Compositional Generalization in Grounded Language Learning via
Induced Model Sparsity

Sam Spilsbury and Alexander Ilin
Department of Computer Science
Aalto University
Espoo, Finland
{first.last}Caalto.fi

Abstract

We provide a study of how induced model spar-
sity can help achieve compositional generaliza-
tion and better sample efficiency in grounded
language learning problems. We consider sim-
ple language-conditioned navigation problems
in a grid world environment with disentangled
observations. We show that standard neural ar-
chitectures do not always yield compositional
generalization. To address this, we design an
agent that contains a goal identification mod-
ule that encourages sparse correlations between
words in the instruction and attributes of ob-
jects, composing them together to find the
goal.! The output of the goal identification
module is the input to a value iteration network
planner. Our agent maintains a high level of
performance on goals containing novel combi-
nations of properties even when learning from
a handful of demonstrations. We examine the
internal representations of our agent and find
the correct correspondences between words in
its dictionary and attributes in the environment.

1 Introduction

Ideally, when training an agent that acts upon nat-
ural language instructions, we want the agent to
understand the meaning of the words, rather than
overfitting to the training instructions. We expect
that when an agent encounters an unfamiliar in-
struction made up of familiar terms, it should be
able to complete the task. In this sense, the agent
learns to leverage both groundedness of language;
for example in English, tokens in the language map
to observed attributes of objects or phenomena in
its environment, as well as its compositionality;
which enables the description of potentially infinite
numbers of new phenomena from known compo-
nents (Chomsky, 1965). Using language to express
goals is potentially a way to approach task distri-
bution shift and sample efficiency, key problems in

! github.com/aalto-ai/sparse-compgen

reinforcement learning (Sodhani et al., 2021; Jang
et al., 2021).

However, compositional generalization does not
come automatically with standard architectures
when using language combined with multi-modal
inputs, as indicated by the mixed results of gener-
alization performance in Goyal et al. (2021); Sod-
hani et al. (2021). Concurrently with Qiu et al.
(2021), we show that the Transformer architecture
can demonstrate generalization, but requires large
amounts of data for training. In this work, we tackle
sample inefficiency and retain generalization.

Our contributions are as follows. We propose a
model and a training method that utilizes the induc-
tive biases of sparse interactions and factor com-
positionality when finding relationships between
words and disentangled attributes. We hypothesize
that such sparsity in the interactions between object
attributes and words (as opposed to just their repre-
sentations) leads to a correct identification of what
attributes the words actually correspond to, instead
of what they are merely correlated with. We show
in both quantitative and qualitative experiments that
such sparsity and factor compositionality enable
compositional generalization. To improve sample
efficiency, we decouple the goal identification task
(which requires language understanding) from the
planning process (implemented with an extension
of Value Iteration Networks).

2 Related Work

Compositional Generalization and Language
Grounding There is a long line of work on learn-
ing to achieve language encoded instructions within
interactive environments. Vision-Language Navi-
gation environments typically require an agent to
navigate to a requested goal object (for example,
DeepMind Lab (Beattie et al., 2016), R2R (An-
derson et al., 2018) and ALFRED (Shridhar et al.,
2020)). Algorithmic and deep imitation learning
approaches for autonomous agents in these environ-

143

Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: Student Research Workshop, pages 143 - 155
July 10-15, 2022 ©2022 Association for Computational Linguistics

https://github.com/aalto-ai/sparse-compgen

ments have been proposed, but room for improve-
ment in both generalization performance and sam-
ple efficiency remains (Chen and Mooney, 2011;
Bisk et al., 2016; Shridhar et al., 2021).

The generalization issue arises because there are
many possible instructions or goals that could be
expressed with language and a learner may not
necessarily observe each one within its training dis-
tribution. Some are “out of distribution" and main-
taining performance on them is not guaranteed;
a problem well known the within reinforcement
learning community (Kirk et al., 2021). However,
a peculiar feature of language instructions is that
language is compositional in nature. This has led to
an interest in whether this aspect can be leveraged
to get better generalization on unseen goals made
up of familiar terms (Oh et al., 2017; Hermann
et al., 2017). However, even in simple environ-
ments such as BabyAl (Chevalier-Boisvert et al.,
2019), and gSCAN (Ruis et al., 2020) this can still
be difficult problem.

Various approaches to leveraging composition-
ality have been proposed, including gated word-
channel attention (Chaplot et al., 2018), hierarchi-
cal processing guided by parse-trees (Kuo et al.,
2021), graph neural networks (Gao et al., 2020),
neural module networks (Andreas et al., 2016), and
extending agents with a boolean task algebra solver
(Tasse et al., 2022). Closest to our approach are
Heinze-Deml and Bouchacourt (2020); Hanjie et al.
(2021) which use attention to identify goal states,
Narasimhan et al. (2018); Ruis and Lake (2022),
which decompose goal identification and planning
modules, Bahdanau et al. (2019) which uses a dis-
criminator to model reward for instructions and
Buch et al. (2021) which factorizes object classi-
fication over components. We contribute a new
approach of learning sparse attention over factored
observations, then attaching that attention module
to a learned planning module. This can be shown
to solve the compositional generalization problem
by learning the correct correspondences between
words and factors without spurious correlation.

Representation Sparsity We hypothesize that
sparsity is an important factor in the design of a
compositional system because it can bias the opti-
mization procedure towards solutions where rela-
tionships exist only between things that are actually
related and not just weakly correlated. Previous
work has shown that induced sparsity can improve
both generalization (Zhao et al., 2021) and model

interpretability (Wong et al., 2021). Induced spar-
sity has been applied both within the model weights
(Jayakumar et al., 2020) and also within the atten-
tion computation (Zhang et al., 2019). In our work,
we apply it in the space of all possible interactions
between words in the language and attributes of
objects in the environment.

Sample Efficiency In grounded language learn-
ing, improved sample efficiency may enable new
use-cases, for example, the training of intelligent
assistants by users who would not have the patience
to give many demonstrations of a desired behav-
ior (Tucker et al., 2020). Various tricks have been
proposed to improve sample efficiency in reinforce-
ment learning in general (Yu, 2018), including pri-
oritized replay (Hessel et al., 2018), data augmenta-
tion (Laskin et al., 2020) and model based learning
or replay buffers (van Hasselt et al., 2019; Kaiser
et al.,, 2020). Limited work exists on explicitly
addressing sample efficiency in the grounded lan-
guage learning context (Chevalier-Boisvert et al.,
2019; Hui et al., 2020; Qiu et al., 2021). In this
work, sample efficiency is one of our primary objec-
tives and we claim to achieve it using a functionally
decomposed architecture and offline learning.

3 Experimental Setup

We study the performance of our proposed ap-
proach on the GoToLocal task of the BabyAl
environment. A detailed description of the environ-
ment is given in Appendix A. The environment can
be seen as a Goal-Conditioned Markov Decision
Process, (formally defined in Kaelbling (1993)).
Each episode is generated by a seed ¢ and has an ini-
tial state s(()l). To obtain a reward during an episode,
the agent must successfully complete the language-
encoded instruction (denoted g) that it is given. The
language is simple and generated by the use of a
templating system. GoToLocal consists only of
statements “go to (althe) (color) (object)". Each
state is a fully observable 8-by-8 grid world and
each cell (denoted c¢;;) may contain an object, the
agent, or nothing.

The information in each cell is disentangled,
the object’s color is in a separate channel to the
object’s type. We work with disentangled obser-
vations because they have been shown to improve
the performance and sample-efficiency of attention-
based models (see, e.g., Loynd et al., 2020). This
disentanglement is preserved by embedding each
component separately as factored embeddings q.

144

Figure 1: Attention over separate components of the input representation.
The model is a single layer of query-key attention applied to each component
individually, where queries are image attribute values for a given component,
the keys are the words and values are a one-tensor. Performing an AND relation
on the components means taking the product of each attention operation.

The environment also comes with an expert agent
which can produce an optimal trajectory for a given
initial state and goal (! |sq, g.

The key performance metric is success rate. A
success happens if the agent completes the instruc-
tion within 64 steps. We study compositional gen-
eralization and sample efficiency.

By compositional generalization we mean main-
taining performance when navigating to objects
with attribute combinations not seen during train-
ing. To study this, we separate goals into Gip and
Goop following the principle of leaving one at-
tribute combination out (shown in Table 1 and sim-
ilar to the “visual" split in Ruis et al. (2020)). Then
we create corresponding training and validation
datasets, Dyain, Dy 1p and Dy oop each contain-
ing the same number of trajectories (10,000) per
goal. Trajectories for each goal are generated in
the same way, so we expect that a different split
of Gip and Goop following the same principle will
cause similar behavior in both the baselines and our
models. Finer details about the dataset construction
are given in Appendix B.

blue red green yellow purple grey
box
ball

key

Table 1: Split between Gip and Goop. Blue cells are object attributes appearing
in the goals for Gip and red cells correspond to those in Goop.

By sample efficiency we mean achieving a high
level of performance given a smaller number of
samples than conventional methods might require.
We denote NV as the number of trajectories per goal
that an agent has access to and study performance
at different levels of N. We train various models
using Dyp,in and describe the training methodology
and results in Section 5.1.

L)y
Mask > Eimg

Z‘A

Interaction > > Lint

Discriminator

Figure 2: Discriminator training method. Ling is used to train the “mask”
module. Because true examples are those where the agent is situated next to
the same goal, an optimal mask module should select states the agent is facing.
This can help with learning S(s, g).

4 Designing a learning method

We now design a learning agent with Section 2 in
mind. To complete an instruction, the agent needs
to identify the goal and plan actions to reach it. The
learning problem is decomposed into separate mod-
ules with separate training processes. Subsections
4.1 and 4.2 describe a sparse vision-language ar-
chitecture and training process for identifying goal
cells (S(s,g) € RT*W) Subsection 4.3 shows
how to plan given that identification m(a:|S(s, g)).

4.1 Sparse Factored Attention for Goal
Identification

We hypothesize that learning to to match objects to
descriptions by matching their factors to words indi-
vidually is a process that generalizes more strongly
than matching all at once. For example, the agent
should match “red ball" to red ball because
“red" matches factor red and “ball" matches ball.
If the agent only learns that “red ball" means red
ball, as a whole, then it may not learn what the
meaning of the parts are. Standard architectures,
which can mix information between all the words
or factors of the observation might fall into the trap
of doing the latter over the former. We propose two
inductive biases to learn the former. The first bias is
factor compositionality. As language is a descrip-
tive tool, words should operate at the level of object
properties and not entire objects. The second bias
is sparsity in word/attribute relationships. A partic-
ular word should only match as many attributes as
necessary.

From this intuition, we propose a “Sparse Fac-
tored Attention" architecture, pictured in Fig. 1.
The words are the keys and attributes are the
queries. However, a critical difference is that the at-
tribute embeddings for each cj;, remain partitioned
into separate components g, corresponding to each
factor. The normalized dot product (Cjkq, * Guw) 18
computed separately between the instruction and

145

Dy 1D

1.0 97

0.8

Success rate
>

=
=

Factored/MVProp Planner (ours)
Factored/CNN Policy

0.2 Encoder-Decoder Transformer

-
—&— GRU-Encoder ResNet/FiLM Decoder

0.0

Samples per goal

Dy 00D

1.0 .97

9 91 92

0.8 2

Success rate
=4
>

N
=

Factored/MVProp Planner (ours)
Factored/CNN Policy
Encoder-Decoder Transformer
GRU-Encoder ResNet/FiLM Decoder
0078 0051 .0036

0.0 —

0.2

10% 10 10*
Samples per goal

Figure 3: Success Rates on validation seeds. The x-axis is the log-scale number of samples per goal statement. Since there are 18 different goals in the training set,
the total number of samples is 18 X V. Peak performance on within-distribution goals for prior methods in the same environment is typically reached at 2500
samples per goal, or 45,000 total samples. However, in the compositional generalization case (Dy_oop), both baselines fail to maintain the same level of performance,
although the Transformer baseline can provide a good amount of performance at a high number of samples. In comparison, Factored/MVProp (ours) reaches a
comparable level of performance to peak performance of the baselines at 50 samples per goal, or 900 total samples, and maintains a consistent level of performance
on the out-of-distribution validation set. Without a differentiable planner, Factored/CNN is still efficient but does not perform quite as well as Factored/MVProp.

the flattened observation cells for each factor, then
the elementwise product is taken over each q,:

S(s:9)jk = [[o(@>_ éjrga - gw) +B8) (1)
qa w

where « and (3 are a single weight and bias applied
to all dot product scores and ¢ is the sigmoid acti-
vation function. In practice, exp-sum-log is used
in place of [| 4, Tor training stability. To encourage
sparsity within the outer product, we add an L1
regularization penalty to the outer product of the

normalized embedding spaces (\||E, - EwT| 1) to
the loss. This goes beyond just penalizing S(s, g);
it ensures that the system’s entire knowledge base is
sparse, which in turn assumes that no relationship
exists between unseen pairs and is also not sensitive
to imbalances in the dataset regarding how often
different objects appear in the observations.

4.2 Training with a Discriminator

We found that performance of end-to-end learning
by differentiating through the planner to our model
was highly initialization sensitive. Instead we pro-
pose to learn goal-identification and planning sepa-
rately. However, D does not have labels of which
cells are goal cells, but only full observations of
the environment at each step. To learn to identify
the goals, we propose a self-supervised objective in
the form of a state-goal discriminator architecture
D(s, g) shown in Fig. 2, which is trained to match
end-states to their corresponding goals.
The discriminator is defined as:

D(s,g) =Y M(s)- S(s,9))
HW

where S(s, g) is the trainable goal identification
module and M (s) — RE>XW S~ 0 M(s) = 1is
a “Mask Module". The “Mask Module" is a con-
volutional neural network with no downsampling
or pooling and returns a single-channel “spatial
softmax" with the same spatial dimensions as s.
Ideally the mask module should learn to identify
the cell that the agent is facing. When M (s) and
S(s, g) are correctly learned, then D(s, g) answers
whether the agent is at the goal state. The training
process for the discriminator uses a loss function
similar to a triplet loss between positive, negative,
and anchor samples. Positive and negative goals
are sampled from the set of goals, then correspond-
ing positive, anchor, and negative end-states. Finer
details of this process are given in Appendix D.

4.3 Planning Module

VI Module ResNet

N

Figure 5: Using a Value Propagation Network (Nardelli et al., 2019) (VPN) to
estimate the Q function. VPN is an extension of the Value Iteration Network
(Tamar et al., 2017) which makes the convolutional filter propagating value from
one cell to its neighbors conditional on its inputs. The Q function is estimated by
concatenating the output of the VPN with the estimated rewards, visual features,
and agent state, then processing it with a ResNet.

Once S(s, g) is learned, with a knowledge of the
connectivity between cells, full observability of the
environment, and the assumption that each action

146

Factored Attention Sparse Attention Sparse Factored Atention

(4a) Qualitative evaluation of interaction networks on environment samples. The
top row contains the mean activations a Dy _jp sample, the middle and bottom
rows are means and standard deviations on a D, gop sample. Other models
either suffer from overfitting or high variance when predicting OOD goals.

moves the agent to a either the same cell or an adja-
cent, learning to plan to reach a goal state becomes
trivial. We extend Value Propagation Networks
(Nardelli et al., 2019) for this purpose. Details of
our implementation are given in Appendix E.

5 Experimental results

5.1 End-to-End performance on the
benchmark task

We first examine performance and sample effi-
ciency on both D, 1p and D, oop using the ex-
perimental setup described in Section 3. We train
our approach and several baseline models for the
same number (70,000) of training steps over many
values of N and 10 random intializations. The
models are briefly described as follows:

Factored/MVProp (blue circles, ours) Sparse
Factored Attention is pre-trained with the Discrimi-
nator in Section 4.2 and frozen, then we only learn
the planning and value networks in Section 4.3.

Factored/CNN (light orange plus marks) Ab-
lation of our model with a skipped planning step;
detected goals and observations are processed di-
rectly into a policy using a convolutional network.

Transformer (green squares) Standard encoder-
decoder transformer, encoder inputs are position-
encoded instruction word embeddings, decoder
inputs are position-encoded flattened cells and a
[CLS] token used to predict the policy.

GRU-Encoder ResNet/FiLM Decoder (red tri-
angles) Process visual observation into policy
with interleaved FiLM conditioning on the GRU-
encoded instruction, similar to Hui et al. (2020).
The training objective is behavioral cloning of
the expert policy. The model is evaluated is every

Sparse Attention Factored Attention Sparse Factored Attention

(4b) IQM of Embedding Internal Correlations for our method, showing the effect
of applying L1 regularization to the embedding outer product. The horizontal
axes correspond to factors and the vertical axes correspond to words. Left: when
concatenating factor embeddings and applying sparse attention, unseen combina-
tions such as key/blue key and blue/blue key are given little weight.
Middle: without sparsity regularization, unrelated factors such as box/yellow
are confused and less weight is given to the true correspondences. Right: ours,
where the correspondences between words and factors are learned exactly and
others are zero.

500 steps. Evaluation is performed in a running
copy of the environment seeded using each of the
stored seeds in the validation sets. To succeed the
agent must solve the task - it is not enough to copy
what the expert does on most steps. Further details
are given in Appendices C and H.

In contrast to both baselines, our method in
Fig. 3 attains a high level of performance on both
Dy 1p and Dy oop, even with a small number of
samples, significantly outperforming both base-
lines even when those models have a greater num-
ber of samples available to learn from.

5.2 Examination of Interaction Module
Architectures

We also examine what it is about our model archi-
tecture that explains its performance on the bench-
mark task. We perform an ablation study to ex-
amine the effectiveness of different architectures
for S(s, g). Performance is measured using a “soft
F1 score" against a ground truth on goal locations,
as this is essentially an imbalanced classification
problem. The metric is described in more detail in
Appendix G

Dy_p Dy_oop
FiLM (Perez et al., 2018) 0.983 £0.000 0.015+0.004
Transformer (Vaswani et al., 2017) 1.000 £ 0.000 0.799 + 0.028
Sparse Attention 0.974 £0.000 0.069 + 0.001
Factored Attention 0.891 £0.015 0.739 £ 0.028
Sparse Factored Attention 0.951 £0.000 0.951 £0.000

Table 2: Inter-quartile mean (IQM) of soft F1 scores (predicted goal location
versus ground truth goal location) across seeds, dataset sizes, and checkpoints,
with added 95% confidence intervals. Sparse Factored Attention scores consis-
tently well on both datasets.

Each architecture for S(s, g) was trained using
Dirain for 200,000 iterations with the parameters in
Appendix F. The IQM and 95% confidence interval
across seeds and top-10 checkpoints are reported
in Table 2 using the package and method provided

147

by (Agarwal et al., 2021). While not perfect, our
Sparse Factored Attention model achieves high F}
scores both D, 1p and D, oop.

We also visualize mean model predictions and
their variance across initializations on sample dat-
apoints from both D, 1p and D, oop in Fig. 4a.
The average is over instances with F} scores in the
upper 75% range for their class. FILM and Sparse
Attention fail to identify the test-set goal, and the
Transformer and Factored Attention models exhibit
high variance on D, oop between initializations.
Only our Sparse Factored Attention model reliably
identifies the goal on both datasets.

5.3 Qualitative Evaluation of Model Weights

Since the Factored Attention model is very sim-
ple and its only parameters are the embeddings
and single weight and bias, we can also visualize
“what the model has learned" by taking the mean
normalized outer product of both attribute £, and
word E,, embeddings for models shown in Fig. 4b.
A perfect learner should learn a sparse correspon-
dence between each attribute and its corresponding
word; it should not confound attributes of differ-
ent types. The heatmaps show the importance of
sparsity regularization on the outer product of the
embeddings. Without sparsity regularization, the
mean correlation between a word and its correct
attribute is weaker and not consistent across all ini-
tializations. There are also other “unwanted" con-
founding correlations, for example, between “box"
and blue, which also appear more strongly in
some initialization and data limit combinations as
indicated by its high standard deviation. In contrast,
the Sparse Factored Attention model displays an
almost perfect correlation between each word and
the corresponding attribute and very little variance
between checkpoints (not pictured). In this sense,
we can be much more confident that the Sparse
Factored Attention model has actually learned the
symbol grounding and the meaning of the words as
they relate to cell attributes in the environment.

6 Conclusion

We studied the problem of compositional gener-
alization and sample efficient grounded language
learning for a vision-language navigation agent.
We showed that even under strong assumptions on
environment conditions such as full observability
and disentanglement of inputs, compositional gen-
eralization and sample efficiency do not arise auto-

matically with standard learning approaches. We
demonstrate how such conditions can be leveraged
by our Sparse Factored Attention model presented
in Section 4.1. We demonstrate a method to learn
goal identification without labels in Section 4.2
and planning Section 4.3 using a small number of
offline trajectories. We further showed superior
sample efficiency and generalization performance
in Section 5.1 and perform a model analysis and
ablation study in Section 5.2 to show how our pro-
posed approach works the way we intended.

7 Limitations of this Work

Goal identification and planning The goal iden-
tification and planning methods proposed in Sec-
tion 4.3 do not work over compound goals. The
discriminator training method in Section 4.2 re-
quires that Dy, can be partitioned into subsets
corresponding to each goal and that there is at most
a many-to-one relationship between goal cell con-
figurations and language statements.

Measuring sample efficiency Testing sample ef-
ficiency of gradient-based methods learned from
off-policy datasets is not a well specified problem,
since each training step could be used to improve
the model performance by a small amount an arbi-
trary number of times. It was a qualitative judgment
of the researchers of when to stop training, and we
used the same upper bound on training steps for all
models to ensure a fair comparison.

Further limitations of this work are discussed in
Appendix 1.

8 Responsible Research Statement

We also provide details regarding code and repro-
ducibility in Appendix J and computational re-
source usage in Appendix K. We do not anticipate
any special ethical issues to arise from this work as
it is foundational in nature and uses a synthetically
generated dataset. However, the methods presented
in this work may be more amenable to analytic
languages as opposed to synthetic ones.

9 Acknowledgements

We thank Yonatan Bisk for his valuable feedback
and suggestions on this work. We also acknowl-
edge the computational resources provided by the
Aalto Science-IT project and the support within the
Academy of Finland Flagship programme: Finnish
Center for Artificial Intelligence (FCAI).

148

References

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Cas-
tro, Aaron C Courville, and Marc Bellemare. 2021.
Deep reinforcement learning at the edge of the statis-
tical precipice. In Advances in Neural Information
Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurlPS
2021, pages 29304-29320.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce,
Mark Johnson, Niko Siinderhauf, Ian Reid, Stephen
Gould, and Anton van den Hengel. 2018. Vision-and-
language navigation: Interpreting visually-grounded
navigation instructions in real environments. In 2018
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 3674—-3683.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016. Neural module networks. In 2016
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 39-48.

Dzmitry Bahdanau, Felix Hill, Jan Leike, Edward
Hughes, Seyed Arian Hosseini, Pushmeet Kohli, and
Edward Grefenstette. 2019. Learning to understand
goal specifications by modelling reward. In 7tk In-

ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

Charles Beattie, Joel Z. Leibo, Denis Teplyashin,
Tom Ward, Marcus Wainwright, Heinrich Kiittler,
Andrew Lefrancq, Simon Green, Victor Valdés,
Amir Sadik, Julian Schrittwieser, Keith Anderson,
Sarah York, Max Cant, Adam Cain, Adrian Bolton,
Stephen Gaffney, Helen King, Demis Hassabis,
Shane Legg, and Stig Petersen. 2016. Deepmind
lab. arXiv:1612.03801.

Richard Bellman. 1957. A Markovian Decision Process.
In Journal of Mathematics and Mechanics, volume 6,
pages 679-684.

Yonatan Bisk, Deniz Yuret, and Daniel Marcu. 2016.
Natural language communication with robots. In
NAACL HLT 2016, The 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
San Diego California, USA, June 12-17, 2016, pages
751-761. The Association for Computational Lin-
guistics.

Shyamal Buch, Li Fei-Fei, and Noah D. Goodman. 2021.
Neural event semantics for grounded language under-
standing. Transactions of the Association for Com-
putational Linguistics, 9:875-890.

Devendra Singh Chaplot, Kanthashree Mysore Sathyen-
dra, Rama Kumar Pasumarthi, Dheeraj Rajagopal,
and Ruslan Salakhutdinov. 2018. Gated-attention ar-
chitectures for task-oriented language grounding. In
Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th inno-
vative Applications of Artificial Intelligence (IAAI-
18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New

Orleans, Louisiana, USA, February 2-7, 2018, pages
2819-2826. AAAI Press.

David L. Chen and Raymond J. Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. In Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelli-
gence, AAAI 2011, San Francisco, California, USA,
August 7-11, 2011. AAAI Press.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem
Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu
Nguyen, and Yoshua Bengio. 2019. BabyAl: A plat-
form to study the sample efficiency of grounded lan-
guage learning. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman
Pal. 2018. Minimalistic Gridworld Environment
for OpenAl Gym. https://github.com/
maximecb/gym-minigrid.

N. Chomsky. 1965. Aspects of the Theory of Syntax.
MIT Press, Cambridge, MA.

Tong Gao, Qi Huang, and Raymond J. Mooney. 2020.
Systematic generalization on gSCAN with language
conditioned embedding. In Proceedings of the Ist
Conference of the Asia-Pacific Chapter of the Asso-
ciation for Computational Linguistics and the 10th
International Joint Conference on Natural Language
Processing, AACL/IJCNLP 2020, Suzhou, China, De-
cember 4-7, 2020, pages 491-503. Association for
Computational Linguistics.

Prasoon Goyal, Raymond J. Mooney, and Scott Niekum.
2021. Zero-shot task adaptation using natural lan-
guage. arXiv:2106.02972.

Austin ' W. Hanjie, Victor Zhong, and Karthik
Narasimhan. 2021. Grounding language to entities
and dynamics for generalization in reinforcement
learning. In Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139, pages 4051—
4062.

Christina Heinze-Deml and Diane Bouchacourt. 2020.
Think before you act: A simple baseline for
compositional generalization. arXiv:2009.13962,
2009.13962.

Karl Moritz Hermann, Felix Hill, Simon Green,
Fumin Wang, Ryan Faulkner, Hubert Soyer, David
Szepesvari, Wojciech Marian Czarnecki, Max Jader-
berg, Denis Teplyashin, Marcus Wainwright, Chris
Apps, Demis Hassabis, and Phil Blunsom. 2017.
Grounded language learning in a simulated 3d world.
arXiv:1706.06551.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom
Schaul, Georg Ostrovski, Will Dabney, Dan Horgan,
Bilal Piot, Mohammad Gheshlaghi Azar, and David
Silver. 2018. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the

149

https://proceedings.neurips.cc/paper/2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/f514cec81cb148559cf475e7426eed5e-Paper.pdf
https://doi.org/10.1109/CVPR.2018.00387
https://doi.org/10.1109/CVPR.2018.00387
https://doi.org/10.1109/CVPR.2018.00387
https://doi.org/10.1109/CVPR.2016.12
https://openreview.net/forum?id=H1xsSjC9Ym
https://openreview.net/forum?id=H1xsSjC9Ym
http://arxiv.org/abs/1612.03801
http://arxiv.org/abs/1612.03801
https://doi.org/10.18653/v1/n16-1089
https://doi.org/10.1162/tacl_a_00402
https://doi.org/10.1162/tacl_a_00402
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17425
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17425
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3701
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3701
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3701
https://openreview.net/forum?id=rJeXCo0cYX
https://openreview.net/forum?id=rJeXCo0cYX
https://openreview.net/forum?id=rJeXCo0cYX
https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid
https://aclanthology.org/2020.aacl-main.49/
https://aclanthology.org/2020.aacl-main.49/
http://arxiv.org/abs/2106.02972
http://arxiv.org/abs/2106.02972
http://proceedings.mlr.press/v139/hanjie21a.html
http://proceedings.mlr.press/v139/hanjie21a.html
http://proceedings.mlr.press/v139/hanjie21a.html
https://arxiv.org/abs/2009.13962
https://arxiv.org/abs/2009.13962
http://arxiv.org/abs/1706.06551
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17204
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17204

Thirty-Second AAAI Conference on Artificial Intelli-
gence, (AAAI-18), the 30th innovative Applications
of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial In-
telligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 3215-3222. AAAI Press.

David Yu-Tung Hui, Maxime Chevalier-Boisvert,
Dzmitry Bahdanau, and Yoshua Bengio. 2020.
BabyAl 1.1. arXiv:2007.12770.

Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler,
Frederik Ebert, Corey Lynch, Sergey Levine, and
Chelsea Finn. 2021. BC-Z: zero-shot task generaliza-
tion with robotic imitation learning. In 5th Annual
Conference on Robot Learning, 8-11 November 2021,
London, UK, pages 991-1002.

Siddhant M. Jayakumar, Razvan Pascanu, Jack W. Rae,
Simon Osindero, and Erich Elsen. 2020. Top-KAST:
Top-K always sparse training. In Advances in Neural
Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurlIPS 2020, December 6-12, 2020, Virtual Event.

Leslie Pack Kaelbling. 1993. Learning to achieve goals.
In Proceedings of the 13th International Joint Con-
ference on Artificial Intelligence. Chambéry, France,
August 28 - September 3, 1993, pages 1094-1099.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Mi-
los, Blazej Osinski, Roy H. Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr
Kozakowski, Sergey Levine, Afroz Mohiuddin, Ryan
Sepassi, George Tucker, and Henryk Michalewski.
2020. Model based reinforcement learning for atari.
In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020.

Robert Kirk, Amy Zhang, Edward Grefenstette, and
Tim Rocktéschel. 2021. A survey of generalisation
in deep reinforcement learning. arXiv:2111.09794.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey
Levine. 2020. Conservative Q-learning for offline
reinforcement learning. In Advances in Neural In-
formation Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurlPS 2020, December 6-12, 2020, Virtual Event.

Yen-Ling Kuo, Boris Katz, and Andrei Barbu. 2021.
Compositional networks enable systematic general-
ization for grounded language understanding. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, Virtual Event / Punta Cana,
Dominican Republic, 16-20 November, 2021, pages
216-226. Association for Computational Linguistics.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto,
Pieter Abbeel, and Aravind Srinivas. 2020. Rein-
forcement learning with augmented data. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurlPS 2020, December 6-12,
2020, Virtual Event.

Ricky Loynd, Roland Fernandez, Asli Celikyilmaz,
Adith Swaminathan, and Matthew J. Hausknecht.
2020. Working memory graphs. In Proceedings of
the 37th International Conference on Machine Learn-
ing, ICML 2020, 13-18 July 2020, Virtual Event,
pages 6404-6414.

Karthik Narasimhan, Regina Barzilay, and Tommi S.
Jaakkola. 2018. Grounding language for transfer in
deep reinforcement learning. J. Artif. Intell. Res.,
63:849-874.

Nantas Nardelli, Gabriel Synnaeve, Zeming Lin, Push-
meet Kohli, Philip H. S. Torr, and Nicolas Usunier.
2019. Value propagation networks. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.

Junhyuk Oh, Satinder P. Singh, Honglak Lee, and Push-
meet Kohli. 2017. Zero-shot task generalization with
multi-task deep reinforcement learning. In Proceed-
ings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, pages 2661-2670.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Du-
moulin, and Aaron C. Courville. 2018. FiLM: Visual
reasoning with a general conditioning layer. In Pro-
ceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018, pages 3942—
3951. AAAI Press.

Linlu Qiu, Hexiang Hu, Bowen Zhang, Peter Shaw, and
Fei Sha. 2021. Systematic generalization on gSCAN:
What is nearly solved and what is next? In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2021, Vir-
tual Event / Punta Cana, Dominican Republic, 7-11
November, 2021, pages 2180-2188. Association for
Computational Linguistics.

Laura Ruis, Jacob Andreas, Marco Baroni, Diane
Bouchacourt, and Brenden M. Lake. 2020. A bench-
mark for systematic generalization in grounded lan-
guage understanding. In Advances in Neural In-
formation Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurlIPS 2020, December 6-12, 2020, Virtual Event.

Laura Ruis and Brenden M. Lake. 2022. Improving sys-
tematic generalization through modularity and aug-
mentation. arXiv:2202.10745.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. 2020. ALFRED: A
benchmark for interpreting grounded instructions for
everyday tasks. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR
2020, Seattle, WA, USA, June 13-19, 2020, pages
10737-10746. Computer Vision Foundation / IEEE.

150

http://arxiv.org/abs/2007.12770
https://proceedings.mlr.press/v164/jang22a.html
https://proceedings.mlr.press/v164/jang22a.html
https://proceedings.neurips.cc/paper/2020/hash/ee76626ee11ada502d5dbf1fb5aae4d2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ee76626ee11ada502d5dbf1fb5aae4d2-Abstract.html
https://openreview.net/forum?id=S1xCPJHtDB
http://arxiv.org/abs/2111.09794
http://arxiv.org/abs/2111.09794
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0d2b2061826a5df3221116a5085a6052-Abstract.html
https://doi.org/10.18653/v1/2021.findings-emnlp.21
https://doi.org/10.18653/v1/2021.findings-emnlp.21
https://proceedings.neurips.cc/paper/2020/hash/e615c82aba461681ade82da2da38004a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e615c82aba461681ade82da2da38004a-Abstract.html
http://proceedings.mlr.press/v119/loynd20a.html
https://doi.org/10.1613/jair.1.11263
https://doi.org/10.1613/jair.1.11263
https://openreview.net/forum?id=SJG6G2RqtX
http://proceedings.mlr.press/v70/oh17a.html
http://proceedings.mlr.press/v70/oh17a.html
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16528
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16528
https://doi.org/10.18653/v1/2021.emnlp-main.166
https://doi.org/10.18653/v1/2021.emnlp-main.166
https://proceedings.neurips.cc/paper/2020/hash/e5a90182cc81e12ab5e72d66e0b46fe3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e5a90182cc81e12ab5e72d66e0b46fe3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e5a90182cc81e12ab5e72d66e0b46fe3-Abstract.html
http://arxiv.org/abs/2202.10745
http://arxiv.org/abs/2202.10745
http://arxiv.org/abs/2202.10745
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1109/CVPR42600.2020.01075

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Coté,
Yonatan Bisk, Adam Trischler, and Matthew J.
Hausknecht. 2021. ALFWorld: Aligning text and
embodied environments for interactive learning. In
9th International Conference on Learning Represen-
tations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021.

Shagun Sodhani, Amy Zhang, and Joelle Pineau. 2021.
Multi-task reinforcement learning with context-based
representations. In Proceedings of the 38th Interna-
tional Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, pages 9767-9779.

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and
Pieter Abbeel. 2017. Value iteration networks. In
Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017,
Melbourne, Australia, August 19-25, 2017, pages
4949-4953.

Geraud Nangue Tasse, Steven James, and Benjamin Ros-
man. 2022. Generalisation in lifelong reinforcement
learning through logical composition. In 10th Inter-
national Conference on Learning Representations,
ICLR 2022, Virtual Event.

Aaron D. Tucker, Markus Anderljung, and Allan Dafoe.
2020. Social and governance implications of im-
proved data efficiency. In AIES '20: AAAI/ACM
Conference on Al, Ethics, and Society, New York, NY,
USA, February 7-8, 2020, pages 378-384. ACM.

Hado van Hasselt, Matteo Hessel, and John Aslanides.
2019. When to use parametric models in reinforce-
ment learning? In Advances in Neural Information
Processing Systems 32: Annual Conference on Neu-
ral Information Processing Systems 2019, NeurlPS
2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 14322-14333.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998-6008.

Eric Wong, Shibani Santurkar, and Aleksander Madry.
2021. Leveraging sparse linear layers for debuggable
deep networks. In Proceedings of the 38th Interna-
tional Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, pages 11205-11216.

Yang Yu. 2018. Towards sample efficient reinforcement
learning. In Proceedings of the Tventy-Seventh Inter-
national Joint Conference on Artificial Intelligence,
IJCAI 2018, July 13-19, 2018, Stockholm, Sweden,
pages 5739-5743.

Jiajun Zhang, Yang Zhao, Haoran Li, and Chengqing
Zong. 2019. Attention with sparsity regularization
for neural machine translation and summarization.
IEEE ACM Trans. Audio Speech Lang. Process.,
27(3):507-518.

151

Mingde Zhao, Zhen Liu, Sitao Luan, Shuyuan Zhang,
Doina Precup, and Yoshua Bengio. 2021. A
consciousness-inspired planning agent for model-
based reinforcement learning. In Advances in Neural
Information Processing Systems 34: Annual Confer-
ence on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, Virtual Event.

https://openreview.net/forum?id=0IOX0YcCdTn
https://openreview.net/forum?id=0IOX0YcCdTn
http://proceedings.mlr.press/v139/sodhani21a.html
http://proceedings.mlr.press/v139/sodhani21a.html
https://doi.org/10.24963/ijcai.2017/700
https://openreview.net/forum?id=ZOcX-eybqoL
https://openreview.net/forum?id=ZOcX-eybqoL
https://doi.org/10.1145/3375627.3375863
https://doi.org/10.1145/3375627.3375863
https://proceedings.neurips.cc/paper/2019/hash/1b742ae215adf18b75449c6e272fd92d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1b742ae215adf18b75449c6e272fd92d-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://proceedings.mlr.press/v139/wong21b.html
http://proceedings.mlr.press/v139/wong21b.html
https://doi.org/10.24963/ijcai.2018/820
https://doi.org/10.24963/ijcai.2018/820
https://doi.org/10.1109/TASLP.2018.2883740
https://doi.org/10.1109/TASLP.2018.2883740
https://openreview.net/forum?id=jh1lAmTMOJp
https://openreview.net/forum?id=jh1lAmTMOJp
https://openreview.net/forum?id=jh1lAmTMOJp

A Details of the BabyAI Environment

go to a purple ball

= ®

Figure 6: An illustration of the integer-encoded inputs provided by the BabyAI
environment. Color and shape information are encoded in separate channels
and are independent from each other.

BabyAl is a simple grid world-like environment
based on Minigrid (Chevalier-Boisvert et al., 2018).
chose to use this environment for this project due
to its simplicity, ease of generating expert trajecto-
ries, and input representation characteristics. In the
environment, the agent is given instructions to com-
plete in a sythetically generated language that is a
subset of English. The seed for the environment,
1, determines its initial state sy and goal g, which
comes from the set G for a given level. Within
the environment, there are a few different object
types (ball, box, key) each of which may be
one of six different colors (red, blue, green,
grey, purple, yellow). The agent can face
one of four different directions. There are seven ac-
tions available to the agent: turn left, turn
right, go forward, open, pick up, put
down and signal done. The original imple-
mentation provides partial observations, however
we modify the environment to make the state space
fully observable due to the inherent difficulty plan-
ning over unobservable states.> The observations
are subdivided into cells as explained in Section
3. Each cell is a disentangled vector of integers
of comprised of three components, the first corre-
sponding to the object type, the second correspond-
ing to the color and the third corresponding to the
object that the agent is holding.

The goals g come in the form of simple language
statements such as “go to a red box". BabyAl
comes in several “levels". Each level requires the
agent to demonstrate competency at a certain subset
of “skills", summarized in Table 1 of the original
by Chevalier-Boisvert et al. (2019).

2We also reproduce the relevant experiments in (Chevalier-
Boisvert et al., 2019) using this fully-observable state space
for fair comparison in Section 5.1 of this work.

In this work, we focus on the GoToLocal task,
where the agent must learn to reach the goal object
indicated in the language-encoded instruction by
navigating to the correct location in an 8 x 8 grid
world and then performing the signal done ac-
tion within a fixed number of steps. Performing
signal done facing the wrong cell terminates
the episode with a reward of zero. Requiring the
signal done action precludes the trivial solu-
tion of ignoring g and visiting every object until
successful. Other objects may exist in the grid as
distractors; non-goal objects that the agent must
learn to ignore and navigate around depending on
the goal.

B Collecting Trajectories for the Dataset

In the GoToLocal task there are 36 possible goal
statements. Each statement begins with “go to",
followed by “the" or “a", then color and object
terms. To collect the seeds to generate each envi-
ronment and their corresponding solutions 7;|so, g,
we iterate consecutively through random seeds
starting from zero and reset the environment us-
ing each seed. The environment is “solved" us-
ing the provided BotAgent, which implements
an optimal policy. We do not want our measure-
ments or training to be biased by imbalances in
the dataset, so we want to ensure that each goal
has the same number of samples in D. 10,000
state-action trajectories with a length of at least 7
are stored for each goal g. A trajectory 7 is a tu-
ple (z, (so, ..., $t), (ag, ..., ar), (ro, ..., T¢), g), con-
sisting of (respectively), the seed, state trajectory,
action trajectory, rewards and goal.

We split the data into training, “in-distribution”
and “combinatorial generalization" (out of distri-
bution) validation sets. To make these splits, we
first split the goals into “in-distribution" goals Gip
and “combinatorial generalization" goals Goop.
One color and object combination is omitted from
Gip for each color and placed in Goop, specifi-
cally, goals containing red ball, green box,
blue key, purple ball, grey box and
yellow key. The “in-distribution” validation
set Dy 1p consists of the last 20 trajectories in D
corresponding to each g € Gp. The “combinato-
rial generalization" set D, oop is defined similarly
with the last 40 trajectories in Goop.> The training

3The reason for using the last 40 trajectories is to ensure
that both validation datasets have the same number trajectories
in total; since there are twice as many goals covered in Dy _ip

152

set D consists of all trajectories corresponding to
g € G, excluding those in Dy, 1p.

C Details of the Baselines

The first baseline is similar to the architecture used
in (Hui et al., 2020); featuring a GRU to encode g,
a ResNet to encode s and the use of FiLM layers
(Perez et al., 2018) to modulate feature maps ac-
cording to the encoded g, which in turn is flattened
and concatenated with an embedding correspond-
ing to the agent’s current direction to produce a
hidden representation z. The policy 7 is estimated
using an MLP from z. The only difference to (Hui
et al., 2020) is that the memory module used to
handle partial observability and exploration is re-
moved, since the environment is fully observable.

The second baseline is an encoder-decoder
Transformer model (Vaswani et al., 2017), where
the input sequence is the individual words in g
added with their 1D positional encodings, and the
output sequence is the 2D encoded observation s
added with their 2D positional encodings. A classi-
fication token is appended to the end of the output
sequence, which uses a linear prediction head to es-
timate 7 in the same way as above. 10000 steps of
learning rate warmup followed by subsequent log-
arithmic decay in the learning rate are used when
training the Transformer.

For all models, an embedding dimension of 32
is used for both the words in g and each attribute in
cjk» implying that the total embedding dimension
is 96 after each embedded attribute is concatenated
together. The batch size and learning rate for Adam
used during training are 32 and 10~ respectively.

D Training the Discriminator

Two goals, g4, g— are sampled without replace-
ment uniformly from the set of all known goals
Gy ip. Two trajectories are sampled without re-
placement from {Dyain|g = g+ }, 79", 75" and one
trajectory is sampled from {Dyin|g = g-}, 9.
sy is assumed to be the rewarding states for all three
trajectories and are denoted (sy")1, (sy")2, (57)1.
With probability ﬁ (s97); is replaced with a ran-
dom state in T(‘)(]:r}_l, so that the discriminator also
sees states that are not rewarding for any goal.
The discriminator’s inputs and labels are tuples
(s1,52,9,y). In this tuple, s; is an "anchor" state,
59 1s a comparison state, g is the goal and y is the
label. The tuple ((s7")1, (s57)2, g4, 1) is a “true”

example and the tuple ((s¢")1, (577)1,9+,0) is a

“false" example. True and false examples are sam-
pled consecutively.
We define the loss for the discriminator as:

Lp(s1,52,9,y) = Lin(52,9,Y) + Limg(s1,52,9) (3)

The “interaction loss" Liy is used to optimize
S(s,g). As S classifies whether a given s is a
rewarding state for g, the loss is a binary-cross-
entropy loss, where the outputs of .S are logits:

Lin(52,9,y) = ylog D(s2,g) + (1 — y) log(1 — D(s2,9)) (4)

The image-matching loss Lin, is used to resolve
the ambiguity of whether a high loss value in Liy
was caused by an incorrect parameterization of
M (s) or S(s, g). Define the mask-weighted image
as I(s) = > ywM(s) ® s and the normalized
mask-weighted image as I(s) = ﬁ Then the
normalized image-matching loss Lip, is given by:*

Limg(s1,52,y) = ||(I(s1) - I(s2)) —yll3 (5
E Planning with Value Iteration

Value-based differentiable planning networks as-
sume the existence of a function r(s,g)
RHE*WXA which returns the cell-action combina-
tions in s that give a reward for being reached by an
agent. In this case, r is modelling a reward function
for goal g in terms of c¢;;. Knowing both this func-
tion and the dynamics p(s¢11|s, a;) with a discrete
state space enables using Value Iteration (Bellman,
1957) to solve for the optimal value function V*,
which induces an optimal policy:

T = maxg Q(s,a) = maxg Y e 47(5, @) + Yp(st41]8, ar)V (s41) (6)

In this case, we do not know the dynamics exactly,
but we have a prior that we can start from, which
is that all neighboring cells to a given cell are uni-
formly reachable from the current cell by any ac-
tion p(cjti k+mlac, ¢jx),l,m € [-1,1],a € A. In
this problem, the agent’s occupancy of a cell cj
corresponds to a state s given the initialization sq,
so a mapping exists from values of cells to values

*We use mean-squared error as opposed to binary cross
entropy loss for the the image-matching loss as we found
that in practice it was less sensitive to label noise, which
was present in this problem, since goals such as “go to a red
key" and “go to the red key" involve the same object color
combination but are nevertheless treated as separate goals by
the discriminator.

153

of states up to the agent’s rotation given an initial-
ization V'(c;i) — V (s]s0).

To refine our estimate of the the dynam-
ics p(s¢y1ls,ar) and improve our estimate of
Q(s,a, g), we can use the above assumptions and
a differentiable planning method known as a Value
Iteration Network (VIN) (Tamar et al., 2017). Start-
ing with Vo(cji) = r(cjk,g), VIN re-expresses
value-iteration as a form of convolution performed
recursively K times:

Vi(cjk, 9)
Vk+1(0jk7g) = Max § max Z

Pa,l—j,m—kvk({"lmwg) (7)
acA L,meN (cjk)

where NV (c;y,) are the neighbors of a cell and P is a
learnable linear estimate of the dynamics (the tran-
sition probabilities to neighboring cells for each
action). In reality, the dynamics are dependent on
what the neighboring cells actually contain. Max
Value Propagation Networks (MVProp) (Nardelli
et al., 2019) extend on VIN by replacing P with a
scalar propagation weight conditioned on the cur-
rent cell ¢(c;i,), where ¢ is any learnable function
with non-negative output. In that sense, we learn
to model how value propagates around the cells.
Using the dataset D we can generate traces of re-
turns from trajectories using an optimal planner
with discount factor +. Then learning Q(s, at, g) is
done by minimizing the empirical risk with respect
to some loss function L:

arg minQe ES,GtNDxr‘C(Q(Svatag)vR(Svat))) (8)

In the MVProp framework, it is the responsibility
of the consumer of Vi (s, g) to map neighboring
values of a cell to Q values for actions. Both Tamar
et al. (2017) and Nardelli et al. (2019) resolve this
problem by including the cell that the agent is cur-
rently occupying as part of the state. However, this
information is not available to us in D as we have
only the state s and action observation a;. In prac-
tice, this problem turns out not to be insurmount-
able and good performance can be achieved by sim-
ply concatenating as additional channels Vj(s, g)
and Vi (s, g) to the initial encoding of s and using a
Convolutional Neural Network to encode the image
into a single vector of which represents the vector-
valued output Q(s, g) — R, eg the action-value
function for all actions.

Finally, there is the question of which loss func-
tion to use to learn (s, at, g). We observed that
simply using mean-squared error loss between

R(s,a¢) and Q(s, at, g) led to over-optimistic esti-
mates of Q-values for non-chosen actions. To fix
this problem, we added an additional term penaliz-
ing any non-zero value for those actions: similar to
Conservative Q Learning (Kumar et al., 2020):

L"VIN(S7atvg) = HR(Saaiyg) - Q(S7atvg)||%+

9
AHQ(S,a,,g),a, € {A\at}H% ()

F Training Parameters of S(s, g)

S(s, g) is trained for 200,000 steps, using a learn-
ing rate of 1075, a batch size of 1024 and 16-bit
mixed precision used for the model weights and
embeddings. During training, models were eval-
uated both D, 1p and D, oop every 20 training
steps. The top-10 performing model checkpoints
by F} score on D, p were stored, along with their
Fy score on Dy _oop-

G Soft F1 Score

The problem in Section 4.2 is unbalanced; there are
a small number of goal states and a large number
of non-goal states. Therefore, we propose to use a
metric that is robust to the class imbalance, but also
takes into account the weight of the predictions as
this will be used as the reward model in the planner.
The metric is a “soft F1 score” is defined as the
harmonic mean of soft-precision and soft-recall,
for a single trajectory ¢ (with indexes omitted for
brevity):

_ Stiw UikS (5, 9)
S (kS (s, 9k + (1 — yj)S(s,9)8)

ik jk
R=>"yS(s.9)jx/ > (jr)
HW HW

F, = 2PR/(P + R)

(10)

A high value of soft-F} indicates that both preci-
sion and recall are high.

H End-to-end usage our proposed model

The model is trained in two phases; first, the Sparse
Factored Attention model in Section 4.1 is trained
using the discriminator task in Section 4.2 for
200,000 steps with a learning rate of 10e~> and
batch size of 1024. Then, the weights at the end of
training (for the corresponding initialization seed
and Dy are frozen and used as the initialization
for the VIN model described in Section 4.3. The
training parameters and setup used otherwise is the
same as is described in Appendix C.

154

I Additional Limitations

Controlled Environment We wused the
GoToLocal task on BabyAl as the sole reference
environment for this study. A fully observable state
space, knowledge of the state-space connectivity,
and disentangled factors on cell states are very
strong assumptions that are leveraged to achieve
the results that we present.

Computational resources Sample efficiency
does not imply computational efficiency. In particu-
lar, we found that training the discriminator in Sec-
tion 4.2 requires large batch sizes and a large num-
ber of samples generated from D to converge.

J Reproducibility of this work

We kept the importance of reproducible research
in mind when designing our experimental method.
We provide the source code for our approach and
seeds used to generate each environment and tra-
jectory in D.

We are unable to provide pre-trained models or
log files due to space constraints.

K Computational Resource usage of this
work

The person responsible for developing the method
took about one year to do so and used a worksta-
tion with a single NVIDIA RTX2060 GPU with
6GB of GPU memory to test different approaches.
Because the methods that we present in this paper
may be sensitive to different weight initializations,
we believed it was necessary to show trained model
performance using different initialization random
initializations, using the methods in (Agarwal et al.,
2021) for a more reliable presentation of results. To
conduct the experiments using the final version of
our methods, we used our SLURM compute cluster
with an array of shared NVIDIA Tesla V100 GPUs.
We ran 6 different versions of the discriminator
experiment, over five different models, ten dataset
sizes, ten random initializations, each one taking
up to 8 hours to complete, making for 24,000 hours
of GPU time used. We ran 3 different versions of
the end-to-end experiments over 4 different models,
with the same number of dataset sizes and random
initializations each one taking up to 12 hours, mak-
ing for an additional 19,200 hours.

155

