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Abstract

Each person has a unique personality which001
affects how they feel and convey emotions.002
Hence, speaker modeling is important for the003
task of emotion recognition in conversation004
(ERC). In this paper, we propose a novel graph-005
based ERC model which considers both conver-006
sational context and speaker personality. We007
model the internal state of the speaker (per-008
sonality) as Static and Dynamic speaker state,009
where the Dynamic speaker state is modeled010
with a graph neural network based encoder. Ex-011
periments on benchmark dataset shows the ef-012
fectiveness of our model. Our model outper-013
forms baseline and other graph-based methods.014
Analysis of results also show the importance of015
explicit speaker modeling.016

1 Introduction017

Emotion recognition in conversation (ERC) is a018

task within the sphere of emotion recognition. ERC019

aims to predict the emotion of each utterance in a020

conversation. With the recent advances of dialogue021

research, ERC has gained popularity due to its po-022

tential to support downstream applications such as023

affective dialog systems (Majumder et al., 2020)024

and opinion mining from social media chats (Chat-025

terjee et al., 2019).026

The emotion of an utterance depends on many027

factors including surrounding context and speaker028

personality. Previous studies show that the same029

utterance can express different emotions under dif-030

ferent contexts (Poria et al., 2019b). On the other031

hand, the speaker’s personality and background032

should be considered when we interpret the emo-033

tion of an utterance. For example, in Figure 1, the034

utterance “This is great!” can carry the emotion035

of anger (sarcastic person) or joy (not sarcastic).036

This difference can be attributed to the different037

personalities of the speakers.038

In speaker modeling, we aim to model the inter-039

nal state of the speaker. Moreover, we distinguish040

Figure 1: The emotion conveyed by the phrase “This is
great” can either be anger (sarcasm) or joy (in the case
that the person ordered the wrong item). This example
is taken from (Poria et al., 2019b).

between the Static and Dynamic states of a speaker. 041

The Static speaker state refers to the average state 042

of a person that remains unchanged over a long 043

period of time. On the other hand, the Dynamic 044

speaker state refers to the deviation from the Static 045

state in presence of external stimuli. External stim- 046

uli can dictate and change the speaker’s internal 047

state, which in turn affects the emotion displayed 048

by an individual, hence modeling the Dynamic state 049

of a speaker is important for ERC. 050

In the past few years, Graph Neural Networks 051

(GNNs) have been used increasingly for ERC. 052

GNNs provide an intuitive way to model conversa- 053

tions (Shen et al., 2021) given the inherent struc- 054

tural flexibility of the graph. The graph structure 055

can be used to capture the dependency between 056

utterances and speakers. 057

Recent works such as DialogGCN (Ghosal 058

et al., 2019), RGAT (Ishiwatari et al., 2020), 059

EmoBERTa (Kim and Vossen, 2021) and DAG- 060

ERC (Shen et al., 2021) have modelled conver- 061

sational contexts using various methods, however 062

they do not model speaker state explicitly. Whereas 063

ConGCN (Zhang et al., 2019) and MMGCN (Hu 064

et al., 2021) models the speaker state explicitly, 065

however, they use random embedding for initializa- 066

tion and model just the Static aspect. 067

In this study, we propose a novel graph-based 068

ERC model which considers both Static and Dy- 069

namic aspects of speaker state. We utilize a graph 070
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Figure 2: Model overview. The target utterance is denoted in yellow color.

which includes past utterance nodes and explicit071

speaker nodes to model the interactions between ut-072

terances and speakers in the dialogue. Experimen-073

tal results on the benchmark MELD dataset (Poria074

et al., 2019a) verified the effectiveness of our model075

regarding both context and speaker modeling.076

2 Related Work077

DialogGCN (Ghosal et al., 2019) was the first pa-078

per to use GNN to model dialogues. Given an079

input dialogue, a complete graph within a fixed080

context (past and future) window is built. Since081

graph-based neural networks do not take sequen-082

tial information into account, RGAT (Ishiwatari083

et al., 2020) uses relational positional encodings084

to improve upon DialogGCN. DAG-ERC (Shen085

et al., 2021) built a more intuitive graph structure086

by considering local and remote information, with-087

out using any future utterance.088

EmoBERTa (Kim and Vossen, 2021) modeled the089

speaker state and context by prepending the speaker090

names to utterances and inserting separation tokens091

between the utterances in a dialogue, and feeding092

it to RoBERTa. ConGCN (Zhang et al., 2019) ex-093

plicitly used speaker nodes, which were initialized094

randomly. MMGCN (Hu et al., 2021) also incorpo-095

rated randomly initialized speaking embeddings in096

their model.097

3 Methodology098

Our model consists of three components: Feature099

extractor, Graph encoder, and Prediction layer. Fig-100

ure 2 shows an overview of our proposed model.101

We will give a detailed explanation of our model in 102

this section. 103

3.1 Problem Definition 104

In ERC, a dialogue is defined as a sequence of ut- 105

terances {U1, U2, ..., UN}, where N is the number 106

of utterances. Each utterance Ui is spoken by a 107

speaker Si and has an emotion label Yi. The goal 108

of ERC is to predict the emotion label Yt for a given 109

Ut and St . 110

3.2 Feature Extractor 111

We use pretrained RoBERTa (Liu et al., 2019) as 112

our feature extractor. Inspired by EmoBERTa (Kim 113

and Vossen, 2021), we feed the following sequence 114

to RoBERTa for each utterance Ui with speaker Si 115

(as shown in Figure 2): 116

[CLS]Si : Ui[SEP ] (1) 117

For each utterance Ui, we take the output vector 118

of RoBERTa corresponding to the [CLS] token 119

as the utterance embedding hui . In addition, we 120

extract the RoBERTa output vector corresponding 121

to the speaker token1 Si as the speaker embedding 122

hsi . This component is responsible for the Static 123

speaker state modeling and hsi represents the Static 124

speaker state. 125

3.3 Graph Encoder 126

In this section, we introduce the construction of a 127

dialogue graph and the details of the graph encoder. 128

1In the case when speaker name is a multi-token entity, we
consider the first token for the speaker embedding.
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3.3.1 Graph Construction129

For a target utterance Ut in the dialogue, we build130

a graph G = (V,E) to model the surrounding131

context and speaker information, where V denotes132

the set of nodes and E is the set of edges.133

The graph G contains two types of nodes:134

• Utterance node: We consider the target utter-135

ance Ut and up to w utterances preceding Ut136

as past utterances.137

• Speaker node: We consider the unique speak-138

ers of the target and past utterances.139

The set of nodes can be represented as:140

V = {Ui}i=t
i=t−w ∪ Uniq({Si}i=t

i=t−w) (2)141

where the function Uniq() returns all the unique142

elements in a set.143

Our graph contains two types of edges:144

• Utterance-Utterance Edge: We connect each145

utterance to its previous utterance. These146

model the effect of past utterance on the147

present utterance. These are given by Euu =148

{(Ui−1, Ui)}i=t
i=t−w+1149

• Utterance-Speaker Edge: We connect each150

utterance Ui to its corresponding speaker Sj .151

The set of utterance-speaker edges are denoted152

as Eus = {(Ui, Sj)}i=t
i=t−w. These edges153

model the effect of speakers on the utterances.154

The set of edges can be given by:155

E = Euu ∪ Eus, (3)156

Figure 2 (Graph Encoder part) illustrates an ex-157

ample of the constructed graph with a target ut-158

terance U4 (colored in yellow) and 3 past utter-159

ances. U1 and U3 are spoken by a unique speaker160

S1, while U2 and U4 are spoken by another unique161

speaker S2. (Note that the subscripts of the speak-162

ers reflects the indices after Uniq().)163

3.3.2 Node Initialization164

We initialize the Utterance and Speaker nodes as165

follows:166

• Utterance node : u0i = hui ∀i ∈ [t− w, t]167

• Speaker node : s0j = avg(hsi ) ∀i spoken by168

Sj .169

Since there is only one speaker node for each170

unique speaker, we use the averaged speaker em-171

beddings to initialize the Speaker node.172

3.3.3 GNN-Based Graph Encoding Layers 173

After constructing and initializing the graph, we 174

feed it to the GNN-based encoding layers, which 175

update node representations considering the graph 176

structure. This component is responsible for the 177

Dynamic speaker state modeling. 178

We use l-layered GNN to get the updated node 179

representations based on the graph structure of G. 180

For kth layer, all the nodes (Speaker and Utterance 181

nodes) are updated considering each of their direct 182

neighbours: 183

({uki }, {skj }) = GNNk({uk−1
i }, {sk−1

j }) (4) 184

After being updated by l layers, the Static 185

speaker state, s0j , is updated to slj , which repre- 186

sents the Dynamic speaker state. Similarly, the 187

initial utterance embedding u0i is updated to final 188

utterance embedding uli. 189

3.4 Emotion Classification 190

Finally, we concatenate the initial and the final ut- 191

terance embeddings of target utterance and feed it 192

through a feed-forward network to classify emo- 193

tions. 194

Pt = softmax(FFN(u0t ||ult)), (5) 195

196

Y ∗
t = argmax(Pt), (6) 197

Here, || denotes the concatenation operation, FFN 198

is the feed-forward neural network layer, and Pt is 199

the probability distribution for the predicted emo- 200

tion. 201

3.5 Training Objective 202

We use the standard cross-entropy along with L2- 203

regularization as the loss (L): 204

L = −
M∑

x=1

Nx∑

t=1

logPx,t[Yx,t] + λ||θ||2, (7) 205

Here, M is the total number of training dia- 206

logues, Nx is the number of utterances in the xth 207

dialogue, Px,t and Yx,t are the predicted probability 208

distribution of emotion labels and the truth label 209

respectively for utterance t of the dialogue x. λ is 210

the L2-regularization weight, and θ is the set of all 211

trainable parameters. 212
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Train Dev Test
# Utterance 9,989 1,109 2,610

# Dialogue 1,039 114 280

Table 1: Statistics for the MELD dataset.

4 Experiments and Results213

Experiments on the benchmark dataset shows the214

effectiveness of our model. Details of experiments215

and analysis are given in this section.216

4.1 Dataset217

We evaluate our model on the benchmark Multi-218

modal EmotionLines Dataset (MELD) dataset (Po-219

ria et al., 2019a). MELD is a multi-modal dataset220

collected from the TV show Friends. There are 7221

emotion labels: neutral, happiness, surprise, sad-222

ness, anger, disgust, and fear. Since this is an im-223

balanced dataset, weighted-F1 is used as the evalu-224

ation metric. More than 85% of the utterances in225

MELD are spoken by 6 main speakers, this high226

utterance per speaker is useful for modeling the227

speaker state. The statistics of MELD are shown in228

Table 1.229

4.2 Experimental Settings230

The feature extractor used is the pre-trained231

RoBERTa-large (Liu et al., 2019). The size of232

all the hidden features is 1024. We experiment233

with Graph Convolutional Network(GCN) (Kipf234

and Welling, 2017) and Graph Attention Net-235

work(GAT) (Veličković et al., 2018) as the GNN-236

based graph encoding layers. For the GCN based237

model, the past context is set to be 3 utterances and238

the number of GNN layers was set to be 2. For the239

GAT based model, the past context is set to be 5240

utterances and the number of GNN layers was set241

to be 3. GAT model also has three attention heads242

in addition to the above settings.243

The models are trained for 10 epochs, batch size244

is set to be 8, and the learning rate is set to 1e-6.245

The model with the highest weighted-F1 on the246

validation set is selected for evaluation. Due to247

the stochastic nature of the model, we report the248

averaged score of 3 random runs on the test set.249

4.3 Evaluation250

Compared Methods and Results: We compare251

our proposed model with baselines and previous252

works. The results are reported in Table 2.253

First, we establish two baselines: RoBERTa (no 254

context) and RoBERTa (w/ modified input). In the 255

RoBERTa (no context) utterance alone is used as 256

input to the pre-trained RoBERTa model. In the 257

RoBERTa (w/ modified input) we use a modified in- 258

put as given by Equation 1. Our proposed method 259

outperforms both RoBERTa baselines by F1 scores 260

of 2.4 and 1.8, respectively. This shows the advan- 261

tage of using the graph encoding mechanism. 262

Next, we compare our model with other GNN- 263

based models: DAG-ERC, DialogGCN and RGAT. 264

For fair comparison, we use the models which 265

use RoBERTa-large as the feature extractor2. Our 266

model outperforms all these models, proving the 267

advantage of using explicit speaker nodes to model 268

conversations. 269

Finally, we compare our results with the 270

EmoBERTa model3. Our model with GCN encoder 271

performs slightly worse than EmoBERTa. How- 272

ever, our model with GAT encoder outperforms 273

EmoBERTa. Hence, we can state that the perfor- 274

mance of our model and EmoBERTa is comparable. 275

Note that EmoBERTa uses both past and future ut- 276

terances as context, whereas we only use the past 277

utterances as context, which is more natural as 278

conversations proceed with time and future utter- 279

ances cannot be used for real-time applications. 280

Under the condition that only the past utterances 281

are allowed, both our proposed models outperform 282

EmoBERTa (wo/ future context). 283

GCN vs. GAT: In our experiments, models 284

which utilize GAT as graph encoders outperformed 285

the GCN ones. The edge weights for all edges 286

in our GCN models were set to be 1. On the 287

other hand, the edge weights for GAT models were 288

learned and optimized during the training of our 289

model due to the explicit attention heads of the 290

GAT based models. 291

We speculate that since the utterance-utterance 292

edge and speaker-utterance edge are different in 293

nature so their edge weight should be different, 294

hence GAT outperformed GCN and has the ability 295

to better represent the relations between nodes. 296

Since, GAT based model performs superior to 297

GCN based one, we use GAT based models for 298

further analysis. 299

2The authors of DAG-ERC re-implement DialogGCN and
RGAT using RoBERTa-large as feature extractor, we include
the scores reported by the DAG-ERC paper.

3EmoBERTa was the SOTA model while this re-
search was conducted, the new SOTA model is EmotionFlow.
(https://github.com/fpcsong/emotionflow/blob/master/EmotionFlow.pdf)
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Model Weighted-F1
RoBERTa (no context) 0.635

RoBERTa (w/ modified input) 0.641

DAG-ERC 0.636

RGAT (+RoBERTa) 0.628

DialogueGCN (+RoBERTa) 0.630

EmoBERTa 0.656

EmoBERTa (wo/ future context) 0.646

Proposed (GCN) 0.652

Proposed (GAT) 0.659

Table 2: Experimental results on MELD.

Method Weighted-F1
Proposed (Static + Dynamic) 0.658
Proposed (wo/ speaker) (Static) 0.646

Proposed (random init. speaker) 0.638

Table 3: Impact of speaker modeling.

4.4 Analysis300

In this section, we conduct various analysis of our301

proposed model.302

4.4.1 Impact of Speaker Modeling303

To investigated the impact of the speaker modeling304

on the performance, we evaluated our model by305

removing speaker nodes, Proposed (wo/ speaker),306

and by randomly initializing speaker nodes, Pro-307

posed (random init. speaker). The results are308

shown in Table 3. These results are with three309

past context and two GAT layer model.310

Removing speaker nodes reduces the weighted-311

F1 score by 1.2. The significant decrease indicates312

the importance of speaker modeling to the ERC313

task. Whereas, randomly initializing speaker nodes314

results in a performance drop of 2.0 points. More-315

over, the score with random speaker initialization316

is lower than the score of the model without any317

speaker nodes. We hypothesize that the random em-318

beddings create noise and hinder the performance.319

4.4.2 Impact of Context Window Size and the320

Number of GAT layers321

To analyze the impact of context window size, we322

varied the past context window size from 1 to 5.323

The results are reported for two and three GAT324

layers in Figure 3. The model performs worst when325

we use only one past context, which illustrates the326

necessity to model sufficient context. Moreover,327

we also find out that the optimal number of past328

context varied for different number of GNN layers 329

(3 context for 2 layers and 5 context for 3 layers). 330

Next, we investigated the effect of changing the 331

number of layers on the performance. One layer of 332

graph encoder updates a node considering all the 333

one-hop neighbours. The scores for the number of 334

layers from two to five for a past context of size five 335

is given in the Figure 4. The score is highest for 336

three layers. Our graph structure allows informa- 337

tion to be aggregated from the last context utterance 338

in few hops due to utterances being connected by 339

speaker nodes, so the performance does not change 340

greatly by changing the number of layers. 341

4.4.3 Case Study 342

We performed a qualitative analysis for our model. 343

We used the model with five past contexts and three 344

GAT layers. We manually inspected ten test sam- 345

ples that were predicted correctly and ten instances 346

that were predicted incorrectly. 347

We found that utterances with speakers other 348

than the six main speakers have a higher chance 349

of being predicted incorrectly (six out of ten in- 350

correctly predicted test samples contained at least 351

one speaker other than the main speakers). We 352

speculate that this can be attributed to the fact that 353

we only modeled the main six speakers, and for 354

the case of other speakers, we did not construct 355

any speaker nodes. In the first sample given in Ta- 356

ble 4 it is noted that a non-main speaker (Steve) 357

accounts for a considerable part of the dialogue and 358

our system predicts the emotion incorrectly. 359

However, in the cases in which the main speakers 360

make up the majority of the past context, the emo- 361

tion of utterances of other speakers can be predicted 362

correctly. The second sample in Table 4 shows this, 363

where the emotion label for the dialogue of a non- 364

main speaker (Fireman #1) is predicted correctly. 365

The reason might be that the speaker nodes of the 366

main speakers assist the model in predicting the 367

emotion label. 368

5 Conclusion 369

We proposed a novel graph-based method to model 370

speaker states explicitly for the task of ERC. Exper- 371

iments showed that our model outperforms base- 372

lines and other graph-based models. We analyse 373

the impact of speaker modeling and show that both 374

Static speaker state and Dynamic speaker state mod- 375

eling are important for the accurate prediction of 376

emotions in ERC. In addition, we investigate the 377
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Dialogue Predicted Gold
Steve: Oh, okay, I get it.

Ross : No wait, look. Look! I’m sorry, it’s just I’ve never even

Steve: Howard’s the,

Ross: Yes but too me he’s just, man.

Steve : Okay, fine, whatever. Welcome to the building. neutral anger
Phoebe: Oh!

Rachel : My God!

Joey: Hey buddy, do you think I can borrow your uniform this Thursday?

Fireman #1: Excuse me? surprise surprise

Table 4: Case study. The target utterance is shown in italics.

Figure 3: Impact of past context size with two and three
GAT layers.

Figure 4: Impact of number of GAT layers. Context
window is of size 5.

effect of changing the number of GNN layers and378

the past context on the performance of our model.379
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