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Abstract

TextHide was proposed to protect the training
data via instance encoding in the natural lan-
guage domain. Due to the lack of theoretic pri-
vacy guarantee, such instance encoding scheme
has been shown to be vulnerable to privacy at-
tacks, e.g., reconstruction attacks. To address
such limitation, we integrate differential pri-
vacy into the instance encoding scheme, and
thus provide a provable guarantee against pri-
vacy attacks. The experimental results also
show that the proposed scheme can defend
against privacy attacks while ensuring learn-
ing utility (as a trade-off).

1 Introduction

Machine learning models have been widely de-
ployed in a wide range of applications/domains,
such as speech recognition (Zhang et al., 2018b),
computer vision (Guo et al., 2020) and natural lan-
guage processing (Chen et al., 2019; Radford et al.,
2019; Brown et al., 2020). Meanwhile, the pri-
vacy issues have also aroused more and more at-
tention as machine learning-based systems usually
aggressively collect large amounts of data for bet-
ter performance, which could contain user’s per-
sonal information and thus jeopardize user’s pri-
vacy. For instance, the hospital admission infor-
mation and diagnosis report can be processed by
language models to predict the readmission rate of
a patient (Lehman et al., 2021). Another example is
that the prediction of keyboard input would require
personal users’ daily input texts for better accuracy
(Chen et al., 2019). This may not only lose cus-
tomer trust, but also violate some data regulations
or laws, e.g., GDPR (Wachter et al., 2017).

The privacy-enhancing technologies (PETs)
(Gentry, 2009; Chaudhuri et al., 2011; Mohassel
and Zhang, 2017; Cabrero-Holgueras and Pastrana,
2021) have been widely studied to ensure the data
privacy in the machine learning, which mainly
include two foundations of theory as following.

First, the cryptographic protocols (Mohassel and
Zhang, 2017; Mohassel and Rindal, 2018) can help
to securely train the model with the private data
(in encrypted format), and the privacy of data de-
pends on the hard mathematical problems (Pail-
lier, 1999). Although the cryptographic protocol-
based schemes provide good data privacy, these
also arouse high computational overheads due to
the computation on encrypted data and other com-
plicated building blocks.

Second, differential privacy (DP) (Dwork et al.,
2006b, 2014) provides a lightweight way to pro-
tect the data against the adversaries with arbitrary
information during the training, which can obtain
quantifiable privacy guarantees. For example, the
widely used DP-SGD (Bassily et al., 2014; Abadi
et al., 2016) ensures the privacy of training data
sample by clipping the gradients and adding DP
noise (e.g., Gaussian mechanism) with the model
updates. The introduction of DP noise enables the
limited effect of one individual data on the trained
model (and thus achieving the privacy guarantee).
Additionally, another category of work is to add
DP noise into the dataset following the method of
DP synthetic data release and then train a model on
such private data (Vaidya et al., 2013; Mohammady
et al., 2020). Yet, the differential privacy-based
learning schemes could cause great accuracy loss.

Alternatively, a private learning scheme called
instance encoding (Huang et al., 2020a,b) has been
proposed to obtain both privacy and utility for
model training, which encodes the private data into
“encrypted” data via mixup (Zhang et al., 2018a).
While the privacy is claimed to be guaranteed by
the encoding scheme, the data utility can be main-
tained by mixup scheme, only causing minor ac-
curacy loss. However, it has been shown that such
instance encoding scheme cannot provide strong
privacy guarantee as cryptographic protocols (Mo-
hassel and Rindal, 2018) or differential privacy
(Dwork et al., 2014) against privacy attacks empiri-
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cally (Carlini et al., 2020a). That is, well-designed
privacy attacks (Carlini et al., 2020b; Xie and Hong,
2021) can break the instance encoding scheme to
reconstruct the original data from the encoded data
with high success rates. To address the privacy
issue, we improve the TextHide with differential
privacy and prove the improved scheme ensures
theoretical privacy guarantee under the differential
privacy framework. Besides, the experimental re-
sults validate the performance of proposed scheme.

2 Background & Related Work

2.1 TextHide

TextHide (Huang et al., 2020a) was proposed to
protect the privacy of an individual’s training data
in the distributed learning by mixing up multiple
raw training data. First, it utilizes a transformer
encoder model, e.g., BERT (Devlin et al., 2019)
as feature extractor to convert the raw training text
into feature vectors. Second, TextHide designs an
instance encoding method to mix up the original in-
put feature vector with some randomly selected fea-
ture vectors from the training set (the correspond-
ing data labels are also mixed up as well). Such
mixed feature vectors with labels will be further
utilized as training dataset for various down-stream
language tasks, e.g., sentence classification (Cohan
et al., 2019) and other natural language inference
tasks (e.g., sentence similarity (Cer et al., 2017)).

More formally, we denote the language feature
extractor as ϕ(·), and the raw text data/label as
xi/yi. Then we get the feature vector vi = ϕ(xi).
Given the number of mix-up data points K, one
private encoded vector ṽ and corresponding mix-up
label ỹ can be computed as following:

ṽ = σ ◦
K∑

i=1

λivi, ỹ =
K∑

i=1

λiyi (1)

where λi is chosen uniformly at random such
that

∑K
i λi = 1, the sign-flipping mask σ ∈

{−1, 1}d is also chosen uniformly at random, and
d denotes the dimension of the input vector. ◦ rep-
resents the Hardamard multiplication. For each
training batch, K data points will be randomly se-
lected to generate the private encoded vector per
Equation 1. Besides, TextHide also sets another
parameter m as the size of mask pool to improve
the security. This formalizes the (m,K)-TextHide
scheme (Algorithm 1 in (Huang et al., 2020a)). The
privacy notion of TextHide was based on a k-vector

subset sum (Abboud and Lewi, 2013) oracle with
mixup, which would require O(nk/2) efforts to
break as original claim in (Huang et al., 2020a).

2.2 Privacy Attacks in ML
Privacy attacks against machine learning mainly
consist of two categories: 1) membership infer-
ence attacks (MIA) (Shokri et al., 2017; Salem
et al., 2018; Song and Mittal, 2021); 2) data recon-
struction or extraction attacks. On the one hand,
membership inference attacks (MIA) (Shokri et al.,
2017; Song and Raghunathan, 2020; Hisamoto
et al., 2020) have worked as state-of-the-art attack
scheme due to its simpleness and effectiveness,
where an attacker can determine whether a data
point was used to train the ML model or not. Such
MIAs have been commonly used for auditing train-
ing dataset privacy (Carlini et al., 2021).

On the other hand, as a stronger attack primitive,
data reconstruction attacks (Fredrikson et al., 2015;
Wu et al., 2016; Zhu et al., 2019; Carlini et al.,
2020a) usually refer to the attacks that could uti-
lize auxiliary information (e.g., background knowl-
edge) and counter measures to reconstruct or ex-
tract the original private data. For example, model
inversion attacks (Song and Raghunathan, 2020)
or data extraction by memorization (Carlini et al.,
2020c) could extract private information of training
dataset by querying the target model without access
to dataset. Another example is that the attacker can
utilize gradients to recover data (Zhu et al., 2019;
Geiping et al., 2020).

2.3 Privacy-Enhancing Technologies (PETs)
As data privacy risks become an emerging is-
sue, there have been a number of research works,
namely, privacy-enhancing technologies (PETs) fo-
cusing on the data protection in the machine learn-
ing (Mohassel and Rindal, 2018; Chaudhuri et al.,
2011), including the two main directions as fol-
lowing: 1) designing secure computation protocols
with cryptographic building blocks to secure the
data-in-use (Bonawitz et al., 2016; Mohassel and
Zhang, 2017; Mohassel and Rindal, 2018), which
could achieve “perfect" secrecy but bring both ex-
tra computational and communication costs; 2) im-
proving the privacy of machine learning algorithm
with differential privacy (Vaidya et al., 2013; Abadi
et al., 2016). For example, a Naïve Bayes classifier
can be trained by applying Laplace noise on the
dataset by computing proper sensitivity (Vaidya
et al., 2013), which will be further utilized to add
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Laplace noise to satisfy DP notion. Another pop-
ular but different scheme, DP-SGD (Abadi et al.,
2016) applies the Gaussian noise into the gradients
of a single data sample during the model training,
which aims to bound the influence of such one
individual data sample under the paradigm of dif-
ferential privacy. It is worth noting that there have
been recent works in NLP (Kerrigan et al., 2020;
Yu et al., 2021; Li et al., 2021; Dupuy et al., 2022),
which aim to empirically train/fine-tune language
models to satisfy DP notion. We will further dis-
cuss such related literature in Section 2.4.

Both categories of privacy-enhancing schemes
above can provide provable privacy guarantee for
the training data. However, the instance encod-
ing scheme may not obtain such privacy guarantee.
As mentioned earlier in Section 2.1, the instance
encoding scheme (Huang et al., 2020a,b) was pro-
posed to protect the training data’s privacy by mix-
ing up input data (Zhang et al., 2018a). The pa-
per claims that such scheme can preserve data pri-
vacy while maintaining good data utility. However,
recent data reconstruction attacks (Carlini et al.,
2020a) have shown that instance encoding lacks
provable privacy guarantee. That is, the “indistin-
guishability” definition of privately encoded data
is rather spurious, which does not comply with the
concept of indistinguishability in either cryptogra-
phy or DP. For example, the security of asymmetric
encryption scheme could be theoretically proven
by a security game (defined as IND-CPA (Goldre-
ich, 2009)) where no adversary can win the game
with significantly greater probability than an adver-
sary with random guessing. Similarly, differential
privacy (Dwork et al., 2006b; Abadi et al., 2016)
also presents the individual data with deniability
that attacker cannot differentiate it with some prob-
ability bound. Considering that TextHide fails to
provide such privacy guarantee, it can be broken by
the carefully designed attacks and leak the private
data (Carlini et al., 2020a; Xie and Hong, 2021).

In this work, we focus on integrating the in-
stance encoding scheme with differential privacy
to address the privacy risks of the instance encod-
ing scheme presenting with privacy attacks, which
would obtain provable privacy under the paradigm
of differential privacy as shown in Section 4.

2.4 Differentially Private Learning in NLP

Differentially Private Stochastic Gradient Descent
(DP-SGD) (Abadi et al., 2016) has been a gold stan-

dard for preserving data privacy in machine learn-
ing. There have been various DP-related works
in the language domain (Hoory et al., 2021; Yu
et al., 2021; Li et al., 2021; Mireshghallah et al.,
2021; Anil et al., 2021; Dupuy et al., 2022). For
example, public pretraining has been shown to be
helpful for the downstream DP fine-tuning (Kerri-
gan et al., 2020). Hoory et al. (Hoory et al., 2021)
pretained a differentially private BERT model with
DP optimization and identified the existence of
memory issues with large batch size for high per-
formance. Dupuy et al. (Dupuy et al., 2022) have
also proposed an efficient DP-SGD training for
large transformer model with GPU architecture.
Mireshghallah et al. (Mireshghallah et al., 2021)
utilized the adversarial and privacy regularization
to ensure uniform treatment of under-represented
subgroups in language model training. However,
the previous works usually struggle with greatly de-
creased performance as the added DP noise needs
to be scaled with large model parameters (resulting
in high noise levels).

Recently, Li et al. (Li et al., 2021) and Yu et
al. (Yu et al., 2021) have both demonstrated that
the large pre-trained language models can be effec-
tively and efficiently fine-tuned for various down-
stream tasks with very few privacy leakage. For
example, Yu et al. proposed to use ghost clipping
to reduce the memory costs of gradient clipping
in DP-SGD. Besides, they also showed that there
is no explicit relationship between the dimension-
ality of gradient updates and private fine-tuning
performance (Yu et al., 2021).

It is worth noting that our work is orthogonal to
all the DP-SGD-based works above in language do-
main in two main folds. First, the threat models are
different. Specifically, DP-SGD considers a trusted
authority to train on the private dataset. It aims
to convert the learning algorithm with differential
privacy, and thus get the trained model to defend
against a “weak" adversary for “distinguishing"
data, e.g., membership inference attacks (Shokri
et al., 2017). In this work, we consider a stronger
attack based on the scenario of instance encoding,
i.e., the attacker could have access to the instance
encoded data and try to reconstruct the original data
by reconstruction attacks (Carlini et al., 2020b).

Second, the privacy protection methods are dif-
ferent. To address the risk of data reconstruction
attacks, we follow the notion of conventional data
publishing with differential privacy, i.e., adding
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noise on the training data directly (integrated in
the instance encoding scheme) while DP-SGD is
to add noise on the gradient updates during the
learning process (Abadi et al., 2016).

3 Preliminaries of Differential Privacy

As one main category of privacy-enhancing tech-
nologies, differential privacy (DP) (Dwork et al.,
2006b, 2014) has been widely used as a de facto
standard notion in protecting individual’s data pri-
vacy for data collection and analysis (Dwork and
Smith, 2010), especially in machine learning appli-
cations (Vaidya et al., 2013; Abadi et al., 2016).

The principle of the differential privacy (Dwork
et al., 2006b, 2014) is that an individual’s data
point x in one dataset D will not arouse significant
change to the outcome of a randomized mecha-
nism or algorithm applied to the D. Thus, the
attacker cannot make difference with such a spe-
cific data point x by observing the outputs of D by
the randomized mechanism, which thus provides
deniability for the existence of x (ensuring data
privacy).

Formally, to define individual’s privacy, we first
define the neighboring datasets, i.e., D, D′ ∈ D
are the neighbors if they only differs in one data
point, denoted as D ∼ D′. Then we define the DP
notation as following:
Definition 1 (Differential Privacy (Dwork et al.,
2006b, 2014)). For any two neighboring datasets,
D,D′ ∈ D, a randomized mechanism M is said
to be (ϵ, δ)-differentially private if it satisfies the
following equation:

Pr(M(D) ∈ O) ≤ eϵ Pr(M(D′) ∈ O) + δ (2)

where O denote all the events in the output space
of M. If δ = 0, M is ϵ-differentially private.

In this work, we will utilize the Laplace and
Gaussian mechanisms to guarantee (ϵ, δ)-DP.

The Laplace mechanism (Dwork et al., 2006b)
adds the noise from Laplace distribution with mean
zero and scale parameter b, denoted as Lap(b) with

density function 1
2b exp

−|x|
b . Formally, we have the

following theorem:
Theorem 1 (Laplace Mechanism (Dwork et al.,
2006b, 2014)). Given any function f : D →
Rd, the Laplace mechanism is defined as
ML(D, f, ϵ) = f(D)+N , where N is the random
noise drawn from Laplace distribution Lap(∆f

ϵ ),
and ∆f is ℓ1 sensitivity. Laplace mechanism satis-
fies (ϵ, 0)-DP.

Theorem 2 (Gaussian Mechanism (Dwork et al.,
2006a, 2014)). Given any function f : D →
Rd, the Gaussian mechanism is defined as
MG(D, f, ϵ) = f(D) + N , where N is the
random noise drawn from Gaussian Distribution
N (0, σ2Id) with σ ≥ ∆f

√
2 ln (1.25/δ)/ϵ. ∆f

is the ℓ2 sensitivity of function f , i.e., ℓ2 =
supD∼D′ ||f(D)− f(D′||2. Guassian mechanism
satisfies (ϵ, δ)-DP.

4 DP Instance Encoding

Given a training batch of data samples of size M
B = {(x1, y1), (x2, y2), · · · , (xi, yi)}, i ∈ [1,M ],
which is randomly sampled from the training set.
TextHide will first encode every sample into a fea-
ture vector of dimension size d by a pretrained fea-
ture extractor ϕ(·), i.e., vi = ϕ(xi). Then we can
get the corresponding batch of encoded feature vec-
tors Be = {(v1, y1), (v2, y2), · · · , (vN , yN )}. For
original instance encoding, TextHide would mixup
such set of size k vectors to generate private en-
coded vectors as training data per Equation 1. To
address the privacy issue, we apply the differential
private mechanism to such mixup process. Algo-
rithm 1 demonstrates the details.

Algorithm 1: DP Instance Encoding
Input: Batch of encoded vectors Be,

Number of mixed data samples k,
clip bound for encoder vectors C
DP NoiseM: Laplace,Gaussian

Output: Differentially private encoded vector set
Bdp of size |Bdp|

1 Initialize DP mechanismM = {ML,MG}
2 Randomly sample K mixup coefficients:

ΣK
i λi = 1, λi ∈ N (0, I)

// Instance Encoding by mixup
3 Randomly sample K data samples from Be

4 for i→ 1 to |Be| do
// Clip Input Vector

5 vi ← vi ·min(1, C
||vi||2 )

6 ifMG then
7 N ←s N (0, σ2Id)
8 else
9 N ←s ϵ

4C
exp

−ϵ|x|
2C

10 for j → 1 to |Bdp| do
11 ṽj ←

∑K
i=1 λivi +N

12 ỹj ←
∑K

i=1 λiyi
13 return |Bdp| private encoded data vectors

Theorem 3. The DP Instance Encoding revised
with Laplace noise satisfies (ϵ, 0)-DP, where the
added noise NL is draw from Laplace distribution
as following:

NL =
ϵ

4C
exp

−ϵ|x|
2C (3)
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Proof. The proof complies with the original proof
of Laplace mechanism (Dwork et al., 2006b, 2014).
The instance encoding scheme with clipping works
as the function f . The ℓ1 sensitivity here is 2C
since the maximum ℓ1 norm difference of two vec-
tors are 2C (viewed as a hyper-sphere of radius
C). Then replacing ∆f with 2C in Laplace distri-
bution, we get the Equation 3. It has shown that
adding Laplace noise sampled from Eq. 3 satisfies
ϵ-DP (Dwork et al., 2006b), i.e., the DP instance
encoding with ML satisfies (ϵ, 0)-DP.

Theorem 4. The DP Instance Encoding revised
with Gaussian noise satisfies (ϵ, δ)-DP.

Proof. Similar to the previous proof for Laplace,
we choose the Gaussian distribution N (0, σ2)
with mean zero and standard deviation σ2 =

(
1+
√

2 log(1/δ)

ϵ )2C2, where the ℓ2 sensitivity is C.
Note that the input vectors are multi-dimensional,
and the noise added will be drawn independently
from MG. Then we can derive that DP instance
encoding with MG satisfies (ϵ, δ)-DP.

5 Experimental Evaluation

For experiments, we would like to evaluate both
utility and privacy of the proposed scheme as the
following: 1) utility of the private instance encod-
ing scheme, i.e., the performance (accuracy) of
model trained on the private dataset; 2) privacy
guarantee of the scheme against reconstruction at-
tacks, i.e., the attack success rate (the percentage
of reconstructed private vectors).

5.1 Experimental Setup

Dataset. We consider the sentence classifica-
tion task with two popular datasets: 1) Corpus of
Linguistic Acceptability (CoLA) (Warstadt et al.,
2019) (about 8500 training samples) for accept-
ability; 2) Stanford Sentiment Treebank (SST-2)
(Socher et al., 2013) (about 67000 samples) for
sentiment analysis.

Model Implementation. We use the pre-trained
BERT model (Devlin et al., 2019) as the language
feature extractor to generate the text representation
vectors (the dimensionality d is 768). Note that
TextHide will encode such representation vectors
into the training vectors for downstream tasks. For
downstream task training, we follow TextHide to
choose a multilayer perceptron of hidden-layer size
(768, 768, 768) since we take TextHide as baseline.

Utility Evaluation. We will apply our scheme
(including Gaussian and Laplace mechanism, de-
noted as “DP-IE Gaussian” and "DP-IE Laplace",
respectively) and TextHide to the two datasets dur-
ing training, and then report the model accuracy,
respectively. In addition, we will also demonstrate
the accuracy of the raw dataset (without any privacy
protection scheme) for better utility comparison.

Privacy Evaluation. To fully evaluate the pro-
posed DP instance encoding scheme, we also uti-
lize a privacy reconstruction attack (Xie and Hong,
2021) on instance encoding scheme. Specifically,
we first construct a set of private vectors generated
by our proposed scheme and TextHide (as baseline),
respectively. We report the final attack success rate
(the percentage of reconstructed data vectors out
of the original set) by implementing reconstruction
attack on the generated vectors above.

5.2 Utility Evaluation

For our proposed scheme, we set the privacy pa-
rameter ϵ = {0.1, 1, 2, 4, 8, 10, 15, 20}. For Gaus-
sian mechanism, we set δ to be 10−5. Then we
evaluate the model accuracy with varied ϵ for
both Laplace and Gaussian mechanism on the two
datasets as depicted above. For TextHide, we se-
lect (m = 16, k = 4) as its own privacy parame-
ters. We also evaluate the base case (without any
privacy-protection scheme). We report the final
model accuracy (the testing performance of trained
model on the private dataset).

Figure 1 demonstrates the results. From the fig-
ure, we can observe that the model accuracy in-
creases as the private parameter ϵ increases for both
Gaussian and Laplace. This is reasonable since the
privacy parameter ϵ of the DP schemes works as the
privacy budget to determine the privacy-protection
level for the dataset. That is, the larger the pri-
vacy budget, the smaller the noise added to the
original data vectors (the privacy-protection would
be weaker). As a result, the utility of the training
set would not be affected too much. In addition,
we can also observe that the model accuracy can
approach the base case as ϵ increases, which will
cause the compromise of privacy to some extent
(as shown in the privacy evaluation).

5.3 Privacy Attack Evaluation

We follow the attack model setting (Carlini et al.,
2020a; Xie and Hong, 2021) that the attacker could
obtain the background knowledge of the private
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Figure 1: Accuracy (learning utility) on the two datasets
with DP-IE schemes.

dataset but be unaware of the specific data for train-
ing, which would utilize any auxiliary information
to reconstruct the vectors (as a strong attack). We
reproduce the attack scheme following the attack
proposed in (Xie and Hong, 2021). More specifi-
cally, we randomly select 100 data points and gen-
erate 5000 encoded data by our DP schemes for
each dataset, respectively. We measure the attack
results with varying values of the privacy param-
eter ϵ = {0.1, 1, 2, 4, 8, 10, 15, 20} (referring to
different levels for privacy-protection). For exam-
ple, ϵ = 0.1 is the strong protection and 20 is a
weak protection. We repeat the same process for
TextHide using the same privacy parameter as the
previous utility evaluation.

Figure 2 demonstrates the final attack results.
First, we can observe that the TextHide cannot en-
sure data privacy against privacy attacks, i.e., the
privacy attack can recover around 85% of the origi-
nal data vectors for both CoLA and SST-2 dataset.
This also conforms to the previous works. Sec-
ond, the results show that our proposed DP scheme
can defend against such privacy attack from recon-
structing the data. Take Figure 2(a) as an example,
the overall attack success rate is lower than the base-
line’s. Besides, the attack success rate increases
as the privacy parameter ϵ increases, which indi-
cates that a higher privacy budget will lead weaker
protection by differential privacy. Such results
also validate the previous DP theorems. Again,
it should be noted that DP cannot prevent leakage
of the dataset completely. Instead, we would like to
achieve a proper utility-privacy trade-off while ap-
plying differential privacy to the machine learning
applications. For example, some privacy-sensitive
applications, e.g., on-device input prediction, could
require strong privacy guarantee while tolerating a
fair utility loss. We can also improve our instance
encoding scheme with other techniques, e.g., Fed-

erated Learning (Konečnỳ et al., 2016) or optimize
the privacy budget to get a better utility accord-
ingly.
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Figure 2: Attack success rate on the two datasets with
DP-IE schemes.

6 Conclusion & Future Work

In this paper, we facilitate the instance encoding
scheme with differential privacy. We have theoreti-
cally proven that the revised instance encoding with
DP mechanism could provide good privacy guar-
antee under differential privacy framework. Ex-
perimental results have shown that the proposed
differentially private scheme can obtain good utility
for downstream learning tasks, e.g., text classifica-
tion. Besides, we also evaluate the proposed DP
scheme against privacy attacks and the results show
that the scheme can ensure the privacy of dataset
while presenting with attacks.

For the future work, we would like to further
revise current DP instance encoding with another
differential privacy notion, i.e., Rényi differential
privacy (Mironov, 2017), which generalizes the
concept of differential privacy based on the Rényi
divergence. That is, revising the instance encod-
ing scheme with Rényi DP would derive a tighter
privacy bound and thus achieve better privacy-
protection. Besides, another potential direction is
to rescale the text vectors (generated by language
feature extractor model) to a lower dimension vec-
tor by an extra MLP model or auto-encoder (Liou
et al., 2014). We can utilize composition theorem
(Dwork et al., 2014) in DP to theoretically find a
better guarantee for various downstream tasks.
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