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Abstract

Feature structures have been several times con-
sidered to enrich categorial grammars in order
to build fine-grained grammars. Most attempts
to unify both frameworks either model catego-
rial types as feature structures or add feature
structures on top of categorial types. We pur-
sue a different approach: using feature structure
as categorial atomic types. In this article, we
present a procedure to create, from a simplified
HPSG grammar, an equivalent abstract catego-
rial grammar (ACG). We represent a feature
structure by the enumeration of its totally well-
typed upper bounds, so that unification can be
simulated as intersection. We implement this
idea as a meta-ACG preprocessor1.

1 Introduction

Feature structures (FSs) (Carpenter, 1992) have
been widely used to represent natural language syn-
tax, particularly by HPSGs (Head-driven Phrase
Structure Grammars, (Pollard and Sag, 1987,
1994)).

In the original ideas of categorial grammars (Aj-
dukiewicz, 1935; Bar-Hillel, 1953; Lambek, 1958),
only a few number of atomic categories are taken,
and complex categories are built on them as sim-
ple types. This approach makes it less flexible to
capture fine-grained morpho-syntactic phenomena
(e.g. agreement or case). Grammatical systems
combining categorial and feature approaches have
been developed, aiming at recovering these fine
structures and grammatical interactions, but also al-
lowing a better lexicon organization (e.g. hierarchy
inheritance) (Moortgat, 1997).

According to Moortgat (1997), first genera-
tion hybrid systems (Zeevat, 1988; Bouma, 1988;
Uszkoreit, 1986) encode categorial logic in feature
logic.

1Source code is available at https://doi.org/10.
12763/VWKNSA

By contrast, second generation hybrid systems
(Dörre et al., 1996; Dörre and Manandhar, 1995)
preserve the categorial inferential system by adding
a layer of feature structures to categorial type
atoms.2

While the general framework of feature logic
may suffer from Turing-completeness when re-
garding time complexity of parsing (Carpenter,
1991), second generation hybrids bypass this issue
by restricting feature structure power to subtyp-
ing (Buszkowski, 1988). However, this restriction
forbids the latter to exploit structure-sharing (i.e.
reentrancy).

More recent systems fall in either generation.
Unification-based General Categorial grammars
(Villavicencio, 2002; Baldridge, 2002) encode
Combinatory Categorial Grammars (Steedman,
1988) as feature structures using asymmetric de-
fault unification. Extensions of Abstract Categorial
Grammars (de Groote, 2001) to dependent prod-
uct, variant types and records model feature logic
inside type theory (de Groote and Maarek, 2007).
However, these extensions make it undecidable (de
Groote et al., 2007).

In this article, we advocate for a different, yet
intuitive combination of categorial logic and fea-
ture logic: representing feature structures as atomic
categorial types with no additional operation. Uni-
fication is not implemented, but simulated by set
intersection. This proposal is based on two ideas:

1. Restrictions on appropriateness allows us to
enumerate a representative set of any FS

2. The labor is divided into a preprocessor, han-
dling FS combinatorics, and the grammar en-
gine, performing categorial operations

This framework resembles second generation
systems, because it creates a layer between feature

2Steedman (1990) and Muskens (2001) could also be put
in the second generation. Moreover, we could mention Kraak
(1995), who models FSs via modalities (Moortgat, 1996).
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Figure 1: Division of labor between the preprocessor and the grammar engine

logic and categorial logic. However, there is no
need to resort to unification, and it can deal with
structure-sharing. Although it does not provide a
different grammatical system, this solution has the
advantage to be easier to implement.

We focus here on Abstract Categorial Grammars
(ACGs). We present a first implementation of the
preprocessor, called meta-ACG preprocessor. As
feature structure are not yet implemented in ACGtk
(Pogodalla, 2016), this program brings the possibil-
ity to work with ACGs and FSs. We also mention
how it reduces labor when defining a grammar.

The motivation of this work is thus twofold:

1. Formalize a way to work with features struc-
tures and categorial logic, in particular ACGs

2. Improve ACGtk to be able to define feature
structures and reduce some grammar design
labor

In section 2, we present our system and its formal
proof of work. We exemplify it by exhibiting a
transformation from simplified HPSG grammars
into ACG grammars. In section 3, we present the
meta-ACG preprocessor.

2 Simulating feature structures

2.1 Feature structures as atoms
The idea of adding refinements of categorial atomic
types goes back to Lambek (1958). He distin-
guishes third-person singular nouns n from third-
person plural nouns n∗, and the verb work has two
possible types: n\s and n∗\s.

In systems where unification is not taken as
granted, using FSs as atoms is a cheap solution:
e.g. PPto vs. PPabout in (Morrill et al., 2011),
NP_NUM=PL in (Maršík, 2013), and npe (exis-
tentially quantified np) vs. npu (universally quanti-
fied) in (Amblard et al., 2021).

This technique relies on the grammar engine to
select the right featured type when parsing. There-
fore, no unification system has to be added. How-
ever, the main drawback is the combinatorial explo-
sion due to the many possible values the attributes

can take. For example, writing a grammar includ-
ing all possible rules for NP-VP agreement would
not only be long, but it also increases the risks
of making typos. Maršík (2013) suggests to use
meta-variables to, at least, present these rules more
compactly.

We advocate for a more generic solution: autom-
atizing the process of generation of constants and
rules with FSs as atoms. For example, from a given
description

np[AGR = x] → vp[AGR = x] → s

we would like to generate

np[AGR = [1, sg]] → vp[AGR = [1, sg]] → s

np[AGR = [1, pl]] → vp[AGR = [1, pl]] → s

np[AGR = [2, sg]] → vp[AGR = [2, sg]] → s
...

(1)
where np[AGR=[1,sg]],... are taken as atomic
types.

The system we introduce works as depicted in
Fig. 1. Given a set of descriptions, the preprocessor
generates a set of representatives (like in (1)) out of
any (underspecified) input FS. Then, the grammar
engine can pick in this set when trying to parse a
sentence.

In part 2.2 we define the set selected represen-
tatives are based on. Part 2.3 introduces ranked
appropriateness, the hypothesis enabling this set
to be enumerable. Finally, we present the transfor-
mation of simplified HPSG grammars into ACG
grammars in part 2.4.

2.2 Set of representatives

We begin with some semi-formal reminders about
feature structures.

Set ⟨T,⊑⟩ an inheritance hierarchy3, and Att a
finite set of attributes. By τ ⊑ σ, we mean that
type τ is more general than type σ.

3Complementary formal definitions can be found in ap-
pendix B.
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Type Rank Specification Description
j-τ -list 0 list of at most j elements (j ≥ 0)
j-τ -ne-list r(τ) + 1 HEAD : τ list of length between
(j ≥ 1) TAIL : (j − 1)-τ -list 1 and j

Table 1: Data structure simulating lists of at most m elements of type τ . 0-τ -list is the empty list (aka. e-list) The
inheritance hierarchy is given in Fig. 2.

⊥

m-τ -list

(m− 1)-τ -list m-τ -ne-list

1-τ -list 2-τ -ne-list

1-τ -ne-list0-τ -list

...
...

...

Figure 2: Inheritance hierarchy of types simulating lists
of at most m elements of type τ . The appropriateness
specification and ranks are given in Tab. 1.

Let us illustrate this here with NP-VP agreement,
using Att = {P, N} and the following inheritance
hierarchy:

⊥

person

1st 2nd 3rd

number

sg pl

agr

More general types are placed here at the bottom,
e.g. person ⊑ 1st. The most general type (i.e. the
minimum) is ⊥.

A feature structure (FS) is a pair of a type and a
list of features. A feature is a pair of an attribute
and a feature structure. We usually represent FSs as
attribute-value matrices, like in (2). Subsumption
⊑ can be extended to FSs. The unification of two
FSs F and G is the most general FS F ⊔G which
is subsumed by F and G, if it exists. We only
consider well-typed feature structures, i.e. having
restrictions on the values a feature can take. These
restrictions are expressed via an appropriateness
specification.

By X ↛ Y we denote the set of partial functions
f from X to Y , and we write f(x)↓ if x ∈ dom f ,
i.e. if x belongs to the definition domain of f .

Definition 1 (Appropriateness specification (Car-
penter, 1992)). An appropriateness specification is
partial function Approp : Att× T ↛ T such that

Feature introduction: For every A ∈ Att, there
exists Intro(A) ∈ T s.t. Approp(A, Intro(A))↓

Monotonicity: If Approp(A, σ)↓ and
σ ⊑ τ , then Approp(A, τ)↓ and
Approp(A, σ) ⊑ Approp(A, τ)

Approp(A, τ) = σ means that a FS of type τ can
have attribute A valued by a FS of type σ or more
specific. The following notion of totally well-typed
FSs allows us to talk about completely specified
FSs.

Definition 2. A feature structure is totally well-
typed when all its appropriate attributes are valued.

The appropriateness specification of our exam-
ple is P : person, N : number for type agr (i.e.
Approp(P, agr) = person and Approp(N, agr) =
number, and undefined elsewhere). For instance,
both FSs below are well-typed, but only the one on
the right is totally well-typed.

[
agr
P 1st

] 


agr
P 1st
N number




(2)

First-order terms can be represented by their sets
of subsumed ground terms. Similarly we could
take, to represent a potentially underspecified FS
in ACGs, its maximal (resp. or grounded) upper
bounds. However, (Carpenter, 1992) points out that
this fails because some feature structures can have
the same set of maximal (resp. grounded) upper
bounds, but still be different.

To solve this issue, we use totally well-typed
(non-necessarily sort-resolved, grounded or max-
imal) upper bounds of a FS F to define the repre-
sentative set of F .

Definition 3 (Totally well-typed upper-set). We
call U(F ) the set of totally well-typed upper
bounds of F .
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This enables us to characterize unification as set
intersection.

Proposition 1. F ⊔ G exists iff
U(F ) ∩ U(G) ̸= ∅, and in this case
U(F ⊔G) = U(F ) ∩ U(G).

Proofs are given in appendix B.

2.3 Finite generation
We plan to model a feature structure F by adding
a kind of copy of U(F ) to an ACG grammar. The
set U(F ) has then to be finite. Therefore, we need
FSs to be acyclic. Moreover, there must be no
appropriateness (subsuming) loop, i.e. no type τ
and path W ∈ Att∗ such that Approp(W, τ) ⊑ τ .
To enforce this, we require types to be ranked.

Definition 4. Specification Approp is ranked if
there exists a function r : T → N such that, for all
τ ∈ T,

1. for all σ, if τ ⊑ σ then r(τ) ≤ r(σ)

2. for all A ∈ Att and σ, if Approp(A, τ) ⊑ σ,
then r(τ) > r(σ)

r(τ) is the rank of τ .

Ranked appropriateness specifications allow us
to proceed by induction on the set of well-typed
feature structures.

Proposition 2. If Approp is ranked, then the set of
well-typed FSs is finite.

A proof is given in appendix B.3.
Ranking restricts the expressive power of feature

structures. However, we can still create a data
structure resembling finite lists. Set τ a type and
m an positive integer. We define τ -lists of at most
m elements as in Tab. 1 and Fig. 2.

Ranking forbids potentially infinite elements,
like lists of arbitrary length. This limit is actually
not so restrictive because, supposing there is a rea-
sonable maximal number of words a sentence can
have, we could always resort to lists of a predefined
maximal length.

2.4 Simple HPSG into ACG
The goal of this part is to illustrate our approach
on a selected pair of language grammar formalisms
based on feature structures and categorial types
respectively.

We want to code a HPSG grammar G in an ACG
grammar ACG(G). We focus on simple HPSG char-
acteristics, following a context-free backbone. For

(∗) a
w ⊢ a : 0

u1 ⊢ 1′ : s1 ... un ⊢ n′ : sn (∗∗) bu1...un ⊢ c : 0

if there exists c = b ⊔
[

DTRS
〈

1′ , ..., n′
〉]

for all a , b in the grammar

Figure 3: Simplified HPSG deduction system

cF ∈ R( a )
(∗) a ,F

w ⊢ cF : 0

u1 ⊢ M1 : s1 ... un ⊢ Mn : sn (∗∗) b ,Fu1...un ⊢ cF M1 ... Mn : 0

if cF ∈ R( b ) and cF M1 ... Mn : tF0

is well-typed

for all a , b in the grammar and FS F

Figure 4: Image ACG deduction system. cF M1 ... Mn

is λ-application.

simplicity, we do not take headedness and lexical
rules into account. We also assume that the appro-
priateness specification of G is ranked (except for
DTRS and PHON).

We assume lexical items and phrases are of the
form (∗) and (∗∗).

a




word
PHON w
SYNSEM 0




(∗)

b




phrase
PHON u1...un

SYNSEM 0

DTRS

〈
1

[
PHON u1

]
, ..., n

[
PHON un

]〉




(∗∗)
Feature structures of type word (∗) are lexical

units. Attribute PHON specifies the phonological
realization (here the spelling), and SYSSEM the
syntactic and semantics properties.

Feature structures of type phrase (∗∗) represent
phrases with contiguous daughters (DTRS) 1 ,...,
n . The concatenation of the phonological realiza-
tions of the daughters make up the PHON of the
phrase. The syntactic and semantics properties of
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the phrase also depend on the ones of the daughters
via structure sharing (i.e. reentrancy).

See appendix A for instance examples.
The constraints on HPSG parsing can be

rephrased as the deduction system in Fig. 3 (us-
ing the notation of (∗) and (∗∗)).

We translate this system into the ACG deduction
system in Fig. 4, using the representative sets de-
fined in def. 5. Phrase FSs are represented by a set
of second-order typed constants.

Definition 5. Given a word a as in (∗) or a phrase
b as in (∗∗), its set of representatives is defined
by induction on its rank, as the set of ACG typed
constants:

R( a ) = {cF : tF | F ∈ U( a )}
R( b ) = {cF : tF1 → ... → tFn → tF0 |

F ∈ U( b ) consistent with
Fi ∈ U( i ) for all 0 ≤ i ≤ n}

(3)
using the same i ’s as in (∗∗).

Fig. 4 presents an ACG grammar in the style of
λ-grammars (Muskens, 2001). We give in appendix
C an alternative presentation of this grammar using
the format used by de Groote (de Groote, 2001).

Proposition 3. G and ACG(G) have the same
string language.

A proof is given in appendix B.4. A derivation
instance is displayed in appendix A.

A sample HPSG grammar modeling simple En-
glish questions in the meta-ACG language is pro-
vided in the example folder of the enclosed pro-
gram.

3 Implementation

3.1 Meta-ACG preprocessor
ACGtk (Pogodalla, 2016) is a toolkit offering an
environment to develop and test ACG grammars.
Feature structures have not been implemented yet
in this program.

We implement the preprocessor presented in part
2.1 as a python program called macg. Given an
input file written in a specially designed language,
called meta-ACG language, this program generates
an ACG grammar. This output consists in tree files:
deep syntax signature, surface syntax signature and
surface lexicon (see definition 11).

The syntax of the meta-ACG language is greatly
inspired by NLTK (Bird et al., 2009), except that
variables are declared with @. See Fig. 5 for an
example minimal code.

Type: person < 1st, 2nd, 3rd
Type: number < sg, pl
Type: tense < prst, past
Type: agr
P : person
N : number

Type: np
AGR : agr # agreement
PRO : bool # pronominal

Type: vp
AGR : agr
T : tense

Type: s
T : tense

Constant: Proper nouns
Ash : np[agr[3rd,sg],-PRO]

Constant: Intransitive verbs
sleeps : vp[agr[3rd,sg],prst]
slept : vp[past]

Rule: Clause
np[AGR=@a] -> vp[AGR=@a,T=@t] \
-> s[T=@t]

Figure 5: Sample code in the meta-ACG language, ex-
emplifying NP – VP agreement. Italics is put on com-
ments. Boldface identifies control keywords. bool is
the predefined type of booleans.

The meta-ACG preprocessor has two main goals:

1. Making it possible to develop and test ACG
grammars with feature structures

2. Reducing the redundancy of ACGtk grammar
design

Goal 1 is obtained through an iterator able to gen-
erate all unfolded totally well-typed upper bounds
of a feature structure description. These upper
bounds are written as distinct atomic types in the
output files. For example, constant slept of
Fig. 5 yields 4× 3 = 12 deep syntax constant:

SLEPT_person_number_past : vp_person_number_past
SLEPT_person_sg_past : vp_person_sg_past
SLEPT_person_pl_past : vp_person_pl_past
SLEPT_1st_number_past : vp_1st_number_past

...
SLEPT_3rd_pl_past : vp_3rd_pl_past

Similarly, rules are mapped to deep syntax con-
stants of empty surface realization for every possi-
ble variable assignment. For example, the clause
rule of Fig. 5 generates (4 × 3) × 3 × 3 = 108
constants (i.e. every person, number, time, and
pronominality type).
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The ranking condition is ensured by the order in
which the types and their appropriateness specifi-
cations are declared.

Goal 2 is obtained by two means. As a script
language, the meta-ACG language aims at being
light. The main contribution, however, revolves on
the way ACG conventions are coded in the prepro-
cessor. Even if ACGtk is able to handle a large
variety of ACG grammars, most actually written
test grammars follow the same pattern and code
norms:

• a deep syntax constant in uppercase is mapped
to its surface representation in lowercase

• the order in which the source types are de-
clared is the same as the surface order of the
respective arguments

This way, taking these conventions as default helps
gain some time at the grammar design phase.

3.2 Limitations and future prospects
The macg program is still under development. We
intend to add morphological rules and macros to
facilitate even more the lexicon organization. In-
equalities, default values and constraint equations
could also be added in the future.

Although Tab. 1 gives an implementation of lists
in our setting, the current meta-ACG language
lacks primitives, like concatenation, to work with
lists more easily. Technically, list concatenation
can be written down by enumerating all element-
wise operations as different rules. But this is not
convenient. This also holds for sets, which are
commonly used on LOCAL features in HPSG (e.g.
SLASH).

Because of FS enumeration, there is an in-
evitable combinatorial explosion. This affects pars-
ing time complexity exponentially in the number
of attributes and the highest rank. In practice, we
observe that our program actually runs slowly if
complex type structures (e.g. lists as presented
here) are involved. For instance, it took 1 hour
to run macg on the very short hpsg.macg in-
cluded example grammar, creating an intermediary
grammar of several gigabytes. Therefore, this pre-
processor approach might not be well suited for
large-scale grammars. However, it offers a valu-
able tool for a quick development of experimental
fragment grammars and prototypes.

Finally, we are planning to add the possibility to
define a lexicon to type-theoretic semantics.

4 Conclusion

We introduced and formalized a novel way to in-
clude feature structures in categorial grammars.
Our method consists in automatizing the idea of
taking feature structures as categorial atomic types.
The labor is divided into two separate modules: a
preprocessor and a grammar engine. For every type
with a feature structure, the preprocessor generates
a representative set of categorial types. This cre-
ates an intermediary grammar given to the grammar
engine. The latter works on these representative
categorial types and just have to select right ones
when parsing a sentence.

We proved that this approach of simulating fea-
ture structures by a set of representatives is sound
and complete by showing that unification amounts
to intersection of these representative sets. Hav-
ing such a preprocessor avoids adding a unification
module inside the grammar engine. It is modular
and also easier to implement.

We evaluated this proposal by implementing a
preprocessor for the grammar engine ACGtk work-
ing on abstract categorial grammars (ACG). This
provides the first implementation of feature struc-
tures in an ACG toolkit. Example grammars show
the well functioning of this method.

However, example grammars with a complex
system of type hierarchy outlines the limits of the
“enumeration-and-intersection” approach. Because
of combinatorial explosion, the intermediary gram-
mar can get really voluminous and take time to be
created. This may restrict uses of such a prepro-
cessor to toy ACG grammars only, waiting for a
more efficient implementation of feature structures
in ACGtk.
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A Further examples

We provide here an example to illustrate section
2.4. By lack of space, let us consider a very simpli-
fied toy HPSG grammar able to parse the sentence
“Ash slept”. It is based on the example code given
in Fig.5. This grammar includes the two word FSs
1′ and 2′ below, as well as the phrase FS b (Fig. 6)
used to create a basic sentence with NP-VP agree-
ment.

1′




word
PHON Ash

SYNSEM 01′




np

AGR

[
P 3
N sg

]

PRO -







2′




word
PHON slept

SYNSEM 02′




vp
AGR agr
T past







The derivation of “Ash slept” in the deduction
system of Fig. 3 is given in (4). FS c is like b but
with 1 and 2 unified with 1′ and 2′ respectively.

(*)
1′

Ash ⊢ 1′ : 01′
(*)

2′
slept ⊢ 2′ : 02′ (**) bAsh slept ⊢ c : 0c

(4)
Its transformation in the ACG system of Fig. 4

as described by the proof of proposition 3 is written
in (5).

(*)
1′ , 1′

Ash ⊢ c
1′ : 01′

(*)
2′ , 2′

slept ⊢ c
2′ : 02′

(**) b , cAsh slept ⊢ c b c
1′ c

2′ : 0c

(5)

B Formal definitions and proofs

We provide here complementary formal definitions
and proofs of the propositions stated in the main
part.

B.1 Definitions
The following definitions are retrieved from Car-
penter (1992).

Definition 6 (Inheritance hierarchy). An inheri-
tance hierarchy ⟨T,⊑⟩ is a finite bounded complete
partial order, i.e. a finite partial order such that

every subset S ⊆ T having an upper bound has a
least upper bound (aka. a join)

⊔
S ∈ T.

In particular, the empty set has a least upper
bound noted ⊥, which is then the minimum of T.

Definition 7 (Well-typed FS). A well-typed feature
structure is a tuple F = ⟨Q, q, θ, δ⟩ where

• Q is a finite non-empty tree of root q ∈ Q

• θ : Q → T is a total node typing function

• δ : Att×Q ↛ Q is a feature partial function

• for every q, A such that δ(A, q)↓, then
Approp(A, θ(q))↓ and

Approp(A, θ(q)) ⊑ θ(δ(A, q))

T F is the set of well-typed feature structures.

Here we only consider well-typed feature struc-
tures (FS), and up to alphabetic variance.

Subsumption ⊑ and unification ⊔ can be ex-
tended to well-typed feature structures.

Definition 8 (Subsumption of FS). F =
⟨Q, q, θ, δ⟩ subsumes F ′ = ⟨Q′, q′, θ′, δ′⟩, written
F ⊑ F ′, if there exists a function h : Q → Q′

called morphism meeting the following conditions

• h(q) = q′

• for every q ∈ Q, θ(q) ⊑ θ′(h(q))

• for every q, A, if δ(A, q)↓, then h(δ(A, q)) =
δ′(A, h(q))

Subsumption is a partial ordering on T F .

Definition 9 (Unification of FS). The unification
of two well-typed FSs F, F ′ is, if it exists, the least
upper bound of F and F ′ inside T F .

Here is the formal definition of totally well-typed
FSs.

Definition 10 (Totally well-typed FS). A well-
typed FS is totally well-typed if for all q ∈ Q and
A ∈ Att, if Approp(A, θ(q))↓, then δ(A, q)↓.

B.2 Proof of proposition 1

Proof. Set two feature structures F and G.
• Suppose F ⊔ G exists. As U is clearly anti-

tonic, and F,G ⊑ F ⊔ G, we have U(F ⊔ G) ⊆
U(F ),U(G), so

U(F ⊔G) ⊆ U(F ) ∩ U(G)
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b




phrase
PHON u1 u2

SYNSEM 0b

[
s
T t

]

DTRS

〈
1




PHON u1

SYNSEM

[
np
AGR x

]

, 2




PHON u1

SYNSEM




vp
AGR x

T t







〉




Figure 6: Feature structure for simple NP-VP phrase.

Moreover, by theorem 6.15 of Carpenter (1992),
as Approp has no loop because of ranking, there
exists at least one totally well-typed FS H such
that F ⊔G ⊑ H . Therefore, U(F ⊔G) ̸= ∅, and
so U(F ) ∩ U(G) ̸= ∅.

• Now suppose there exists H ∈ U(F ) ∩ U(G).
As H is an upper bound of F and G, by theorem
6.9 of Carpenter (1992) they have a well-typed
unification F ⊔G.

Moreover, we have F ⊔G ⊑ H by minimality
of the unification. As H is totally well-typed, H
belongs to U(F ⊔G) too. Therefore

U(F ) ∩ U(G) ⊆ U(F ⊔G)

In consequence, we proved that F ⊔G exists iff
U(F ) ∩ U(G) ̸= ∅, and that in this case

U(F ) ∩ U(G) = U(F ⊔G)

B.3 Proof of proposition 2
Proof. We write Tn = r−1(n), which is finite be-
cause T is so.

By induction on n ∈ N, let us prove that the set
T Fn of FSs F of type τ ∈ Tn is finite.

If n = 0, condition 2 of def. 4 implies that τ is
appropriate for no attribute. As T0 is finite, so is
T F0.

If n > 1, then for all A such that δ(A, q)↓,
Approp(A, τ) ⊑ θ(δ(A, q)). Therefore

n = r(τ) > r(θ(δ(A, q)))

by condition 2 again.
So we can apply the induction hypothesis on

r(θ(δ(A, q))). As Att is finite, so is the set of FSs
of type τ . Then, as Tn is finite, so is T Fn.

Since T is finite, there is a finite number of n
such that Tn ̸= ∅. Therefore T F =

⊎
n∈N T Fn is

finite.

B.4 Proof of proposition 3

Proof. Let us begin with showing that

L(G) ⊆ L(ACG(G))

⊆ Suppose string u is parsed by G. There ex-
ists a derivation π of Fig. 3. We propagate the
unification steps to the leaves and infer total type
(Carpenter, 1992, thm. 6.15). From that, we con-
struct a proof π′ of Fig. 4 of same precedent and
type, by induction on π:

If axiom π = (∗) a exposes FS F , F ∈ U( a ).
So we take π′ = (∗) a ,F . This axioms has the same
precedent w and type 0 as π.

Suppose π = (∗∗) b (π1, ..., πn) exposes FS
F . Construct derivations π′

1, ..., π
′
n from π1, ..., πn

respectively, by induction hypothesis. We have
F ∈ U( c ).

Moreover, from proposition 1 we deduce
U( c ) ⊆ U( b ), because c = b ⊔ d for some d .
Therefore F ∈ U( b ).

As unification has been propagated, we have

F
[

DTRS
〈
F1 , ..., Fn

〉]

where Fi is the FS exposed at πi, and π′
i has term

Mi.
We thus have cF : tF1 → ... → tFn → tF0 with

cF ∈ R( b ), therefore term cF M1 ... Mn : tF0

is well-typed. As a result, the derivation π′ =
(∗∗) b ,F (π′

1, ..., π
′
n) is well-formed and has the

same precedent u1...un and type 0 as π.

121



As the root sequent of π is a finite sentence,
its type is S, and so is the type of π′. Therefore
u ∈ L(ACG(G)).

Now let us show that

L(G) ⊇ L(ACG(G))
⊆Suppose string u is parsed by ACG(G).

There exists a derivation π of Fig. 4 with precedent
u. We construct a proof π′ of Fig. 3 by induction
on π by replacing axioms (∗) a ,F by axioms (∗) a
and rules (∗∗) b ,F by rules (∗∗) b . Each sequent
v ⊢ M : s of π is mapped to v ⊢ b : s in π′

with the λ-head cF of M belonging to R( b ), so
F ∈ U( b ). Therefore, π′ is well-formed, has a
sentence type, and thus u ∈ L(G).

C Alternative presentation of image ACG
grammar

We give here an alternative presentation of the ACG
grammar defined in Fig. 4 using the format used by
de Groote (2001).
Definition 11. Set Σ1 the abstract signature where

• types are the SYNSEM 0 of the word FSs and
phrase FSs of G

• constants are the representatives cF of the
word FSs or phrase FSs F of G

• the type of cF is the SYNSEM of F

Set Σ2 the signature of strings (de Groote, 2001,
sec. 4), where constants are the phonological rep-
resentations w of word FSs.

Σ1

Σ2

Y

We define the ACG grammar ACG(G) =
⟨Σ1,Σ2,Y, S⟩ with Y : Σ1 → Σ2 the lexicon map-
ping

1. cF 7→ w if F ∈ U( a ) for some a as in (∗)

2. cF 7→ λx1, ..., xn. x1 ... xn if F ∈ U( b ) for
some b as in (∗∗)

and S is the feature structure of sentences4 (Pollard
and Sag, 1994):

4Actually, there may be several FSs S of finite sentence
(e.g. with different tenses). As the traditional definition of
ACGs only allows one distinguished type, we could add a sin-
gle extra abstract type sd and abstract constants TS : S → sd
mapped to λx. x for every S.


LOC | CAT


HEAD verb

[
VFORM fin

]

SUBCAT e-list







As the appropriateness specification of G is
ranked, ACG(G) is a well-defined ACG.
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