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Abstract

Each person has a unique personality which
affects how they feel and convey emotions.
Hence, speaker modeling is important for the
task of emotion recognition in conversation
(ERCQ). In this paper, we propose a novel graph-
based ERC model which considers both conver-
sational context and speaker personality. We
model the internal state of the speaker (per-
sonality) as Static and Dynamic speaker state,
where the Dynamic speaker state is modeled
with a graph neural network based encoder. Ex-
periments on benchmark dataset shows the ef-
fectiveness of our model. Our model outper-
forms baseline and other graph-based methods.
Analysis of results also show the importance of
explicit speaker modeling.

1 Introduction

Emotion recognition in conversation (ERC) is a
task within the sphere of emotion recognition. ERC
aims to predict the emotion of each utterance in a
conversation. With the recent advances of dialogue
research, ERC has gained popularity due to its po-
tential to support downstream applications such as
affective dialog systems (Majumder et al., 2020)
and opinion mining from social media chats (Chat-
terjee et al., 2019).

The emotion of an utterance depends on many
factors including surrounding context and speaker
personality. Previous studies show that the same
utterance can express different emotions under dif-
ferent contexts (Poria et al., 2019b). On the other
hand, the speaker’s personality and background
should be considered when we interpret the emo-
tion of an utterance. For example, in Figure 1, the
utterance “This is great!” can carry the emotion
of anger (sarcastic person) or joy (not sarcastic).
This difference can be attributed to the different
personalities of the speakers.

In speaker modeling, we aim to model the inter-
nal state of the speaker. Moreover, we distinguish

Hey, your order was
cancelled.

Figure 1: The emotion conveyed by the phrase “This is
great” can either be anger (sarcasm) or joy (in the case
that the person ordered the wrong item). This example
is taken from (Poria et al., 2019b).

between the Static and Dynamic states of a speaker.
The Static speaker state refers to the average state
of a person that remains unchanged over a long
period of time. On the other hand, the Dynamic
speaker state refers to the deviation from the Static
state in presence of external stimuli. External stim-
uli can dictate and change the speaker’s internal
state, which in turn affects the emotion displayed
by an individual, hence modeling the Dynamic state
of a speaker is important for ERC.

In the past few years, Graph Neural Networks
(GNNs) have been used increasingly for ERC.
GNNs provide an intuitive way to model conversa-
tions (Shen et al., 2021) given the inherent struc-
tural flexibility of the graph. The graph structure
can be used to capture the dependency between
utterances and speakers.

Recent works such as DialogGCN (Ghosal
et al., 2019), RGAT (Ishiwatari et al., 2020),
EmoBERTa (Kim and Vossen, 2021) and DAG-
ERC (Shen et al., 2021) have modelled conver-
sational contexts using various methods, however
they do not model speaker state explicitly. Whereas
ConGCN (Zhang et al., 2019) and MMGCN (Hu
et al., 2021) models the speaker state explicitly,
however, they use random embedding for initializa-
tion and model just the Static aspect.

In this study, we propose a novel graph-based
ERC model which considers both Static and Dy-
namic aspects of speaker state. We utilize a graph
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[ Joey: You liked it? ] [ Chandler: Oh, yeah. ] [ Joey: Which pa... ] [Chandler: The w.. ]

Figure 2: Model overview. The target utterance is denoted in yellow color.

which includes past utterance nodes and explicit
speaker nodes to model the interactions between ut-
terances and speakers in the dialogue. Experimen-
tal results on the benchmark MELD dataset (Poria
etal., 2019a) verified the effectiveness of our model
regarding both context and speaker modeling.

2 Related Work

DialogGCN (Ghosal et al., 2019) was the first pa-
per to use GNN to model dialogues. Given an
input dialogue, a complete graph within a fixed
context (past and future) window is built. Since
graph-based neural networks do not take sequen-
tial information into account, RGAT (Ishiwatari
et al., 2020) uses relational positional encodings
to improve upon DialogGCN. DAG-ERC (Shen
et al., 2021) built a more intuitive graph structure
by considering local and remote information, with-
out using any future utterance.

EmoBERTa (Kim and Vossen, 2021) modeled the
speaker state and context by prepending the speaker
names to utterances and inserting separation tokens
between the utterances in a dialogue, and feeding
it to RoBERTa. ConGCN (Zhang et al., 2019) ex-
plicitly used speaker nodes, which were initialized
randomly. MMGCN (Hu et al., 2021) also incorpo-
rated randomly initialized speaking embeddings in
their model.

3 Methodology

Our model consists of three components: Feature
extractor, Graph encoder, and Prediction layer. Fig-
ure 2 shows an overview of our proposed model.

We will give a detailed explanation of our model in
this section.

3.1 Problem Definition

In ERC, a dialogue is defined as a sequence of ut-
terances {U1, Ua, ..., Un }, where N is the number
of utterances. Each utterance U; is spoken by a
speaker .S; and has an emotion label Y;. The goal
of ERC is to predict the emotion label Y; for a given
U; and S; .

3.2 Feature Extractor

We use pretrained RoBERTa (Liu et al., 2019) as
our feature extractor. Inspired by EmoBERTa (Kim
and Vossen, 2021), we feed the following sequence
to RoBERTa for each utterance U; with speaker .S;
(as shown in Figure 2):

[CLS]S; : U;[SEP] (1)

For each utterance U;, we take the output vector
of RoBERTa corresponding to the [CLS] token
as the utterance embedding /. In addition, we
extract the ROBERTa output vector corresponding
to the speaker token' S; as the speaker embedding
h;. This component is responsible for the Static
speaker state modeling and /] represents the Static
speaker state.

3.3 Graph Encoder

In this section, we introduce the construction of a
dialogue graph and the details of the graph encoder.

'In the case when speaker name is a multi-token entity, we
consider the first token for the speaker embedding.
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3.3.1 Graph Construction

For a target utterance U; in the dialogue, we build
a graph G = (V, E) to model the surrounding
context and speaker information, where V' denotes
the set of nodes and E is the set of edges.

The graph G contains two types of nodes:

» Utterance node: We consider the target utter-
ance U; and up to w utterances preceding Uy
as past utterances.

* Speaker node: We consider the unique speak-
ers of the target and past utterances.

The set of nodes can be represented as:

V ={U}i=

i=t—w

U Uniq({S;}i=i )

i=t—w

2

where the function Uniq() returns all the unique
elements in a set.
Our graph contains two types of edges:

o Utterance-Utterance Edge: We connect each
utterance to its previous utterance. These
model the effect of past utterance on the
present utterance. These are given by E,,, =

{(Ui—1, U) N2l

» Utterance-Speaker Edge: We connect each
utterance U; to its corresponding speaker S;.
The set of utterance-speaker edges are denoted
as BEys = {(U;,S;)}i=t_,. These edges
model the effect of speakers on the utterances.

The set of edges can be given by:

E= Euu U Eu57 (3)

Figure 2 (Graph Encoder part) illustrates an ex-
ample of the constructed graph with a target ut-
terance Uy (colored in yellow) and 3 past utter-
ances. U; and Us are spoken by a unique speaker
S1, while Us and U, are spoken by another unique
speaker S2. (Note that the subscripts of the speak-
ers reflects the indices after Uniq().)

3.3.2 Node Initialization
We initialize the Utterance and Speaker nodes as
follows:
e Utterance node : u) = hY Vi€ [t —w,]
* Speaker node : s? = avg(hj) Vi spoken by
Sj.

Since there is only one speaker node for each
unique speaker, we use the averaged speaker em-
beddings to initialize the Speaker node.

3.3.3 GNN-Based Graph Encoding Layers

After constructing and initializing the graph, we
feed it to the GNN-based encoding layers, which
update node representations considering the graph
structure. This component is responsible for the
Dynamic speaker state modeling.

We use [-layered GNN to get the updated node
representations based on the graph structure of G.
For k" layer, all the nodes (Speaker and Utterance
nodes) are updated considering each of their direct
neighbours:

({ui}, {s5}) = GNN*({ui '}, {s}7'}) @)

After being updated by [ layers, the Static
speaker state, s?, is updated to sé-, which repre-
sents the Dynamic speaker state. Similarly, the
initial utterance embedding u? is updated to final
utterance embedding u!.

3.4 Emotion Classification

Finally, we concatenate the initial and the final ut-
terance embeddings of target utterance and feed it
through a feed-forward network to classify emo-
tions.

P, = softmax(FFN (u?|[u})), o)

(6)

Here, || denotes the concatenation operation, F'F'N
is the feed-forward neural network layer, and P is
the probability distribution for the predicted emo-
tion.

Y, = argmax(P;),

3.5 Training Objective

We use the standard cross-entropy along with L2-
regularization as the loss (£):

M Ny

L==)" log Pey[Yesl + A6]]2,

z=1 t=1

(N

Here, M is the total number of training dia-
logues, N, is the number of utterances in the z**
dialogue, P, ; and Y, ; are the predicted probability
distribution of emotion labels and the truth label
respectively for utterance ¢ of the dialogue x. A is
the L2-regularization weight, and 6 is the set of all
trainable parameters.
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Train Dev Test
9,989 | 1,109 | 2,610
1,039 114 280

# Utterance

# Dialogue

Table 1: Statistics for the MELD dataset.

4 Experiments and Results

Experiments on the benchmark dataset shows the
effectiveness of our model. Details of experiments
and analysis are given in this section.

4.1 Dataset

We evaluate our model on the benchmark Multi-
modal EmotionLines Dataset (MELD) dataset (Po-
ria et al., 2019a). MELD is a multi-modal dataset
collected from the TV show Friends. There are 7
emotion labels: neutral, happiness, surprise, sad-
ness, anger, disgust, and fear. Since this is an im-
balanced dataset, weighted-F1 is used as the evalu-
ation metric. More than 85% of the utterances in
MELD are spoken by 6 main speakers, this high
utterance per speaker is useful for modeling the
speaker state. The statistics of MELD are shown in
Table 1.

4.2 Experimental Settings

The feature extractor used is the pre-trained
RoBERTa-large (Liu et al., 2019). The size of
all the hidden features is 1024. We experiment
with Graph Convolutional Network(GCN) (Kipf
and Welling, 2017) and Graph Attention Net-
work(GAT) (Velickovié et al., 2018) as the GNN-
based graph encoding layers. For the GCN based
model, the past context is set to be 3 utterances and
the number of GNN layers was set to be 2. For the
GAT based model, the past context is set to be 5
utterances and the number of GNN layers was set
to be 3. GAT model also has three attention heads
in addition to the above settings.

The models are trained for 10 epochs, batch size
is set to be 8, and the learning rate is set to le-6.
The model with the highest weighted-F1 on the
validation set is selected for evaluation. Due to
the stochastic nature of the model, we report the
averaged score of 3 random runs on the test set.

4.3 Evaluation

Compared Methods and Results: We compare
our proposed model with baselines and previous
works. The results are reported in Table 2.

First, we establish two baselines: RoBERTa (no
context) and RoBERTa (w/ modified input). In the
RoBERTu (no context) utterance alone is used as
input to the pre-trained RoBERTa model. In the
RoBERTa (w/ modified input) we use a modified in-
put as given by Equation 1. Our proposed method
outperforms both ROBERTa baselines by F1 scores
of 2.4 and 1.8, respectively. This shows the advan-
tage of using the graph encoding mechanism.

Next, we compare our model with other GNN-
based models: DAG-ERC, DialogGCN and RGAT.
For fair comparison, we use the models which
use RoBERTa-large as the feature extractor. Our
model outperforms all these models, proving the
advantage of using explicit speaker nodes to model
conversations.

Finally, we compare our results with the
EmoBERTa model®. Our model with GCN encoder
performs slightly worse than EmoBERTa. How-
ever, our model with GAT encoder outperforms
EmoBERTa. Hence, we can state that the perfor-
mance of our model and EmoBERTa is comparable.
Note that EmoBERTa uses both past and future ut-
terances as context, whereas we only use the past
utterances as context, which is more natural as
conversations proceed with time and future utter-
ances cannot be used for real-time applications.
Under the condition that only the past utterances
are allowed, both our proposed models outperform
EmoBERTa (wo/ future context).

GCN vs. GAT: In our experiments, models
which utilize GAT as graph encoders outperformed
the GCN ones. The edge weights for all edges
in our GCN models were set to be 1. On the
other hand, the edge weights for GAT models were
learned and optimized during the training of our
model due to the explicit attention heads of the
GAT based models.

We speculate that since the utterance-utterance
edge and speaker-utterance edge are different in
nature so their edge weight should be different,
hence GAT outperformed GCN and has the ability
to better represent the relations between nodes.

Since, GAT based model performs superior to
GCN based one, we use GAT based models for
further analysis.

The authors of DAG-ERC re-implement DialogGCN and
RGAT using RoBERTa-large as feature extractor, we include
the scores reported by the DAG-ERC paper.

EmoBERTa was the SOTA model while this re-
search was conducted, the new SOTA model is EmotionFlow.

(https://github.com/fpcsong/emotionflow/blob/master/EmotionFlow.pdf)
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Model Weighted-F1
RoBERTa (no context) 0.635
RoBERTa (w/ modified input) 0.641
DAG-ERC 0.636
RGAT (+RoBERT3) 0.628
DialogueGCN (+RoBERTa) 0.630
EmoBERTa 0.656
EmoBERTa (wo/ future context) 0.646
Proposed (GCN) 0.652
Proposed (GAT) 0.659

Table 2: Experimental results on MELD.

Method Weighted-F1
Proposed (Static + Dynamic) 0.658
Proposed (wo/ speaker) (Static) 0.646
Proposed (random init. speaker) 0.638

Table 3: Impact of speaker modeling.

4.4 Analysis

In this section, we conduct various analysis of our
proposed model.

4.4.1 Impact of Speaker Modeling

To investigated the impact of the speaker modeling
on the performance, we evaluated our model by
removing speaker nodes, Proposed (wo/ speaker),
and by randomly initializing speaker nodes, Pro-
posed (random init. speaker). The results are
shown in Table 3. These results are with three
past context and two GAT layer model.

Removing speaker nodes reduces the weighted-
F1 score by 1.2. The significant decrease indicates
the importance of speaker modeling to the ERC
task. Whereas, randomly initializing speaker nodes
results in a performance drop of 2.0 points. More-
over, the score with random speaker initialization
is lower than the score of the model without any
speaker nodes. We hypothesize that the random em-
beddings create noise and hinder the performance.

4.4.2 Impact of Context Window Size and the
Number of GAT layers

To analyze the impact of context window size, we
varied the past context window size from 1 to 5.
The results are reported for two and three GAT
layers in Figure 3. The model performs worst when
we use only one past context, which illustrates the
necessity to model sufficient context. Moreover,
we also find out that the optimal number of past

context varied for different number of GNN layers
(3 context for 2 layers and 5 context for 3 layers).

Next, we investigated the effect of changing the
number of layers on the performance. One layer of
graph encoder updates a node considering all the
one-hop neighbours. The scores for the number of
layers from two to five for a past context of size five
is given in the Figure 4. The score is highest for
three layers. Our graph structure allows informa-
tion to be aggregated from the last context utterance
in few hops due to utterances being connected by
speaker nodes, so the performance does not change
greatly by changing the number of layers.

4.4.3 Case Study

We performed a qualitative analysis for our model.
We used the model with five past contexts and three
GAT layers. We manually inspected ten test sam-
ples that were predicted correctly and ten instances
that were predicted incorrectly.

We found that utterances with speakers other
than the six main speakers have a higher chance
of being predicted incorrectly (six out of ten in-
correctly predicted test samples contained at least
one speaker other than the main speakers). We
speculate that this can be attributed to the fact that
we only modeled the main six speakers, and for
the case of other speakers, we did not construct
any speaker nodes. In the first sample given in Ta-
ble 4 it is noted that a non-main speaker (Steve)
accounts for a considerable part of the dialogue and
our system predicts the emotion incorrectly.

However, in the cases in which the main speakers
make up the majority of the past context, the emo-
tion of utterances of other speakers can be predicted
correctly. The second sample in Table 4 shows this,
where the emotion label for the dialogue of a non-
main speaker (Fireman #1) is predicted correctly.
The reason might be that the speaker nodes of the
main speakers assist the model in predicting the
emotion label.

5 Conclusion

We proposed a novel graph-based method to model
speaker states explicitly for the task of ERC. Exper-
iments showed that our model outperforms base-
lines and other graph-based models. We analyse
the impact of speaker modeling and show that both
Static speaker state and Dynamic speaker state mod-
eling are important for the accurate prediction of
emotions in ERC. In addition, we investigate the
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Dialogue Predicted Gold
Steve: Oh, okay, I get it.
Ross : No wait, look. Look! I'm sorry, it’s just I've never even
Steve: Howard’s the,
Ross: Yes but too me he’s just, man.
Steve : Okay, fine, whatever. Welcome to the building. neutral anger
Phoebe: Oh!
Rachel : My God!
Joey: Hey buddy, do you think I can borrow your uniform this Thursday?
Fireman #1: Excuse me? surprise | surprise

Table 4: Case study. The target utterance is shown in italics.

66.5
L)
. 3

66.0 65.9

65.5 65.5

F1 Score

Context size

Figure 3: Impact of past context size with two and three
GAT layers.

66.5
66.0 - 65.9

65.5
65.2 65.3
65.0 - 64.9

F1 Score

64.5 -

64.0 -
2 3 4 5

No. of layers

Figure 4: Impact of number of GAT layers. Context
window is of size 5.

effect of changing the number of GNN layers and
the past context on the performance of our model.
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