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Abstract
Neural models trained with large amount of
parallel data have achieved impressive per-
formance in abstractive summarization tasks.
However, large-scale parallel corpora are ex-
pensive and challenging to construct. In this
work, we introduce a low-cost and effective
strategy, ExtraPhrase, to augment training
data for abstractive summarization tasks. Ex-
traPhrase constructs pseudo training data in
two steps: extractive summarization and para-
phrasing. We extract major parts of an input
text in the extractive summarization step and
obtain its diverse expressions with the para-
phrasing step. Through experiments, we show
that ExtraPhrase improves the performance of
abstractive summarization tasks by more than
0.50 points in ROUGE scores compared to
the setting without data augmentation. Ex-
traPhrase also outperforms existing methods
such as back-translation and self-training. We
also show that ExtraPhrase is significantly ef-
fective when the amount of genuine training
data is remarkably small, i.e., a low-resource
setting. Moreover, ExtraPhrase is more cost-
efficient than the existing approaches1.

1 Introduction

Neural encoder-decoders have achieved remark-
able performance in various sequence-to-sequence
tasks including machine translation, summariza-
tion, and grammatical error correction (Bahdanau
et al., 2015; Rush et al., 2015; Yuan and Briscoe,
2016). Recent studies indicated that neural meth-
ods are governed by the scaling law for the amount
of training data (Koehn and Knowles, 2017; Brown
et al., 2020). In short, the more training data we
prepare, the better performance a neural model
achieves. In this paper, we address increasing the
training data for summarization to improve the per-
formance of neural encoder-decoders on abstractive
summarization tasks.

1The datasets used in our experiments are available at
https://github.com/loem-ms/ExtraPhrase.

In sequence-to-sequence tasks, we need a paral-
lel corpus to train neural encoder-decoders. Since
it is too costly to construct genuine (i.e., human-
generated) parallel corpora, most studies explored
the way to construct pseudo training data automati-
cally. Back-translation is a widely used approach
to construct pseudo training data for sequence-to-
sequence tasks (Sennrich et al., 2016a; Edunov
et al., 2018; Caswell et al., 2019). In the back-
translation approach, we construct a model gen-
erating a source side sentence from a target side
sentence, and apply the model to a target side cor-
pus to generate a pseudo source side corpus. In
addition to machine translation, back-translation
is also used in grammatical error correction (Kiy-
ono et al., 2019) and summarization (Parida and
Motlicek, 2019) tasks. However, back-translation
on summarization is an unrealistic problem because
a model is required to restore deleted information
in the given summary without any guide.

He et al. (2020) indicated that the self-training
approach, which makes a model generate target
sentences from source sentences and use the pairs
to train a model, can improve the performance
on machine translation and summarization. How-
ever, pseudo data generation for summarization
by self-training is hard to generate diverse sum-
maries (Gu et al., 2018). Moreover, self-training
and back-translation approaches require expensive
computational cost because we need to train addi-
tional neural encoder-decoders on a large amount
of training data to obtain high-quality pseudo
data (Imankulova et al., 2019).

To solve these issues, we propose a novel strat-
egy: ExtraPhrase consisting of extractive summa-
rization and paraphrase to construct pseudo train-
ing data for abstractive summarization. Firstly, Ex-
traPhrase extracts an important part from a source
text as a summary without requiring additional
model training. Then, we apply a paraphrasing
technique to the extracted text to obtain diverse
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Figure 1: Example of pseudo summary generated by ExtraPhrase. The upper part shows output sentences in each
step of ExtraPhrase. Paraphrased words after paraphrasing (round-trip translation) in step-2 are highlighted in blue.

pseudo summaries.
We conduct experiments on two summarization

tasks: headline generation and document sum-
marization tasks. Experimental results show that
pseudo training data constructed by our proposed
strategy improves the performance on both tasks.
In detail, the pseudo data raises more than 0.50 in
ROUGE F1 scores on both tasks. Moreover, we
show that ExtraPhrase is robust in low-resource set-
tings and is much more cost-efficient than previous
self-training and back-translation approaches.

2 Proposed Method: ExtraPhrase

As described in Section 1, our ExtraPhrase consists
of two steps: extractive summarization and para-
phrasing. Figure 1 illustrates the overview of Ex-
traPhrase briefly. ExtraPhrase receives a (genuine)
sentence as an input, and generates a pseudo sum-
mary corresponding to the input sentence. When
we construct a pseudo summary from a document,
we independently apply ExtraPhrase to multiple
sentences included in the given document.

2.1 Step-1: Extractive Summarization

In this extractive summarization step, we extract
important parts of a given source sentence with
sentence compression. Previous studies proposed
various sentence compression methods such as rule-
based methods (Dorr et al., 2003), the approach
detecting important parts in a syntax tree (Turner
and Charniak, 2005; Filippova and Altun, 2013;
Cohn and Lapata, 2009), sequential labeling ap-
proach (Hirao et al., 2009), and neural-based meth-
ods (Filippova et al., 2015; Kamigaito et al., 2018).

In this study, we adopt the most straightforward
approach: a rule-based method based on the syntax

tree of the given sentence. Because the rule-based
approach does not require any training corpus, we
can use it in the situation where we do not have
genuine parallel corpus. We emphasize that we can
use more sophisticated way if we need because we
do not have any restrictions for the summarization
method in this step.

We define a rooted subtree of the syntax tree for
the given sentence as important parts of the sen-
tence. First, we parse the given sentence to obtain
its dependency tree. Follow Filippova and Altun
(2013), we combine functional words with their
heads on the dependency tree. Then, we prune the
dependency tree to obtain a smaller rooted subtree.
We can roughly control the output summary length
(the number of words) by the depth of the subtree.
The left lower part of Figure 1 illustrates these pro-
cesses. Finally, we linearize the extracted rooted
subtree to obtain its sequential representation by
following the word order of the original sentence.

2.2 Step-2: Paraphrasing

The constructed summaries by the previous step
consist of words included in the source sentences
only. To increase the diversity of the summaries,
we apply the paraphrasing method to the sum-
maries. For paraphrasing, we adopt the approach
using machine translation models (Sun and Zhou,
2012; Mallinson et al., 2017) because some studies
published high-quality neural machine translation
models (Ott et al., 2018; Ng et al., 2019). In this
approach, we obtain paraphrases by conducting
round-trip translation that translates a sentence into
a different language and the translated sentence
into the original language. The right lower part of
Figure 1 illustrates this process.
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3 Experiments

To investigate the effect of ExtraPhrase, we conduct
experiments on two summarization tasks: headline
generation and document summarization tasks.

3.1 Datasets

For the headline generation task, we use the de-
facto headline generation dataset constructed by
Rush et al. (2015). The dataset contains pairs of
the first sentence and headline extracted from the
annotated English Gigaword (Napoles et al., 2012).
We use the same splits for train, valid, and test as
Rush et al. (2015). We use the byte pair encod-
ing (Sennrich et al., 2016b) to construct a vocabu-
lary set with the size of 32K by sharing vocabulary
between source and target sides.

For the document summarization task, we use
CNN/DailyMail dataset (See et al., 2017). The
training set contains 280K pairs of news articles
and abstractive summary extracted from CNN and
DailyMail websites. We construct a vocabulary set
with the byte pair encoding (Sennrich et al., 2016b)
and set the vocabulary size to 32K with sharing
vocabulary between source and target sides.

3.2 Comparison Methods

We compare ExtraPhrase with several existing
methods to increase the training data size as fol-
lows. We use the training set of each dataset de-
scribed in Section 3.1 to construct pseudo data.

Oversampling This strategy is the simplest ap-
proach to increase the dataset size. We sample
source-summary pairs from the genuine training
set and add the sampled instances to training data.
Thus, the training data constructed by this approach
contains genuine data only.

Back-translation In back-translation, we train a
neural encoder-decoder that generates a source text
from a summary by using each training set. Then,
we input summaries in the training set to the neural
encoder-decoder to generate corresponding source
texts2. We use the pairs of pseudo source texts and
genuine summaries as pseudo training data.

2For the back-translation approach in machine translation,
we generate sentences in the source language from monolin-
gual corpus in the target language. In the abstractive sum-
marization, we need summaries as sentences in the target
language but it is hard to obtain corpus containing summaries
only. Thus, we use genuine summaries in training data as an
input of back-translation.

Self-training In self-training, we train a neural
encoder-decoder that generates a summary from a
source text by using each training set. Then, we
input source texts in the training set to the neu-
ral encoder-decoder to generate the corresponding
summaries. We use the pairs of pseudo summaries
and genuine source texts as pseudo training data.

ExtraPhrase We apply ExtraPhrase to each train-
ing set. In the headline generation task, we con-
struct pseudo summaries from the source sentence
in the training data. Because ExtraPhrase generates
pseudo summary in sentence unit, the number of
sentences in generated summary is not reduced in
the case of multi-sentence source text. Thus, we
use the first three sentences in the source document
to reduce the number of input sentences beforehand
in the document summarization task. As described
in Section 2, we apply ExtraPhrase to each sen-
tence one-by-one, and then concatenate them in
the original order. In this study, we use spaCy3

(Honnibal et al., 2020) for dependency parsing and
prune nodes whose depths are deeper than half
of the dependency tree in the extractive summa-
rization step. For the paraphrasing step, we use
English-to-German and German-to-English trans-
lation models4 constructed by Ng et al. (2019). We
translate sentences with beam width 5.

For all pseudo training data, we attach a special
token, <Pseudo>, to the front of the source text
because Caswell et al. (2019) indicated that this
strategy improves the performance in training on
pseudo data.

3.3 Encoder-Decoder Architecture

We use the de-facto standard neural encoder-
decoder model, Transformer (Vaswani et al., 2017)
in our experiments. We also use the Transformer
for back-translation and self-training in addition to
each abstractive summarization model. We use the
Transformer-base setting described in Vaswani et al.
(2017) as our architecture. The setting is widely
used in studies on machine translation (Vaswani
et al., 2017; Ott et al., 2018). In detail, we use the
implementation in the fairseq5 (Ott et al., 2019) for
our experiments.

3https://spacy.io/
4https://github.com/pytorch/fairseq/

tree/main/examples/translation
5https://github.com/pytorch/fairseq
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Method
Headline Generation Document Summarization

Training Data R-1 R-2 R-L Training Data R-1 R-2 R-L
Genuine only 3.8M 37.95 18.80 35.05 280K 39.76 17.55 36.75
Oversampling 7.6M 38.26 19.14 35.41 560K 40.14 17.86 37.05
Back-translation 7.6M (3.8M) 38.49 19.24 35.63 560K (280K) 39.93 17.74 36.85
Self-training 7.6M (3.8M) 38.32 19.06 35.37 560K (280K) 40.19 17.87 37.21
ExtraPhrase 7.6M (3.8M) 38.51 19.52 35.72 560K (280K) 40.57 18.22 37.51
w/o paraphrasing 7.6M (3.8M) 38.85 19.43 35.86 560K (280K) 40.32 17.94 37.28
w/o extractive 7.6M (3.8M) 38.52 19.32 35.71 560K (280K) 40.33 18.10 37.38

Table 1: ROUGE F1 scores (R-1, 2, and L) for the headline generation and document summarization tasks. The
number of genuine training data is shown in parentheses.

3.4 Results

Table 1 shows F1 based ROUGE-1, 2, and L scores
for each setting on the headline generation and
document summarization tasks. We use the same
size of training data for each method except for
Genuine only.

Table 1 indicates that Oversampling outperforms
Genuine only. This result indicates that the more
training data we prepare, the better performance an
encoder-decoder achieves even if the training data
contains many duplications. For Back-translation
and Self-training, they achieve better performance
than Genuine only, but their scores are compara-
ble to ones of Oversampling in both tasks. These
results imply that the improvements in their ap-
proaches are not based on the quality of their gener-
ated pseudo data, but based on the increase of train-
ing data. Since Back-translation and Self-training
require training an additional model to construct
pseudo data, these approaches are more costly than
Oversampling.

In contrast, our ExtraPhrase achieves better per-
formance than other approaches. In particular, our
pseudo training data significantly improves the
ROUGE-2 score compared to Genuine only set-
ting in the headline generation. For the document
summarization, our pseudo training data signifi-
cantly improves all ROUGE scores6. These results
indicate that ExtraPhrase is more effective than
existing approaches including oversampling, back-
translation, and self-training to construct pseudo
data for the abstractive summarization tasks.

In addition to configurations described in Sec-
tion 3.2, we also report results when using each
step of the proposed method to generate pseudo
training data to investigate the effect of each step.

6These results are statistically significant according to Stu-
dent’s t-test (p < 0.05) in comparison with Genuine only.

ExtraPhrase w/o paraphrasing in Table 1 refers
to applying only the extractive summarization de-
scribed in 2.1 on source articles of genuine training
data to obtain pseudo summaries. Similarly, Ex-
traPhrase w/o extractive refers to applying only
the paraphrasing described in 2.2 on summaries of
genuine training data.

For the headline generation task, ExtraPhrase
w/o paraphrasing achieves better performance than
Genuine only setting. Surprisingly, although with
a small margin, this result also outperforms Ex-
traPhrase, where the paraphrasing step is applied af-
ter the extractive summarization, in ROUGE-1 and
ROUGE-L. ExtraPhrase w/o extractive achieves
comparable ROUGE-1 and ROUGE-L scores com-
pared to ExtraPhrase, but with a decrease in
ROUGE-2 score. However, this result is better
than Oversampling, where duplicated data is used,
which infers that the paraphrasing step effectively
boosts the diversity in augmented training data.

For the document summarization task, summa-
rization performance decreases in both ExtraPhrase
w/o paraphrasing and ExtraPhrase w/o extractive.
These results imply that ExtraPhrase is better than
using each composing step alone.

4 Analysis

4.1 Low-resource Setting

In this section, we investigate the effectiveness of
ExtraPhrase when the amount of genuine training
data is small.

We randomly sample 1K source text and sum-
mary pairs from each training set in the head-
line generation and document summarization tasks.
Then, we conduct the same experiments in Section
3 by using the sampled 1K instances as genuine
training data. We construct pseudo training data
from the rest of each training data and combine
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Method
Headline Generation Document Summarization

Training Data R-1 R-2 R-L Training Data R-1 R-2 R-L
Genuine only 1K 4.84 0.58 4.66 1K 2.48 0.29 2.45
Oversampling 3.8M 9.89 1.39 9.30 280K 13.63 0.89 12.63
Back-translation 3.8M (1K) 12.19 2.43 11.31 280K (1K) 9.73 0.50 8.92
Self-training 3.8M (1K) 7.27 1.07 6.98 280K (1K) 14.37 1.52 13.36
ExtraPhrase 3.8M (1K) 23.58 6.56 21.12 280K (1K) 34.47 12.91 31.36
w/o paraphrasing 3.8M (1K) 22.56 5.25 19.87 280K (1K) 32.95 12.07 29.44
Extractive – 18.72 4.26 17.09 – 28.52 8.02 23.83

Table 2: ROUGE F1 scores (R-1, 2, and L) for the headline generation and document summarization tasks in
low-resource setting. The number of genuine training data is shown in parentheses.

Task Method BLEU BERTScore

Headline generation
Self-training 28.64 92.44
ExtraPhrase 1.51 86.19

Document summarization
Self-training 19.91 90.02
ExtraPhrase 5.89 87.33

Table 3: BLEU scores and F1 based BERTScores between genuine and pseudo training data.

the pseudo data with the sampled genuine data for
training. For Self-training and Back-translation,
we train neural encoder-decoders with the sampled
1K instances, and then apply them to the rest of
training data for the pseudo data construction.

Table 2 shows the F1 based ROUGE scores of
each method on the headline generation and docu-
ment summarization tasks when we have a small
amount of genuine training data. This table indi-
cates that Back-translation and Self-training out-
perform Genuine only. These results are consistent
with the result in Section 3.4. However, the per-
formance improvement by Back-translation and
Self-training are smaller compared to ExtraPhrase.
These results show that Back-translation and Self-
training tend to be ineffective when the amount of
genuine training data is small (see appendix A).

For ExtraPhrase, it achieves significantly better
performance than others in both tasks. Thus, Ex-
traPhrase is more effective when the amount of the
genuine training data is small. The lowest parts of
Table 2 shows the results of ExtraPhrase without
paraphrasing for the ablation study. In ExtraPhrase
w/o paraphrasing setting, we train the model with
genuine and pseudo training data generated by Ex-
traPhrase without the paraphrasing step. Moreover,
Extractive in these parts shows the ROUGE scores
of summaries generated by the extractive summa-
rization step. These parts indicate that ExtraPhrase
outperforms the one without paraphrasing. Thus,
we need the paraphrasing step to improve the qual-

ity of the pseudo training data, although the setting
excluding paraphrasing significantly outperforms
others. Moreover, ROUGE scores of Extractive
are much lower than ones of ExtraPhrase. This re-
sult implies that we need to train a neural encoder-
decoder by using the pseudo data as the training
data to generate better abstractive summaries.

4.2 Diversity of Pseudo Summaries

We assume that our ExtraPhrase can generate more
diverse summaries in comparison with the self-
training approach. To verify this assumption, we
compare pseudo summaries generated by Self-
training and ExtraPhrase.

Table 3 shows BLEU scores (Papineni et al.,
2002) between genuine summaries in each training
data and generated pseudo summaries. In addition,
this table also shows F1 based BERTScores (Zhang
et al., 2020) of them as the indicator of seman-
tic similarities. This table indicates that both
BERTScores of Self-training and ExtraPhrase are
remarkably high. This result implies that the gener-
ated summaries are semantically similar to genuine
summaries. Thus, generated summaries are suit-
able as pseudo data semantically.

In contrast, the BLEU score of ExtraPhrase is
much lower than one of Self-training. This re-
sult indicates that ExtraPhrase generates pseudo
summaries that contain many different phrases
from the genuine summaries in comparison with
Self-training. Therefore, ExtraPhrase can generate
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Task Method Training Generation Cost
Back-translation 256 H 7 H 333 USD

Headline generation Self-training 256 H 4 H 328 USD
ExtraPhrase – 7 H 12 USD
Back-translation 384 H 16 H 511 USD

Document summarization Self-training 320 H 8 H 417 USD
ExtraPhrase – 15 H 26 USD

Table 4: Cost on pseudo data generation using Amazon Elastic Compute Cloud (Amazon EC2). Consuming times
are calculated in case of one GPU.

much more diverse summaries than Self-training.

5 Efficiency of Pseudo-data Generation

Our proposed ExtraPhrase does not require addi-
tional neural encoder-decoders such as the back-
translation and self-training approaches. We dis-
cuss the advantage of this property.

Table 4 shows time required by each pseudo data
construction method. This table also shows costs
when we use Amazon EC2, which is a cloud com-
puting service, to construct pseudo data. This table
indicates that Back-translation and Self-training
require much time to train their neural encoder-
decoders. In contrast, for ExtraPhrase, we do not
spend any time on such training. Therefore, Ex-
traPhrase is much more cost-efficient than others.

6 Related Work

Data Augmentation Back-translation and self-
training are widely used techniques in data aug-
mentation for sequence-to-sequence tasks (Sen-
nrich et al., 2016a; Kiyono et al., 2019; Parida and
Motlicek, 2019; He et al., 2020).

Sennrich et al. (2016a) proposed back-
translation to augment training data for machine
translation by translating monolingual data on the
target side to generate source side pseudo data.
Edunov et al. (2018) reported the effectiveness
of the back-translation approach in large-scale
monolingual settings for machine translation.
In addition, Hoang et al. (2018) introduced an
iterative version by repeatedly applying back-
translation several times. Back-translation is an
effective approach for machine translation but it
is unrealistic to apply the approach to abstractive
summarization.

In self-training, we train a model on genuine
data and apply it to generate pseudo data. Zhang
and Zong (2016) applied self-training to enlarge
parallel corpus for neural machine translation. He

et al. (2020) introduced noisy self-training that uses
dropout as the noise while decoding in self-training.
These studies reported the effectiveness of self-
training but self-training is hard to generate diverse
pseudo data (Gu et al., 2018).

Perturbation Using perturbation that is a small
difference from genuine data can be regarded as
data augmentation (Kobayashi, 2018). Takase and
Kiyono (2021) investigated the performance of var-
ious perturbations including adversarial perturba-
tions (Goodfellow et al., 2015), word dropout (Gal
and Ghahramani, 2016), and word replacement on
various sequence-to-sequence tasks. Since these
perturbations are orthogonal to our ExtraPhrase,
we can combine them with ours. In fact, Takase
and Kiyono (2021) reported that simple perturba-
tions such as word dropout are useful on pseudo
data generated by back-translation.

7 Conclusion

This paper proposes a novel strategy, ExtraPhrase,
to generate pseudo data for abstractive summa-
rization tasks. ExtraPhrase consists of two steps:
extractive summarization and paraphrasing. We
obtain the important parts of an input by the ex-
tractive summarization, and then obtain diverse
expressions by the paraphrasing. Experimental re-
sults indicate that ExtraPhrase is more effective
than other pseudo data generation methods such as
back-translation and self-training. Moreover, we
show that ExtraPhrase is much more cost-efficient
than others in pseudo data construction.
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Ratio Difference R-1 R-2 R-L
Headline generation

0.86 -5 35.14 15.13 28.59
Document summarization

0.81 -297 13.76 1.09 13.07

Table 5: F1 based ROUGE scores (R-1, 2, and L) be-
tween source texts generated by back-translation and
genuine source texts. Ratio and Difference are compar-
isons between the number of tokens in generated source
texts and genuine ones.

A Quality of Back-translation

As described in Section 1, the back-translation ap-
proach for the abstractive summarization task is
essentially impossible because it requires restoring
source texts from summaries without any additional
information. Thus, we investigate the quality of
source texts generated by Back-translation.

Table 5 shows the length difference and ratio be-
tween genuine and source text generated by Back-
translation. This table indicates that the generated
source texts are shorter than the original genuine
data. This result implies that Back-translation fails
to restore the full information in the genuine data.
In other words, this result implies that it is difficult
to generate source texts from summaries.

Table 5 also shows ROUGE scores of source
texts generated by Back-translation when we regard
the genuine source texts as the correct instances to
investigate whether the generated texts correspond
to the genuine data. For the document summariza-
tion, ROUGE scores are extremely low. This result
also indicates that Back-translation fails to generate
source texts.

On the other hand, ROUGE scores on the head-
line generation are much higher than ones on the
document summarization. This result implies that
Back-translation might restore the core parts of
source texts from summaries. Because the headline
generation is the task of generating a headline from
a given sentence, the summary (headline) often
contains the dominant part of the source sentence.
We consider this property causes such high scores.
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