (Guedj, 2019).

Confidence estimation can be utilised in en-
hanced model robustness, where prediction confi-
dence is used as a regularizer of the main objective;
in augmentation (Szegedy et al., 2014), confidence
calibration (Gong et al., 2021), or in a training for
consistency (Xie et al., 2019).

Jiang et al. (2020) propose to measure a regu-
larisation decay of the weights, together with a
measure of sharpness, reflecting on a volume of
change in the model evaluation when the limited
surrounding of the learnt parameter space min-
ima is permuted (Keskar et al., 2017). Another
introduced measure reflects a variance of gradi-
ents measured on a train set after a first training
iteration. This work is the first large-scale study
evaluating correlation of selected generalisation
measures with true OOD performance and con-
cludes that the mentioned sharpness and gradient-
based measures correlate highest with the measured
OOD performance. Consecutively, Dziugaite et al.
(2021) support these findings on sharpness-based
and PAC-Bayesian measures as the best-correlated
in the similar methodology.

An important application of QE techniques lays
in neural machine translation, where avoiding criti-
cal errors in translation remains an open problem.
Such errors deviate the meaning of the translation



in a way that may carry health, safety, legal or other
implications (Specia et al., 2021). Kim et al. (2017)
train a token-level estimator of machine translation
output quality concurrently with the neural trans-
lation model. Fomicheva et al. (2020) additionally
propose to predict output quality from entropy of
attention activations of transformer model, but they
find this approach not more accurate than the one
based on simple output entropy (Kim et al., 2017),
or than the MC dropout method.

2.2 Training Robust Models (RQ2)

A problem of training a model that performs
well on out-of-distribution (OOD) samples can be
found in the literature under the terms of out-of-
distribution generalisation (Yi et al., 2021), do-
main generalisation (Gong et al., 2021), distribu-
tional robustness (Meinshausen, 2018), or simply
generalisation (Foret et al., 2021). The variety of
terminology points to the fact that the standards in
this branch of research are not yet clearly set.

Despite imperfect correlations of generalisa-
tion measures with measured OOD performance,
we find these measures already incorporated in
novel training objectives reaching attractive en-
hancements of model robustness; Neyshabur et al.
(2015b) investigate the impact of incorporating
norm-based measures into the loss, obtaining gener-
alisation guarantees of £o-norm. Foret et al. (2021)
enrich the cross-entropy loss with a complementary
component reflecting a sharpness of local optimum,
based on a difference to local . Keskar et al. (2017)
also demonstrate that the sharpness of the objec-
tive’s optima corresponds to the model’s robustness,
and flatter optima can also be reached by noising
the update steps by smaller training batch size.

Objective adjustments creatively utilising PAC-
-Bayesian measures also confirm reported corre-
spondence of these measures to generalisation. Hin-
ton (2002) proposes a Product of Experts (PoE)
framework where an ensemble of identical shallow
estimators eliminate model-specific biases in a dot
product of ensembled outputs, resulting in superior
OOD performance. Sanh et al. (2021) show an ap-
plication of PoE eliminating the systematic biases
on adversarial NLI data sets. Dagaev et al. (2021)
adopt similar approach in debiasing image clas-
sification from heuristical shortcuts. Utama et al.
(2020) eliminate model reliance on domain-specific
attributes in a two-step process: by identifying the
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biased samples by model over-confidence, and their
subsequent down-weighting.

Rather than encouraging specific model fea-
tures, others have investigated the impact of spe-
cific training strategies, which becomes particu-
larly relevant in multi-step training strategies of
LLMs. Wang and Sennrich (2020) enhance robust-
ness of the translation by fine-tuning for sentence-
level Minimum Risk Training objective instead of
the common token-level cross-entropy. Tu et al.
(2020) show on adversarial data sets that: a) longer
fine-tuning eliminates model fragility on under-
represented samples, and b) multitask learning
has a positive impact on transformer generalisa-
tion to adversarial data sets. Compliant results are
reported by Xie et al. (2019) with multitask learn-
ing for both classification and output consistency
to augmented samples, or by Raffel et al. (2020) on
generative language multitask learning, or in cross-
lingual settings by Clark et al. (2019b); Conneau
et al. (2019); Lewis et al. (2020).

Similar results are reported in work address-
ing dataset biases. Utama et al. (2020); Nie et al.
(2019); Teney et al. (2020) report that addressing
only one bias in domain adaptation hurts the model
generalisation on other domains. On the other hand,
Wau et al. (2020) find that addressing multiple biases
at once can enhance OOD generalisation, although
they draw this conclusion from a single domain.

A different branch of work attempts to enhance
the robustness by training strategies that work with
knowledge of domain distinction. Gong et al.
(2021) propose to approximately cover the class
of all possible target domains D; by source do-
mains Dy and to learn the calibration of output
probabilities from D, that will allow to associate
samples of a new target domain D; to some known
Ds. Yi et al. (2021) propose to use the adversarial
framework, learning indistinguishable final-layer
representation for different domains.

3 Research Proposal

Following the referenced studies on evaluation and
enhancement of the generalisation of neural mod-
els, this section outlines directions in measuring
and improving robustness of LLMs, respectively.

3.1 Estimating Model Robustness (RQ1)

Recently, the measures of generalisation of neural
networks struck increasing attention (Jiang et al.,
2020; Dziugaite et al., 2021). However, none of the



referenced studies evaluates the measures on the
case of LLMs. Especially within a standard pre-
training + fine-tuning framework of modern NLP
applications, quality of the measures might differ
compared to the experiments on relatively small
convolutional networks trained for image classifi-
cation from scratch.

Hence, we first focus on evaluating the estab-
lished generalisation measures, such as the ones
based on spectral complexity, variance of gradi-
ents or sharpness in the case of pre-trained LLMs.
A major challenge is to scale such experiments
to a representative evaluation framework covering
a broad set of tasks, domains, and model types. For
instance, other training parameters will likely im-
pact the metrics’ quality; such covariates will have
to be identified and controlled. However, even ex-
tensive evaluation will likely fail to identify some
of such covariates; Due to this reason, we will de-
limit the scope of our results to the estimation and
enhancement of robustness with respect to the enu-
merated covariates, even though it contrasts with
the methodology of previous work.

We will give preference to the generalisation
measures that correspond to linguistic and seman-
tic language properties, as the practical deployment
of such measures in evaluation also addresses a de-
sire for enhancing interpretability of the LLMs’
behaviour. Instances of linguistically-motivated
measures can be a largest common ancestor be-
tween the parse trees of reference and hypothesis
of generative model, or a coherence of output of
discriminative model when a negation is introduced
in the input.

In the evaluation of robustness of generative
LLMs, we will prioritise foken-level measures over
conventional segment-level ones such as BLEU,
as incorporating accurate token-level measures
in training objectives could complement the clas-
sic token-level cross-entropy loss in sequence-to-
sequence objective with its specific flaws, such as
exposure bias (Wang and Sennrich, 2020).

The evaluation methodology will closely follow
the one of Dziugaite et al. (2021), which reflects
on a correlation of the measure with the measured
OOD performance. If these measures reach high
correlations, they might be applied directly in train-
ing regularisation or model selection. Even in cases
of measures not reaching a high correlation, these
can still bear the potential to improve model robust-
ness (Foret et al., 2021).
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3.2 Training Robust Models (RQ2)

Following the referenced examples adjusting train-
ing objectives with accurate generalisation mea-
sures (§2.2), e.g. norm-based measures (Neyshabur
et al., 2015b), PAC-Bayesian measures (Sanh et al.,
2021; Dagaev et al., 2021; Utama et al., 2020),
or sharpness measure (Foret et al., 2021), we will
use the accurate generalisation measures of LLMs
(§3.1) as regularizers and complementary objec-
tives of the training.

Locatello et al. (2019) theoretically prove that
full distributional robustness is not possible with-
out an explicit exposition of both the data and the
model biases. Recently, Bengio et al. (2020) the-
oretically and empirically demonstrated that the
model could utilise data biases to expose the under-
lying causal structure of the data in an experiment
where such a structure is preliminarily known.

We will introduce training objectives that expose
domain-specific data biases to the model in more
explicit ways. The most direct approach is to com-
plement the task-specific objective with another
objective of distinguishing the domain(s) of ori-
gin. The domain-distinctive objective can shape a
form of a binary classifier or a similarity loss of se-
lected model representations (e.g. KL-divergence
(Kullback and Leibler, 1951)).

We will investigate the impact of the pre-
training, and fine-tuning objectives on the model’s
eventual robustness over multiple application tasks,
domains and architectures, in a methodology sim-
ilar to the generalisation measures evaluation of
(Dziugaite et al., 2021).

Additionally, we will replace or complement the
objectives of generative LLMs with token-level
measures well-correlated with the OOD perfor-
mance and compare the resulting models with
computationally-expensive sentence-level objec-
tives optimising the measures such as BLEU as
their objectives.

In the case of discriminative models, we will
evaluate robustness to surface-level heuristics us-
ing adversarial datasets like HANS (McCoy et al.,
2019), or PAWS (Zhang et al., 2019) designed to
expose the commonly-learnt biases of LLMs. For
generative LLMs, we will evaluate a performance
of the model on domain(s) different from the train-
ing domain; for instance, we will train a translation
model on subtitles parallel corpus and evaluate on
a domain of news articles. We will also evaluate
the trained model(s) for its inclination to critical



errors as a probability of generating a translation
containing a severe error (Specia et al., 2021) in
enforced generation.

4 Conclusion

Our work outlines potential directions in enhanc-
ing distributional robustness of LLMs to mitigate
a performance drop under distribution shift. We sur-
vey and identify accurate generalisation measures
(§2.1) and find multiple studies demonstrating that
utilisation of these measures in the training objec-
tives positively impacts model robustness (§2.2).

Following this observation, we propose to iden-
tify generalisation measures best-suitable for LLMs
(§3.1) and outline ways how to utilise these mea-
sures in the training process. Additionally, we iden-
tify a set of other methods reported to enhance
OOD performance of LLMs that we propose to
compare to in the outlined methodology for evalu-
ating generalisation measures.

Similarly, we propose methodologies for robust-
ness estimation of both generative and discrimina-
tive LLMs (§3.2); These methodologies are based
on a quality assessment on the domains covered
by the enclosed set of variables, and on the robust-
ness towards the data set(s) constructed to expose
enclosed set of models’ biases.
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