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Abstract

Systematicity is thought to be a key inductive
bias possessed by humans that is lacking in
standard natural language processing systems
such as those utilizing transformers. In this
work, we investigate the extent to which the fail-
ure of transformers on systematic generaliza-
tion tests can be attributed to a lack of linguistic
abstraction in its attention mechanism. We de-
velop a novel modification to the transformer
by implementing two separate input streams: a
role stream controls the attention distributions
(i.e., queries and keys) at each layer, and a filler
stream determines the values. Our results show
that when abstract role labels are assigned to in-
put sequences and provided to the role stream,
systematic generalization is improved.

1 Introduction

Transformers have achieved state-of-the-art per-
formance on many natural language processing
(NLP) tasks (Brown et al., 2020; Devlin et al., 2019;
Vaswani et al., 2017), but it has been suggested
that they remain inferior to human language learn-
ers when it comes to sample efficiency (Linzen,
2020) and more difficult generalization problems
(Baroni, 2020; Lake and Baroni, 2018; Lake et al.,
2019; Keysers et al., 2020). These architectures
have proven to scale remarkably well (Brown et al.,
2020), but may lack the strong inductive biases that
contribute to these human abilities (Battaglia et al.,
2018; Lake et al., 2017).

Systematicity, or the capacity to leverage struc-
tural or grammatical knowledge to compose famil-
iar concepts in novel ways (Fodor and Pylyshyn,
1988; Smolensky, 1990), has been highlighted as
one potential inductive bias present in humans
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(Lake et al., 2019; O’Reilly et al., 2021) that deep
learning architectures may lack (Lake and Baroni,
2018; Lake et al., 2017). It has been argued that in
humans, the ability to understand sentences such as
“John loves Mary” necessarily implies the ability
to understand certain other sentences, e.g., those
that are constructed from the same elements and
grammatical relations such as “Mary loves John”
(Fodor and Pylyshyn, 1988).

The SCAN dataset (Lake and Baroni, 2018) was
introduced to evaluate the systematic generaliza-
tion capabilities of deep neural networks. In SCAN,
instructions generated from an artificial grammar
must be translated into action sequences, and train-
test splits require models to generalize to novel
compositions of familiar words. Although deep
learning models achieve good generalization per-
formance when train and test data are split ran-
domly, their performance suffers on these system-
atic generalization tests (Lake and Baroni, 2018),
even though humans perform well on analogous
generalization problems (Lake et al., 2019).

The mechanisms underlying human systematic-
ity remain unclear, but a number of candidates
have been proposed, including tensor-product rep-
resentations (Schlag et al., 2019; Smolensky, 1990)
and specialized attention mechanisms (Goyal et al.,
2019; Bengio, 2017; Russin et al., 2020; Webb
et al., 2021). Attention is central to the transformer
architecture (Vaswani et al., 2017) and has been
leveraged in mechanisms resembling systematic
symbolic processing (Graves et al., 2014; Webb
et al., 2021), thus making it a key potential target
for encouraging systematicity (Russin et al., 2020).

In this work, we explore the connection between
attention and systematicity using a novel trans-
former architecture designed to leverage structural
or abstract information in its attention mechanism.
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Figure 1: Examples from the add-jump split of SCAN. All except the simplest instructions with the word “jump”
are held out of the training set, requiring models to generalize its usage to more complicated constructions.

We hypothesized that systematicity would improve
if attention distributions in the transformer were
strictly determined from abstract inputs containing
minimal token-specific information, as this may
prevent memorization of spurious relationships in
the training data. Previous work has experimented
with incorporating additional linguistic inputs into
NLP systems (e.g., Sachan et al., 2021), but here
we propose a novel way of utilizing additional lin-
guistic knowledge: a separate “role” input stream
is introduced to the transformer, which determines
the attention distributions at each layer but is kept
separate from the typical (“filler”) input stream
used to directly generate outputs. Many kinds of in-
formation can be passed to the role input stream (in-
cluding the original tokens themselves), thereby al-
lowing us to explore the kinds of inputs that, when
used to determine attention, result in improved sys-
tematicity. In our preliminary work, we explore
the use of abstract grammatical roles to determine
attention in the transformer on the SCAN dataset.

2 Related Work

2.1 SCAN

The SCAN dataset (see Figure 1) uses a simple
finite phrase-structure grammar to generate instruc-
tion sequences that must be translated into se-
quences of actions (Lake and Baroni, 2018). In
the simple split, train and test examples are sam-
pled randomly from the set of all possible instruc-
tions. In the systematic generalization test called
the add-jump split, all instruction sequences con-
taining one of the primitive verbs (“jump”) are sys-
tematically held out of the training set, except in
its simplest form (“jump” → JUMP). The original

work showed that recurrent neural networks such
as long short-term memory (LSTM) succeed at the
simple split but fail on the add-jump split (Lake
and Baroni, 2018).

Subsequent work introduced a new framework
for generating systematic generalization tests called
distribution-based compositionality assessment,
and showed that transformers perform poorly on
these tests in addition to the original add-jump split
(Keysers et al., 2020). Although standard deep
learning architectures consistently fail at this task,
a number of non-standard approaches have demon-
strated some success, including a meta-learning
(Lake, 2019), recurrent networks that factorize
alignment and translation (Russin et al., 2020) or
are designed for primitive substitution (Li et al.,
2019), masked language model pretraining (Fur-
rer et al., 2021); iterative back-translation (Guo
et al., 2020), use of analytic expressions (Liu et al.,
2020), and auxiliary sequence prediction (Jiang
and Bansal, 2021). Our preliminary work presents
a new approach that has many commonalities with
these previous ideas.

2.2 Utilizing Linguistic Knowledge

Prior work has shown that a remarkable amount of
linguistic structure emerges in the representations
learned by large transformers self-supervised on
natural language (Linzen and Baroni, 2021; Man-
ning et al., 2020; Tenney et al., 2019), and that
transformers can learn to approximate a composi-
tional process for solving math problems (Russin
et al., 2021). These findings may cast doubt on the
idea that injecting explicit linguistic structure will
aid these models in producing the kinds of system-
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atic behavior observed in human language learners.
However, given their poor systematic generaliza-
tion performance observed on tasks like SCAN
(Lake and Baroni, 2018), and their reliance on cer-
tain syntactic heuristics that lead to predictable fail-
ures on challenging sentences (McCoy et al., 2019;
Linzen and Baroni, 2021), it stands to reason that
these models may benefit from access to explicit
linguistic knowledge (Sachan et al., 2021).

Some work has attempted to incorporate
linguistically-informed labels such as part-of-
speech tags or syntactic parses into the inputs or
training regiments of deep learning models (Sachan
et al., 2021; Sennrich and Haddow, 2016; Strubell
et al., 2018), showing some improvements on ma-
chine translation (Sennrich and Haddow, 2016) and
semantic role labeling (Strubell et al., 2018). A
number of methods have been used to inject lin-
guistic knowledge into these models, including the
use of graph neural networks (Marcheggiani and
Titov, 2017; Sachan et al., 2021) and multi-task
learning (Strubell et al., 2018). In this work, we
develop a novel approach that attempts to establish
an explicit link between linguistic structure and the
attention mechanism of transformers to improve
their systematic generalization capabilities.

3 Methods

3.1 Architecture
The transformer architecture (Vaswani et al., 2017)
utilizes multi-head attention layers that take as in-
put query (Q), key (K), and value (V ) vectors:

Attn(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where dk is the dimension of the keys (K). Note
that the probability distribution over the sequence
length produced by the softmax is determined by
the queries (Q) and keys (K) alone. We modified
the existing transformer architecture by separating
two streams of processing (see Figure 2): 1) the
“filler” stream determines the values at each layer,
which will be averaged according to the weights
given by the attention distributions and contribute
directly to the output of the model, and 2) the “role”
stream determines at each layer the queries (Q) and
keys (K) — and therefore the attention distribu-
tions — but otherwise does not directly contribute
to the output of the model. This was achieved by
introducing a separate set of embeddings for each
input stream (M for the fillers and X for the roles).

The existing attention mechanism was modified so
that the roles in layer l + 1 are determined from a
weighted combination of the keys in layer l:

M = Attn(Q,K, V )

X = Attn(Q,K,K)
(2)

This ensures that no information from the filler
stream can enter into the determination of the atten-
tion distributions at each layer, and that the roles
can only affect the output of the model through
their control over the attention, similar to Russin
et al. (2020). The attention at each layer can have
multiple heads in the usual way (Vaswani et al.,
2017), and the separation between the two streams
is maintained throughout both the encoder and the
decoder (see Figure 2). Because the role stream
determines the way information from the input to-
kens will be combined throughout the architecture
(through its influence on the attention distributions),
positional encodings are added to the role embed-
dings rather than the filler embeddings.

Note that this setup allows us flexibility in terms
of the kind of information that is passed to the
role input stream. The original tokens themselves
can be embedded separately and passed to the role
stream, in which case the architecture becomes
very similar to the original transformer, with the
exception of the modification to the attention de-
picted in Figure 2. Here, we embed abstract roles
for the tokens in the SCAN dataset to investigate
the relationship between abstraction in the attention
mechanism and systematic generalization behavior.

3.2 Role Auxiliary Loss
Each transformer layer returns two sets of vectors
(X and M ). The output of the filler stream (M )
is a sequence of target predictions that are used to
compute the usual cross entropy loss before back-
propagation (“Filler loss”). The output of the role
stream (X) can optionally be used in an auxiliary
cross-entropy loss on the roles assigned to the target
sequence (“Role loss”). We performed experiments
with and without this auxiliary loss, and results are
reported for both.

3.3 Thresholded Attention
Drawing inspiration from Rahaman et al. (2021),
we also experimented with thresholding the
encoder-decoder attention:

threshold(Aij) =

{
Aij if Aij > τ
0 otherwise

(3)
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Figure 2: Modified transformer architecture. The architecture imposes two separate role and filler streams throughout
the encoder (left) and decoder (middle). The filler stream determines the values (V ) at each layer while the role
stream determines the keys (K) and queries (Q), and therefore the attention distributions. This was accomplished
by modifying the original attention mechanism (right).

Where τ is the attention threshold and A =
softmax(QKT

√
dk

). The thresholded attention matrix
is then re-normalized and multiplied by the value
matrix as in equation 1.

3.4 Implementation Details

The encoder and decoder had 2 layers with 8 at-
tention heads and used a thresholding parameter
(τ ) of 0.08. The embedding dimension was 256,
the hidden dimension was 512, and the dimen-
sion of the query, key and value vectors was 256.
The model was optimized for 400 epochs using
Adam (Kingma and Ba, 2015) with a learning rate
of 2.5 × 10−4. Experiments were performed us-
ing both absolute positional encodings (Vaswani
et al., 2017) and relative positional embeddings
(Dai et al., 2019); absolute positional encodings
were found to lead to slightly better performance
with reduced variance, so for simplicity we only
report those results.

4 Experiments

To test our hypothesized link between attention, lin-
guistic abstraction, and systematic generalization,
we developed abstract roles to label each token
in the SCAN vocabulary, and performed experi-
ments testing our architecture with and without

these abstract roles. We report results on the diffi-
cult add-jump split of the SCAN dataset, and com-
pare against previous work. Our main purpose is
to show that systematic generalization is improved
in the transformer when linguistic abstractions are
used as inputs to the role stream for determining
attention, and that there is an asymmetry in the
transformer such that these abstractions should be
used to determine attention (i.e., keys and queries)
and not to directly produce outputs (i.e., values).

4.1 SCAN Roles

The phrase-structure grammar used in SCAN is
very simple, so the grammatical roles used as ad-
ditional inputs were relatively straightforward to
implement. In the case of the add-jump split, we hy-
pothesized that the best abstract role scheme would
be one that assigned all primitive verbs to a sin-
gle role (“prim”) in both the instructions (source)
and the actions (target). Except where indicated
(section 4.2.2), all results used this scheme.

4.2 Results

Our main results are shown in Table 1. We re-
produce previous work and show that the baseline
transformer (Vaswani et al., 2017) achieves perfect
accuracy on the simple split of the SCAN dataset,
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Model Simple Add jump
LSTM+Attn (Keysers et al., 2020) 99.9 ± 2.7 0.0 ± 0.0
Syntactic Attention (Russin et al., 2020) 100.0 ± 0.0 78.4 ± 27.4
CGPS-RNN (Li et al., 2019) 99.9 ± 0.0 98.8 ± 1.4
T5-11B (Furrer et al., 2021) X 98.3 ± 3.3
Semi-Sup (Guo et al., 2020) X 100.0 ± 0.0
LANE (Liu et al., 2020) 100.0 ± 0.0 100.0 ± 0.0
Aux. seq. (Jiang and Bansal, 2021) X 98.32 ± 0.3
Transformer 100.0 ± 0.0 0.19 ± 0.18
Filler loss, no thresh (ours) 99.9 ± 0.01 16.2 ± 25.1
Filler loss, thresh (ours) 99.9 ± 0.01 85.6 ± 1.15
Filler + Role loss, no thresh (ours) 99.9 ± 0.02 87.4 ± 5.6
Filler + Role loss, thresh (ours) 100.0 ± 0.0 92.7 ± 3.3

Table 1: Performance (average accuracy ± standard deviation) on the simple and add-jump splits of SCAN.

but fails dramatically on the add-jump split testing
its systematic generalization capabilities. Our ar-
chitecture improves performance on the add-jump
split when the role labels are used as inputs to
the role stream. Marginal improvement relative to
baseline was observed without the use of attention
thresholding and without backpropagating the aux-
iliary role loss (“Filler loss, no thresh”). Each of
these two tweaks improved performance (“Filler
loss, thresh”, “Filler + Role loss, no thresh”) and
when both were used (“Filler + Role loss, thresh”),
the architecture achieved 92.7% accuracy on the
test set of the add-jump split.

4.2.1 Abstraction in Roles vs. Fillers
To further investigate the connection between atten-
tion and systematicity, we varied the inputs used
in each of the filler and role streams of the ar-
chitecture (see Table 2). When the filler tokens
(i.e., the words from the original SCAN vocabu-
lary) were used as inputs to both the role and filler
streams, our architecture resembled the original
transformer architecture, as these inputs were used
to simultaneously determine the outputs (i.e., the
values) and the attention (i.e., the keys and queries)
at each layer. This was confirmed in the perfor-
mance on the SCAN task, where using the fillers in
both streams (“Fillers-Fillers”) resulted in similar
performance to the baseline transformer.

As a sanity check, we also reversed the role and
filler inputs, so that the role labels were inputs to
the filler stream and the words from the original
SCAN vocabulary were used as inputs to the role
stream (“Roles-Fillers”). In this case, performance
again matched the baseline transformer on the add-
jump split, confirming our intuition that linguistic

Model Simple Add jump
Transformer 100.0 ± 0.0 0.19 ± 0.18
Fillers-Fillers 100.0 ± 0.0 2.8 ± 1.6
Roles-Fillers 100.0 ± 0.0 0.22 ± 0.16
Fillers-Roles 100.0 ± 0.0 92.7 ± 3.3

Table 2: Performance on the add-jump split only im-
proved when abstract annotations were used in the role
stream (“Fillers-Roles”).

abstractions are best used to determine attention
distributions, not values.

4.2.2 Varying the Level of Abstraction
We believe that the previous result highlights a
strength of our setup, as it allows us the flexibility
to diverge from the original transformer in a con-
tinuous way by varying the amount of abstraction
used in the inputs to the role stream. For exam-
ple, in a natural language task it would be possible
to vary the kinds of abstract labels or annotations
supplied as input to the role stream from highly
abstract part-of-speech tags to more complex anno-
tations from more sophisticated automated parses.

To test this idea in the SCAN setting, we experi-
mented with different schemes for assigning roles
that varied in their level of abstraction, as measured
by the empirical entropy of the resultant source role
vocabulary (see Figure 3). After our initial role-
assignment scheme, we made roles progressively
more abstract by assigning additional instruction
words to the same role (e.g., “left” and “right” to
“dir”, “twice” and “thrice” to “num”, etc.). Results
validated the assumption that the best scheme was
one that used a single role for each of the primitive
verbs, and assigned a different role to each of the
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Figure 3: Add-jump performance varies with the level
of abstraction in the inputs to the role stream (highest
performance outlined in red).

other words (entropy = 3.127). This experiment
shows that there is an ideal level of abstraction to
use in the role stream: too much abstraction results
in an inability to distinguish relevant distinctions,
and too little results in the unsystematic memoriza-
tion typical of the vanilla transformer.

5 Conclusion

Our preliminary work establishes a connection be-
tween linguistic abstraction, the attention mecha-
nism used in transformers, and systematic general-
ization behavior as measured by performance on
the SCAN dataset: when abstract roles are assigned
to inputs and used to determine the attention at each
layer, systematic generalization improves. We de-
veloped an architecture that may facilitate greater
understanding of the original transformer (Vaswani
et al., 2017) by allowing more precise investigation
into the relative contributions of attention distribu-
tions and representation learning. Future work will
test our setup on other compositional or systematic
generalization tasks (Keysers et al., 2020; Kim and
Linzen, 2020) and determine the kinds of linguistic
abstraction that allows success on these tasks. In
addition, future work will experiment with using
our novel architecture on natural language datasets
using varying levels of linguistic abstraction.

The extent to which human-level language un-
derstanding requires stronger inductive biases than
those currently implemented in deep learning sys-
tems remains an open question. Our work shows
that utilizing linguistic abstraction in the attention
mechanism of transformers may be a promising ap-
proach for improving the systematic generalization
capabilities of deep neural networks.
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