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Abstract

Carefully-designed schemas describing how to
collect and annotate dialog corpora are a pre-
requisite towards building task-oriented dialog
systems. In practical applications, manually
designing schemas can be error-prone, labori-
ous, iterative, and slow, especially when the
schema is complicated. To alleviate this expen-
sive and time consuming process, we propose
an unsupervised approach for slot schema in-
duction from unlabeled dialog corpora. Lever-
aging in-domain language models and unsu-
pervised parsing structures, our data-driven ap-
proach extracts candidate slots without con-
straints, followed by coarse-to-fine clustering
to induce slot types. We compare our method
against several strong supervised baselines, and
show significant performance improvement in
slot schema induction on MultiWoz and SGD
datasets. We also demonstrate the effective-
ness of induced schemas on downstream ap-
plications including dialog state tracking and
response generation.

1 Introduction

Defining task-specific schemas, including intents
and arguments, is the first step of building a task-
oriented dialog (TOD) system. In real-world appli-
cations such as call centers, we may have abundant
conversation logs from real users and system assis-
tants without annotation. To build an effective sys-
tem, experts need to study thousands of conversa-
tions, find relevant phrases, manually group phrases
into concepts, and iteratively build the schema to
cover use cases. The schema is then used to an-
notate belief states and train models. This pro-
cess is labor-intensive, error-prone, expensive, and
slow (Eric et al., 2020; Zang et al., 2020; Min et al.,
2020; Yu and Yu, 2021). As a prerequisite, it hin-
ders quick deployment for new domains and tasks.
We therefore are interested in developing automatic
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Figure 1: Overview of slot schema induction from raw
conversations. We use a bottom-up representation level
distance function derived from pre-trained LMs (com-
bined with PCFG structure) to extract informative can-
didate phrases such as “after 16:15” and “expensive”.
The spans are subsequently clustered through multiple
stages to form coarse to fine categories. The ground
truth mapping is shown on the right (such as “train
leaveat”).

schema induction methods in this work to create
the ontology1 from conversations for TOD tasks.

Most existing approaches for slot schema induc-
tion rely on syntactic or semantic models trained
with labeled data (Chen et al., 2013; Hudeček et al.,
2021; Min et al., 2020). Our proposed method, on
the other hand, is completely unsupervised with-
out requiring generic parsers and heuristics, and
hence portable to new tasks and domains seam-
lessly, overcoming the limitations of previous re-
search. Analogous to human experts, our procedure
is divided into two general steps: relevant span ex-
traction, and slot categorization. Fig. 1 provides an
overview of our approach. We introduce a bottom-
up span extraction method leveraging a pre-trained
language model (LM) and regularized by unsuper-
vised probabilistic context-free grammar (PCFG)
structure. We also propose a multi-step auto-tuned
clustering method to group the extracted spans into
fine-grained slot types with hierarchy.

We demonstrate that our unsupervised in-
duced slot schema is well-aligned with expert-

1We use “schema” and “ontology” interchangeably in this
paper. Following previous work in literature, we focus on
schema induction for slots, which is more challenging than
domains and intents.

1174



designed reference schema on the public Multi-
WoZ (Budzianowski et al., 2018) and SGD (Ras-
togi et al., 2020) datasets. We further evaluate
the induced schema on dialog state tracking (DST)
and response generation to indicate usefulness and
demonstrate performance gains over strong super-
vised baselines. Meanwhile, our method is appli-
cable to more realistic scenarios with complicated
schemas.

2 Related Work

Schema induction from dialog logs has not been
studied extensively in the literature and developers
resort to a patch work of tools to automate parts
of the process. We first introduce related work on
schema induction for dialog, and then discuss pre-
vious research on span extraction as part of schema
induction for slots.

Schema induction for dialog Motivated by the
practical advantages of unsupervised schema induc-
tion such as reducing annotation cost and avoiding
human bias, Klasinas et al. (2014); Athanasopoulou
et al. (2014) propose to induce spoken dialog gram-
mar based on n-grams to generate fragments. Dif-
ferent from studying semantic grammars, Chen
et al. (2013, 2014, 2015b,a); Hudeček et al. (2021)
propose to utilize annotated FrameNet (Baker et al.,
1998) to label semantic frames for raw utterances
(Das et al., 2010). The frames are designed on
generic semantic context, which contains frames
that are related to the target domain (such as "ex-
pensiveness") and irrelevant (such as "capability"),
while other relevant slots such as “internet” cannot
be extracted because they do not have correspond-
ing defined frames. This line of work focuses on
ranking extracted frame clusters and then manu-
ally maps the top-ranked induced slots to reference
slots. Instead of FrameNet, Shi et al. (2018) extract
features such as noun phrases (NPs) using part-of-
speech (POS) tags and frequent words and aggre-
gate them via a hierarchical clustering method, but
only about 70% target slots can be induced. In
addition to the unsatisfactory induction results due
to candidate slot extraction, most of the previous
works are only applicable to a single domain such
as restaurant booking with a small amount of data,
and require manual tuning to find spans and gener-
ate results. These methods are not easily adaptable
to unseen tasks and services.

The most comparable work to ours is probably
Min et al. (2020), which is not bounded by an ex-

isting set of candidate values so that potentially all
slots can be captured. They propose to mix POS
tags, named entities, and coreferences with a set
of rules to find slot candidates while filtering irrel-
evant spans using manually updated filtering lists.
In comparison, our method does not require any
supervised tool and can be easily adapted to new
domains and tasks with self-supervised learning. In
addition to flexibility, despite our simple and more
stable clustering process compared to their varia-
tional embedding generative approach (Jiang et al.,
2017), our method achieves better performance on
slot schema induction and our induced schema is
more useful for downstream tasks.

We survey schema induction work for other nat-
ural language processing tasks in Appendix A.11.

Span extraction Previous works in span extrac-
tion consider all combination of tokens as candi-
dates (Yu et al., 2021). Alternatively, keyphrase
extraction research (Campos et al., 2018; Bennani-
Smires et al., 2018) mostly depends on corpus
statistics (such as frequency), similarity between
phrase and document embeddings, or POS tags
(Wan and Xiao, 2008; Liu et al., 2009), and formu-
lates the task as a ranking problem. Although these
methods can find meaningful phrases, they may re-
sult in a low recall for TOD settings. For instance,
the contextual semantics of a span (such as time)
in an utterance may not represent the utterance-
level semantics compared to other generic phrases.
Other methods for span extraction include syntac-
tic chunking, but mostly require supervised data
(Li et al., 2021) and heuristics (such as considering
“noun phrases” or “verb phrases”), and thus are not
flexible and robust compared to our method.

Finally, target spans can be found in syntactic
structures which can be potentially induced from
supervised parsers or unsupervised grammar induc-
tion (Klein and Manning, 2002, 2004; Shen et al.,
2018; Drozdov et al., 2019; Zhang et al., 2021).
Kim et al. (2020) probe LMs and observe that re-
cursively splitting sentences into binary trees in a
top-down approach can correlate to constituency
parsing. However, unlike the task of predicting
relationship between words in a sentence where
phrases at each level of a hierarchical structure
are valid, detecting clear boundaries is critical to
span extraction but challenging with various phrase
lengths. Even though more flexible compared to se-
mantic parsers that are limited by pre-defined roles,
there is no straightforward way to apply these meth-
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ods to span extraction.

3 Unsupervised Slot Schema Induction

Our proposed method for slot schema induction
consists of a fully unsupervised span extraction
stage followed by coarse-to-fine clustering. The
resulting clusters can be mapped to slot type labels.

3.1 Overview
Given user utterances from raw conversations, our
goal is to induce the schema of slot types S and
their corresponding slot values. The span extraction
stage extracts spans (e.g., “with wifi”) from an
utterance x. The candidate spans from all user
utterances are then clustered into a set of groups S
where each group si corresponds to a slot type such
as “internet” with values “with wifi”, “no wifi”,
and “doesn’t matter”. The induced slot schema can
be later used for downstream applications such as
dialog state tracking and response generation.

Algorithm 1: Span Extraction
Require: x = x1, x2, . . . , xn: a user utterance x

1: t← PCFG(x) {A Chomsky normal form (binary)
tree structure from self-supervised PCFG}

2: a← LM(x) {Attention distribution from a LM}
3: d← [di = f(ai, ai+1) for i = 1, 2, . . . , n− 1]

{Distance between consecutive tokens using a distance
function f}

4: τ ← median(d)
5: sort d in increasing order
6: for all di in d do
7: if di < τ and using PCFG then
8: if nodei and nodei+1 are siblings in PCFG then
9: nodei+1 ← {nodei, nodei+1} {merge nodes,

assign new parents}
10: end if
11: else if di < τ then
12: wi+1 ← {wi, wi+1} {merge two tokens}
13: end if
14: end for

3.2 Candidate span extraction
Challenges Since it is unclear what spans are
meaningful phrases representative of task-specific
slots, candidate span extraction presents two chal-
lenges. Firstly, with either supervised or unsuper-
vised predicted structures, there is no protocol on
what constituent and from what level we should
extract the spans from without relying on dataset-
specific heuristics, especially as structured repre-
sentations are often compositional (Herzig and Be-
rant, 2021). The second challenge is that span
extraction methods should be flexible and robust
to unseen tasks and domains. To tackle these prob-
lems, we leverage pre-trained LMs and propose a

0.67 0.55 0.12 0.33 0.45 0.42 0.22 0.14

Figure 2: Illustration of span extraction where LM-
derived distance function (distances between tokens are
shown below the text) is constrained by a structure pre-
dicted by PCFG (tree structure shown in the figure).
Numbers in red are above the median threshold (0.375)
while numbers in green are below, indicating that the
tokens share similar semantics and are from the same
span. We can then extract candidate phrases “a restau-
rant” and “modern global cuisine”, together with uni-
grams “I”, “want”, “which”, and “serves”.

novel bottom-up attention-based span extraction
method regularized by unsupervised PCFG for bet-
ter structure representation. Because our method
does not need any supervised data, the second prob-
lem can be effectively addressed by in-domain self-
training. The full algorithm is outlined in Algo-
rithm 1.

Bottom-up attention-based extraction with LMs
and PCFG regularization Recent studies re-
veal that attention distributions in pre-trained LMs
can indicate syntactic relationships among tokens
(Clark et al., 2019). Therefore, we hypothesize
that similar attention distributions indicate tokens
to form a meaningful phrase. We define the dis-
tance between attention distributions as a sym-
metric Jensen-Shannon divergence (Clark et al.,
2019), and iteratively merge tokens whose distance
is smaller than a threshold2 in a bottom-up fashion.
We start from the smallest distance to the largest,
where the merged tokens are considered as a new
token in the next iteration but the distribution dis-
tance with adjacent tokens remains the same. Fig. 2
illustrates the distances between tokens from a pre-
trained LM for an example sentence where adjacent
tokens such as “global” and “cuisine” are merged
but not “serves” and “modern”. This new decoding
method enables us to effectively group tokens into
phrases with precise boundaries.

Although LMs can be used to induce grammar,

2We use the median of all pairwise distances in an utter-
ance in the experiments. We also compared other thresholds
such as mean but did not observe significant difference.

1176



their training objectives are not optimized for sen-
tence structure prediction, hence falling behind un-
supervised PCFG (Kim et al., 2020) on syntactic
modeling3. Utilizing attention distribution from
LM representations to extract spans can thus be
fuzzy and noisy. We therefore employ unsuper-
vised PCFG proposed by Kim et al. (2019) as a
mechanism to regularize our bottom-up span ex-
traction. Instead of relying solely on attention dis-
tribution, we in addition require two tokens to share
the same parent in the predicted PCFG tree struc-
ture before merging. This extra requirement re-
duces the noise from the distribution divergence in
a sub-optimal structure representation. An exam-
ple illustrating the necessity of span constraint is
given in Fig. 2. Even though the distance between
“restaurant” and “which” is small (0.33), we disre-
gard this span since they do not belong to the same
parent in the PCFG structure. After merging two
tokens, we assign the grandparent of the two tokens
as the new parent, and continue the iteration until
all distances are examined.

Self-supervised in-domain training Our
attention-based approach enables us to extract
phrases beyond certain n-grams, or certain types
of phrases in a specific hierarchical layer. More
importantly, it is appealing to adapt to new
domains and services, where a LM can be further
trained to encode structure representations without
any annotated data and to group tokens into
candidate phrases based on the training corpus.
To encourage efficient span extraction above
token-level representation, we further pre-train a
SpanBERT model (Joshi et al., 2020) by predicting
masked spans together with a span boundary
objective (denoted as TOD-Span) on TOD data
(Wu et al., 2020). In addition to masking random
contiguous spans with a geometric distribution, we
also mask spans inspired by recent findings such
as segmented PMI (Levine et al., 2021) among
other methods (See Appendix A.3 for details).
This process can be thought of as incorporating
corpus statistics such as phrase frequency into the
model implicitly (Henderson and Vulić, 2021).

The unsupervised PCFG is trained to maximize
the marginal likelihood of in-domain utterances
with the inside-outside algorithm on the same TOD

3Note that although Kim et al. (2020) utilizes attention to
construct constituency trees, our methods are different: we
propose a bottom-up approach to identify meaningful spans
with clear boundaries (rather than a tree structure) after in-
domain further pre-training.

dataset. Similar to self-supervised LMs, this pro-
cess is flexible and robust against domain mis-
match, a common problem with supervised parsers
(Davidson et al., 2019). At inference time, the
trained model predicts a Chomsky normal form
from Viterbi decoding (Forney, 1973).

3.3 Clustering candidate spans

Challenges After extracting candidate spans as
potential slot values, we apply contextualized clus-
tering on them to form latent concepts each slot
value belongs to. We face two major challenges.
Firstly, for any clustering method, hyperparame-
ters such as the number of clusters are critical to
the clustering quality, while they are not known
for a new domain. Secondly, because of the trivial
differences in slot types (for example, a location
can be a “train departure place”, or a “taxi arrival
place”), clustering requires considering different di-
mensions of semantics and pragmatics. To address
these problems, we propose an auto-tuned, coarse-
to-fine multi-step clustering method. The pseudo
code of the clustering algorithm can be found in
Appendix A.2.

Auto-tuning hyperparameters To avoid hyper-
parameter tuning, we utilize density-based HDB-
SCAN (McInnes et al., 2017). Compared to other
clustering methods such as K-Means, HDBSCAN
is mainly parametrized by the minimum number
of samples per cluster, and resulting clusters are
known to be less sensitive to this parameter. We
set this number automatically by maximizing the
averaged Silhouette coefficient (Rousseeuw, 1987)

s =
b− a

max(a, b)

across all clusters where a represents the distance
between samples in a cluster, and b measures the
distance between samples across clusters.

Multi-step clustering The input to our first-step
clustering is the contextualized span-level repre-
sentation from the extracted spans. Specifically,
we consider the mean representation of tokens in
the span from the last layer as the span represen-
tation. To prevent the surface-level token embed-
dings from playing a dominant role, we replace
candidate spans with masked tokens and use the
contextual representation of the masked spans (Ya-
mada et al., 2021). After the first step of clustering,
we have coarse groups illustrated in Appendix A.5.
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Figure 3: Multi-step clustering procedure. Each coarse
cluster is further refined by next-step clustering. The
first step uses contextualized span representations to
capture salient groups (such as a cluster about time), and
the second step uses the utterance-level representations
of each span to capture domain and intent information
(such as the train service and taxi service). The third
step utilizes span-level representation for fine-grained
slot types.

Michael et al. (2020) suggest that we may only
identify salient clusters (e.g., cardinal numbers),
but cannot separate for example, different types
of cardinals (e.g., number of people or number
of stays). Thus, in the second step, we cluster
examples within each cluster from the first step
leveraging utterance level representation of spans
(i.e., the [CLS] token of the utterance). Specifically,
we identify the utterance-level representation for
spans grouped from the first step. This enables us
to distinguish between domains and intents as they
reflect utterance-level semantics. For example, we
may find a cluster of time information (e.g., “11
AM”) in the first step, and the second step cluster-
ing is to differentiate between train and taxi book-
ing time. Lastly, we cluster groups developed from
the second step into more fine-grained types using
span-level representations similar to the first step.
After this multi-step clustering, we can potentially
separate for instance, departure time and arrival
time in train booking. This process is illustrated
in Fig. 3. Each cluster represents a slot type, with
slot values shown as data points. This multi-step
clustering brings an additional benefit of inducing
the slot schema with hierarchy, where sub-groups
in further steps belong to the same parent group.

4 Experiments

To examine the quality of our induced schema, we
perform intrinsic and extrinsic evaluations. Our
intrinsic evaluation compares the predicted schema

with the ground truth schema by measuring their
overlap in slot types and slot values. This indi-
cates how well our induced schema aligns with
the expert annotation. The extrinsic evaluation es-
timates the usefulness of the induced schema for
downstream tasks, for which we consider dialog
state tracking and response generation tasks. Ex-
periments are conducted on MultiWOZ (Eric et al.,
2020) and SGD (Rastogi et al., 2020) datasets fol-
lowing previous research. See Appendix A.1 for
implementation details. We also apply and eval-
uate our method for both intent and slot schema
induction on realistic scenarios (See Section 5).

Baselines We compare our proposed approach
with different setups against DSI (Min et al., 2020),
which uses supervised tools and heuristics. We
evaluate different span extraction methods includ-
ing using parsers only, leveraging distance func-
tions from LMs, and combining LMs with un-
supervised PCFG. Specifically, NP extracts all
noun phrases4, DSI cand. uses the same candidates
phrases as DSI, and PCFG and CoreNLP (Man-
ning et al., 2014) extract phrases from an unsu-
pervised and supervised structure respectively by
taking the smallest constituents above the leaf level.
These baselines solely rely on parsers. For our
bottom-up attention-based LM methods (Section
3.2), we compare spans extracted using representa-
tions from BERT (Devlin et al., 2019), SpanBERT
(Joshi et al., 2020), TOD-BERT (Wu et al., 2020),
and our span-based TOD pre-training from mask-
ing random spans (TOD-Span). Lastly, we combine
the LMs with unsupervised PCFG structures.

Due to space constraints, we show results on
MultiWOZ in this section. Observations on SGD
can be found in the Appendix.

4.1 Slot schema induction
To evaluate the induced schema against ground
truth, we need to match clusters to ground truth
labels5. Previous work on dialog schema induction
either requires manual mapping from a cluster to
the ground truth (Hudeček et al., 2021) or com-
pares predicted slot values to its state annotation
at each turn (Min et al., 2020). These can create
noises and biases, hence not practical when no an-
notation is available. Particularly, Min et al. (2020)

4https://spacy.io/
5Predicting labels for each cluster is out of the scope of this

paper. Since there are many ways to assign labels with equal
semantics to a cluster (e.g., “food” vs. “restaurant type”), we
leave this to future work.
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compare candidate spans to corresponding refer-
ence slot types at each turn, which is a small subset
of the ground-truth ontology. This would overes-
timate the performance of schema induction since
the matching is more evident and is different from
defining schemas in realistic settings. Instead, we
simulate the process of an expert annotator map-
ping clusters to slot names by considering the gen-
eral contextual semantics of spans in a cluster.

Setup We consider semantic representations of
ground truth clusters as labels. Specifically, we
calculate the contextual representation of spans
averaged across all spans in an induced cluster
as cluster representations, and compare that with
ground truth slot type representations computed in
the same way. For fair comparison among different
methods, we use BERT to obtain span represen-
tations. We assign the name of the most similar
slot type representation to a predicted cluster mea-
sured by cosine similarity. If the score is lower
than 0.8 (Min et al., 2020), the generated cluster is
considered as noise without mapping, which sim-
ulates when a human cannot label the cluster. We
report precision, recall, and F1 on the induced slot
types. When the number of clusters is larger than
the ground truth, multiple predicted clusters can be
mapped to one slot type. This evaluation process
is identical to human annotation, where the ground
truth clusters serve as references (before assigning
cluster labels) to predicted clusters, but may be bi-
ased towards more clusters when more clusters are
likely to cover more ground truth clusters (i.e., po-
tentially higher recall). Thus we report the number
of induced clusters for reference. Similarly, within
each slot type, we compute the overlapping of clus-
ter values to all ground truth slot values and report
precision, recall, and F1 by fuzzy-matching scores
(Min et al., 2020), averaged across all types.

Results Table 1 shows the results of schema in-
duction on slot types and slot values. All methods
lead to a number of clusters within a similar range
(except the slightly larger 522 clusters for DSI),
indicating that the results are not biased and are
comparable. When the candidate span input to
our proposed multi-step clustering is the same as
the baseline DSI using POS tagging and corefer-
ence (DSI cand.), we achieve similar performance
on slot type induction (85.19) and better results
on slot values (49.71). This illustrates the effec-
tiveness of our proposed clustering method since

method # clusters slot type slot value

Baseline

DSI 522 87.72 37.18

Parser only

NP 88 69.39 47.46
DSI cand. 113 85.19 49.71
PCFG 339 91.53 53.62
CoreNLP 292 87.72 54.43

Language model only

BERT 340 85.71 55.80
SpanBERT 343 89.66 45.21
TOD-BERT 219 89.66 50.89
TOD-Span 374 85.71 55.29

Language model contrained on unsupervised PCFG

BERT 350 87.72 52.32
SpanBERT 203 89.66 44.51
TOD-BERT 245 91.53 48.13
TOD-Span 290 96.67 58.71

Table 1: Schema induction results on MultiWOZ. TOD-
Span (span-based LM further pre-trained on in-domain
data) regulated by PCFG achieves the best performance
on slot type induction and slot value induction evaluated
by F1 scores. All methods (except DSI) differ only by
span extraction (i.e., same clustering).

the only difference from the DSI baseline is cluster-
ing. Compared to methods leveraging noun phrases
(NP), or supervised parsers (CoreNLP), using an
unsupervised PCFG trained on in-domain TOD
data can achieve comparable or superior results.

If we extract spans using LMs only, different
models perform similarly on both slot types and
slot values. However, when regularized by an unsu-
pervised PCFG structure, we observe a large perfor-
mance boost especially with TOD-Span. This indi-
cates that the unsupervised PCFG can provide com-
plementary information to LMs. In addition, results
show that further pre-training a LM at the span level
is more efficient. The better representation from
span-level in-domain self-training can also be jus-
tified by a standard dialog state tracking task with
few-shot or full data shown in Appendix A.3. De-
tailed comparison among different LM pre-training
results can be seen in Appendix A.13.

4.2 Application in DST

Now that we have mapped induced clusters to
ground truth names, we can immediately evaluate
DST performance by identifying slot values and
types as described above. This can be considered
as a zero-shot setting.
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method turn level joint level

Baseline

DSI 18.29 25.22

Parser only

PCFG 25.43 32.39

Language model only

BERT 24.35 30.18
SpanBERT 20.24 26.07
TOD-BERT 25.05 34.94
TOD-Span 29.72 38.89

Language model contrained on unsupervised PCFG

BERT 23.27 30.09
SpanBERT 20.96 27.25
TOD-BERT 27.11 31.92
TOD-Span 39.59 46.69

Table 2: DST results on MultiWOZ. We show F1 scores
of turn and joint level. TOD-Span regularized by PCFG
achieves the best performance.

Setup Following Min et al. (2020), we calculate
the overlapping of the predicted slots and values
with their corresponding ground truth at both the
turn level and the joint level. At each turn, a fuzzy
matching score is applied on predicted values (Ras-
togi et al., 2020) whose corresponding slot types
are in the ground truth. On the other hand, even if
a slot value is predicted correctly but its slot type
does not match the ground truth, no reward is ac-
credited. On the joint level, we calculate the score
for accumulative predictions up to the current turn.

Results Table 2 summarizes the results for DST.
Similar to the trend in schema induction, constrain-
ing an in-domain fine-tuned LM (TOD-Span) on
an unsupervised structure representation (PCFG)
achieves the best performance (39.95 on turn level),
significantly outperforming a strong baseline DSI
(18.29)6. We also note that because all accumu-
lated predictions are evaluated for partial rewards
instead of exact matching on all slot types in stan-
dard DST evaluation, the joint level scores are
higher than the turn level from accumulative scores.
See Appendix A.8 for more detailed discussions.

4.3 Application in response generation
The above settings map latent slot clusters to
ground truth analogous to expert designs so that we
can evaluate the alignment with human annotations.

6We use the provided data and model to run the DSI base-
line. The reason the score is lower here than the original report
is due to slot type matching (Section 4.1).

belief state BLEU

None 15.6
DSI 13.9
TOD-Span + PCFG 16.4
Ground truth 17.9

Table 3: Response generation results on MultiWOZ.
Our method introduces positive inductive bias.

This experiment investigates whether the induced
latent schema is still useful before mapping.

Setup We modify the model of Lei et al. (2018);
Zhang et al. (2020) by appending the predicted
labels (i.e., a cluster index such as “10-15-2” in-
dicating a specific slot type where each number
represents a slot type from a clustering step. This
can also be considered as a hierarchical cluster la-
bel) and values to the context (e.g., “I need a train
at 7:45. [10-15-2] 7:45” as input). The added belief
state can be considered as a prior to generate re-
sponses similar to Hosseini-Asl et al. (2020). Since
we do not have the mapped names of the slots,
we only report the BLEU score rather than other
metrics used in response generation that require
entity-level matching (e.g., inform rate). This is
a more practical setting directly evaluating on the
induced schema compared to previous work (Min
et al., 2020), where dialog act is modeled with
delexicalized input utterances (Chen et al., 2019,
not feasible because ontology is required from a
pre-defined schema for delexicalization).

Results Table 3 compares the performance of
using no belief state (None), belief state induced by
DSI, our introduced method (TOD-Span + PCFG),
and ground truth. Results show that our induced
schema introduces a positive inductive bias (16.4)
compared to the baseline (15.6) and is close to the
ground truth schema with actual slot type names.
We conjecture that the lower performance of DSI is
due to the larger number of latent types (522) which
creates noises in model training. Thus, our induced
slot schema is useful for downstream applications.

5 Analysis

Comparison among different methods Our re-
sults show that in general, span-based pre-training
methods outperform token-based, and continued
pre-training on in-domain data is important. When
regularized by PCFG structures, we observe a large
performance boost on TOD-BERT and TOD-Span,
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however the PCFG structure does not help BERT
and SpanBERT when the LM is trained on gen-
eral domain data only. We speculate that the LM
representation trained on generic text is not com-
patible with the predicted structure induced via
in-domain self-supervision. This justifies our hy-
pothesis in Section 3.2 that optimized structures
from in-domain PCFG can regularize target span
extraction.

In addition, we believe that the performance
gap between our proposed method and previous
research using rules from supervised parsers (such
as NPs and coreference) is larger when the data is
less biased (for example, if NP is not dominant as
slot values, Du et al., 2021). Moreover, our pro-
posed method is data-driven, indicating that the
slots are determined by the dialog corpus and are
more robust again label bias. If there are specific
annotation requirements, we can inject inductive
bias to the LM to change distribution distances
(Shi et al., 2019) or add rules to incorporate such
conditions. See Appendix A.12 for discussions.

Comparison among different datasets On Mul-
tiWOZ, our method induces 30 out of 31 slot
types in the ontology except “hospital-department”,
which only appears once in the dialog corpus. For
slot values, errors are mostly from low precision
due to loose boundaries and semantic matching
(e.g., predicting “free wifi”, and “include free wifi”,
where the target value is “yes”). In comparison,
DSI induces 26 slot types, with similar slots mixed
(such as mapping “taxi-arriveby” to “taxi-leaveat”).
It receives a relatively low slot value score since
spans extracted using rules are not robust and com-
patible.

On SGD where 82 slot types are defined in the
ontology, our method induces 50 and DSI induces
72. The main reason for this low recall is similar
slot types with overlapping values (such as “media-
genre” and “movies-genre”), and single-value slots
(such as “has-wifi” with the value “True”). More
importantly, SGD has a smaller utterance length,
making it more difficult to map to the correct slot
type without considering more context. With a
magnitude more number of clusters, DSI (11992
clusters) has a higher chance to map predicted slots
to target slot types which explains better perfor-
mance than ours on schema induction. However,
this large number of clusters make it infeasible for
humans to use, and our induced schema is com-
parable in downstream tasks such as DST despite

having a much smaller number of clusters.

On both datasets, in addition to values that can
be extracted by spans, our method can also extract
phrases such as “doesn’t matter” which maps to the
“don’t care” slot value. In particular, on MultiWOZ,
“hotel-internet” receives the lowest f1 score (0.07
with precision of 0.04 and recall of 0.35), mainly
because of imprecise boundaries for low precision
(e.g. “free wifi”, “include free wifi”, and “offer
free wifi”). It also mixes with “free parking” be-
cause of the context (hotel). On SGD, due to our
filtering step and many slots have only one value
(e.g. “Homes-has-wifi” and “Homes-has-pets”),
and the value (“True”) cannot be detected by spans,
we received a lower schema induction score. In
addition, there are 16 groups with lower matching
score (< 0.8). This is particularly an issue when the
number of instances is small (only 8 instances for
“home-furnished” in total). If more instances are
available, it is likely that our method can recover
these missed slots due to low matching scores.

However, the schema defined here is less com-
plicated compared to more realistic settings. For
example, spans may not be a noun phrase (such
as “until the 30th” to distinguish from “after the
30th” in the utterance “Do I have access to my
premium account until the 30th or will I have to
pay additional $15 on the 29th” to distinguish dif-
ferent constraints), and spans may not necessarily
be meaningful arguments to intents (such as “Can
you help me to reset my password” even though
“reset my password” can be considered as a phrase).
ABCD (Chen et al., 2021) collects more realistic
TOD conversations with more in-depth discussion
on finishing tasks in the shopping domain. How-
ever, they propose to leverage actions, rather than
slot-value pairs as used before in slot discovery,
where the actions are defined above the utterance
level.

We also apply our method on internal customer
data for both intent (by applying multi-step cluster-
ing directly on utterances) and slot schema induc-
tion. Compared to MultiWOZ and SGD, schema
in more realistic scenarios is more complicated and
the slot boundaries are less clear. Nevertheless, our
method is still effective in inducing the majority
of the schema to find intents such as “change pass-
word” and slot types such as “devices”. We observe
similar findings on the Ubuntu dialog corpus (Lowe
et al., 2015). See more discussions in Appendix
A.9.
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schema DST
method # clusters type value turn joint

Different number of clustering steps

one-step 31 60.87 39.74 23.58 30.68
two-step 99 83.64 46.66 35.21 41.94

Original representation instead of masked

unmasked rep. 284 85.71 53.30 27.93 36.40

Three-step masked clustering

Three-step masked 290 96.67 58.71 39.59 46.69

Table 4: Ablation results on MultiWOZ with TOD-
Span constrained on PCFG. Using masked presentation
for multi-step clustering improves the performance on
schema induction and DST by a large margin.

Ablation studies Table 4 illustrates the perfor-
mance comparisons with different numbers of clus-
tering steps, as well as input representations. Re-
sults demonstrate that compared to one-step (using
masked span representation) and two-step (adding
utterance representation), our three-step clustering
method induces a more fine-grained schema, which
is more effective for downstream tasks. The num-
ber of steps can be customized to real use cases
depending on target granularity7. In addition, if we
use the original input rather than the masked phrase
representation, the performance drops by a large
margin (85.71 on slot type). This suggests that the
surrounding context is more critical than the sur-
face embeddings for schema induction, especially
when the same phrase can serve different functions
even in the same domain (such as locations).

DST Error analysis Suggested by the relatively
high span extraction accuracy (68.13 F1 score)
from Appendix A.4, we find that the majority of the
problems in DST come from cluster mapping. This
is caused by either excessive surrounding informa-
tion or by the lack of context from previous turns.
For instance, in the utterance “Can I book it for 3
people”, the “3 people” can be mapped to either
“restaurant-book people” or “hotel-book people”,
since we extract the contextual information from
the current turn only. If more context is consid-
ered, the mapping performance including results
on downstream tasks is expected to improve. An-
other issue is with span boundary. Even though we
apply fuzzy matching, the evaluation still penalizes
correct predictions (such as “indian food”) from
its ground truth (“indian”), since we do not have
training signals to identify the target boundaries.

Meanwhile, we acknowledge that since we ex-
7More steps were also conducted but we observed lower

Silhouette coefficient and lower quality in preliminary studies.

tract phrases as candidates of slot values, our DST
cannot deal with other linguistic features such as
coreferences and ellipses annotated in MultiWOZ
and SGD. This partially explains the relatively low
performance on the full zero-shot DST task. How-
ever, these features are not important for schema
induction since the majority of the slot values can
be found as phrases in the raw conversation, which
can further be categorized into slot types. Obtain-
ing better performance on DST is out of the scope
of this paper.

6 Conclusion

In this paper, we propose a fully unsupervised
method for slot schema induction. Compared
to previous research, our method can be easily
adapted to unseen domains and tasks to extract
target phrases before clustering into fine-grained
groups without domain constraints. We conduct
extensive experiments and show that our proposed
approach is flexible and effective in generating ac-
curate and useful schemas without task-specific
rules in both academic and realistic datasets. We
believe that our method could also be applied to
other languages (since no supervised parser, model,
or heuristic is required) and tasks such as question
answering where the answering phrase is not ex-
plicitly annotated (Min et al., 2019). In the future,
we plan to extend our method to problems with
more complex structures and data where slots are
less trivial to identify.

7 Ethical Considerations

Our intended use case is to induce the schema of
raw conversations between a real user and system,
where the conversation is not structured or con-
strained. Our experiments are done on English data,
but our approach can be used for any language, es-
pecially because our method does not require any
language-specific tools such as parsers which gen-
erally require a lot of labeled data. We hope that
our work can reduce design and annotation cost in
building dialog systems for new domains, and can
inspire future research on this practical bottleneck
in applications.
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A Appendices

A.1 Implementation details
For language model further pre-training, we imple-
ment our code based on Wu et al. (2020) where
the training data and hyperparameters are kept the
same. Their evaluation script is used to show re-
sults on the standard supervised dialog state track-
ing with the full-data and few-shot learning setting.
We run all experiments on three random seeds and
report the average score. The TOD-BERT base-
line is the “TOD-BERT-JNT-V1” provided by Wolf
et al. (2020). For span-based pre-training methods,
we use the provided “spanbert-base-cased” model
from Joshi et al. (2020) as the initial checkpoint
and add a span boundary object. For random mask-
ing, we use a 15% masking budget and sample a
span length by geometric distribution with p = 0.2
and clip the max length to 10. For other mask-
ing methods, we follow Levine et al. (2021) by
considering n-grams of lengths 2 to 5 which ap-
pear more than 10 times in the corpus. We choose
the top 10 - 20% of n-grams by each criterion so
about half of the tokens can be identified as part
of correlated n-grams. We also experimented with
different number of n-grams to mask and evaluate
on both pre-training loss and DST results, but did
not observe significant difference. We further pre-
train using the same data as TOD-BERT with early
stopping by prediction loss. For the attention dis-
tribution used to define our distance function, we
use the eighth layer of the model suggested by Kim
et al. (2020). We modify Jin and Schuler (2020)
to train our unsupervised PCFG model using their
suggested hyperparameters on the text input only
with data cleaned by Wu et al. (2020). These ex-
isting techniques, however, cannot be applied to
induce schema without our proposed novel method.
They only inspire us to propose an fully unsuper-
vised method leveraging the potential benefits. All
our experiments run on eight V-100 GPUs. The
training time varies from three hours to 14 hours.

For the baseline DSI, we run their provided pub-
lic codebase on the same MultiWOZ 2.1 data and
SGD dataset respectively (since each corpus has
different schemas in the output space, we cannot
pre-train on more task-oriented dialog data as ours),
following their suggested hyperparameters on the
best model DSI-GM.

For our auto-tuned multi-step clustering, we set
the minimum number of samples per cluster by
dividing the total number of samples by 5, 10, 15,

20, 25 and choose the best one auto-tuned by the
Silhouette coefficient. A more rigorous grid search
can potentially generate better performance on our
tasks. All other parameters are kept as default in
HDBSCAN.

For our experiments on MultiWOZ and SGD,
we use the development portion of the data (fol-
lowing the standard separation in their original
Github repositories), which represents a sample
of whole corpus. MultiWOZ and SGD are com-
monly used task-oriented dialog datasets collected
in English. On MultiWOZ, we use 7374 user ut-
terances from the development set (1000 conversa-
tions), which covers 31 slot types. On SGD, we use
24363 user utterances (2482 conversations), which
covers 82 slot types. We also report the induced
schema results on the training portion of the data
in Appendix A.6 where there are 56668 user utter-
ances (8420 conversations) on MultiWOZ 2.1., and
164982 user utterances (16142 conversations) on
SGD. We build the ground-truth ontology from the
annotated corpus with slot types and values in the
dialog state.

A.2 Algorithm

Algorithm 1 shows the algorithm for span extrac-
tion. For simplicity, we compare the distance from
left to right for both the settings with and without
PCFG structure. For using language model only,
we merge tokens into phrases if their distance is
small. If PCFG structure is constrained, we com-
pare the distance between tokens and check if their
corresponding nodes belong to the same parent. In
practice, we implement the PCFG span extraction
from bottom to top where we merge tokens into
nodes from the lower level and represent the tokens
with merged nodes. At each level, we compare the
distance between consecutive nodes. To illustrate
this process, for example in Figure 2, we com-
pare the distance between the node “modern” and
“global cuisine”, and the distance between “a restau-
rant” and “which” to check if they are siblings in
the same level. Since “which” is not merged in a
lower level, itself serves as the node whereas “a
restaurant” serves as the node for “restaurant”. All
merged phrases, with left-out unigrams, are consid-
ered as candidate extracted spans.

Algorithm 2 shows the algorithm for auto-tuned
multi-step clustering. For each step, the input to
the clustering algorithm (HDBSCAN) is the embed-
dings of spans (or uttereances in the second step)

1187



Algorithm 2: Auto-tuned Multi-step Clustering
Require: Repspan = Repspan1 , Repspan2 , . . . , Repspann : masked span representation (hidden states of LM by replacing

extracted spans with [MASK] token)
Require: Reputt = Reputt1 , Reputt2 , . . . , Reputtn : utterance-level representation (hidden states of LM on [CLS] token)
Require: min_nums: a list of candidate values to set for minimum samples for cluster.

1: input_embeddings← Repspan

2: clusters← input_embeddings
3: for stepi in multi-steps do
4: for input_embeddingsi in clusters do
5: clustersi ← max_i{silhouette_score(HDBSCAN(input_embeddingsi,min_numi))}
6: if step_i = 1 then
7: if all sub-clusters share the same frequent span then
8: ignore input_embeddingsi, continue the for loop {filter clusters with only one value}
9: end if

10: clustersi ← corresponding Reputt for each item in clustersi {Utt-level for second step clustering}
11: end if
12: end for
13: clusters← {clustersi for all i in the current step}
14: end for

Model Joint Acc. Slot Acc.

BERT 45.6 96.6
SpanBERT 1.5 81.1
ToD-BERT 46.0 96.6

Span-based model trained on TOD data

TOD-Span 49.0 96.9
freq 49.7 97.0
freq w/o stop 47.3 96.8
PMI 48.7 96.9
PMI_seg 49.4 97.0
SCP 48.3 96.8

Table 5: Supervised DST results with the full-data set-
ting. Results show that span-based methods outperform
token-based pre-training methods, and this improvement
is not from the initial checkpoint. Different masking
methods achieve similar performance.

grouped from the previous step. In other words,
for each sub-groups clustered by the previous step,
we further cluster the embeddings into fine-grained
groups. Figure 3 illustrates this process. The clus-
tering algorithms returns groups of embeddings
and corresponding labels (0, 1, . . . ) and we choose
the minimum number of samples per cluster based
on Silhouette score. We filter clusters where the
frequent spans of each sub-cluster are the same, in-
dicating that there is only one value for this cluster.
We consider the rest clusters as the input to the next
step, or return as our final clusters.

data Model Joint Acc. Slot Acc.

1%

BERT 6.4 84.4
SpanBERT 3.6 82.6
TOD-BERT 7.9 84.9
TOD-Span 9.9 86.0

5%

BERT 19.6 92.0
SpanBERT 5.6 83.9
TOD-BERT 20.9 91.0
TOD-Span 28.2 93.9

10%

BERT 32.9 94.7
SpanBERT 11.8 85.6
TOD-BERT 30.2 93.5
TOD-Span 38.6 95.5

Table 6: Supervised DST results with few-shot train-
ing data. Similar to the full-data setting, span-based
methods achieve significantly better performance than
token-based further pre-training methods.

A.3 Supervised DST results

Wu and Xiong (2020) suggest that further pre-
training on TOD data (Wu et al., 2020) helps gen-
erating better utterance-level representation, but
less so for other features such as slots. To encour-
age better span-level representation, we further pre-
trained a SpanBERT model on TOD data by mask-
ing spans based on frequency, Pointwise Mutual
Information (PMI), symmetric conditional proba-
bility (SCP, Downey et al., 2007), and segmented
PMI (Levine et al., 2021) following recent research,
together with randomly masking contiguous ran-
dom spans. Implementation details can be found
in Appendix A.1. Here we evaluate different pre-
trained methods on the standard DST benchmark.
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Model R (LM only) R (+ supervised) R (+ unsupervised)

NP 62.13
BERT 62.30 62.05 64.30
SpanBERT 58.43 64.60 62.52
TOD-BERT 54.15 60.88 65.05
TOD-Span 64.21 67.22 68.13

Ground Truth 78.83

Table 7: Span extraction results on manually labeled ut-
terances. Results show that constrained on unsupervised
PCFG structure, our span-based further pre-training
method TOD-Span achieves the best recall (68.13),
close to the ground truth performance (78.83)

Table 5 and Table 6 shows the performance of
supervised DST performance evaluated on joint
accuracy and slot accuracy with the full data and
few-shot data (1 - 10%), respectively. Note that
this was not used to choose the best model to per-
form schema induction and related tasks. These
results compare different pre-training methods to
illustrate the quality of the initial checkpoints on a
more standard benchmark. As shown similarly in
recent work, TOD-BERT can only show marginal
improvement over BERT averaged over different
random seeds. Meanwhile, SpanBERT when used
as an initial checkpoint is not stable at downstream
DST tasks even if multiple random seeds were
tested. However, after further pre-training on task-
oriented dialog dataset, TOD-Span achieve signif-
icantly better performance in both the few-shot and
full-data setting. When comparing different span
masking methods, random masking (TOD-Span)
is quite effective. Although freq and PMI_seg
achieves better performance (over the naive PMI),
the improvement is not large. We conjecture that
this might be due to that compared to general do-
mains and tasks with more diverse prediction space
such as question answering, the number of task-
relevant phrases in task-oriented dialog is limited.

A.4 Span Extraction Results

Table 7 shows the recall for span extraction re-
sults. We manually annotate 200 user utterances
so that acceptable span boundaries would not be
penalized. For instance, given the utterance “I need
to book a hotel in the east that has 4 stars”, in-
stead of the DST annotation “hotel-starts: 4” and
“hotel-area: east” together with coreference and
annotation errors that cannot be detected from the
context, we manually annotate the candidate spans
as [“in the east”, ”the east”, ”east”] and [”4 stars”,
”has 4 stars”, ”4”] which relaxes the rigid require-

ment of strict matching of slot values. Compared
to fuzzy matching, this evaluation is cleaner. Be-
cause of the annotation errors and coreference that
a value does not appear in the current utterance,
the ground truth score is 78.83. Similar to our
schema induction and DST evaluation results, we
observe that constraining on predicted structures
can increase model performance. In particular, us-
ing an in-domain self-supervised PCFG structure
and achieve similar or even better performance than
using a supervised parser. We only evaluate recall
here because there are non-meaningful spans ex-
tracted, and is not important to downstream tasks
since they are potentially filtered by our clustering
method.

A.5 Clustering
Figure 4 shows the clustering results after the first
step. This shows that we can get some coarse clus-
ters with non-meaningful groups (such as “thank
you”). Some slot types (such as day of the week as
“wednesday”) are not distinguished by their domain
and intent. Further clustering can generate more
fine-grained schema.

In addition, from empirical analysis, we found
that meaningless spans extracted together with
meaningful ones from the previous stage may add
noises in the process. To study its influence by fil-
tering out noisy clusters, we automatically examine
clusters and their corresponding sub-clusters from
the first two steps based on the assumption that
valid slot types include more than one slot value.
We choose one here because if one cluster is domi-
nated by examples such as “thank you” with a few
other instances such as “thanks”, the latter can be
considered as outliers from our clustering method.
Afterwards there is only one value left. We can
also choose to filter out clusters with more than one
slot value, which may result in lower recall. Since
the goal of schema induction is to build a com-
plete ontology with high recall, noisy groups are
actually acceptable. In other words, we observed
similar performance before and after filtering out
such noisy cluster since the cluster mapping step
would assign a low score to such groups from clus-
ter embedding representations (Section 4.1), which
is similar to how human experts would ignore a
cluster of meaningless spans.

A.6 Schema induction on training portion
Since our goal is to induce the schema of a corpus
without using any labeled data, there is no major
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Figure 4: Clustering after first step. Grey labels are outliers detected by HDBSCAN. The numbers in each group
represent a latent cluster label, and the texts represent the most frequent phrase in cluster.

schema DST
method # clusters type value turn joint

DSI 4981 95.08 43.23 21.10 28.14
Ours 374 93.33 47.32 37.64 44.74

Table 8: Results for schema induction and DST when
the schema is induced on the training portion of Multi-
WOZ data. Our method significantly outperforms the
strong DSI baseline.

difference in whether the schema is induced on
the training set of MultiWOZ or the development
set. The main difference is the number of utterance
where the training data is ten times larger than
the development data. Here we show the results
for reference. Table 8 demonstrates that despite
our much smaller number of clusters, our method
achieves significantly better performance than the
DSI baseline on both schema induction and DST.

A.7 SGD results

Table 9 shows the results for schema induction and
DST on the SGD dataset. We conjecture that the
similar performance results with the strong DSI
baseline is due to large difference in cluster num-
bers. Intuitively, with a larger number of clusters,
each group with fewer examples can be mapped
to the ground truth embeddings correctly. On the
other hand, if different slot types are mixed into one
cluster, all slot values are assigned an inaccurate
name. Another potential reason is that compared to

schema DST
method # clusters type value turn joint

DSI 11992 92.21 46.19 27.23 26.24
Ours 806 77.04 47.50 26.01 26.50

Table 9: Schema induction and DST results on SGD
dataset. Results suggests that our method achieves com-
parable or better performance than the strong DSI base-
line even though our number of clusters is a magnitude
smaller. See text for analysis.

MultiWOZ, SGD dataset requires more contextual
information (SGD has less average tokens per turn
and more turns per dialogue). Thus the mapping
from relatively noisy clusters to ground truth cre-
ates errors for downstream tasks, especially that
the evaluation metric require exact match of slot
types.

However, the results are still comparable. Al-
though predicting a magnitude smaller number
of clusters to be less favoured in evaluation, our
method still achieves similar or better performance.

A.8 Comparison to DSI on DST

We note that the DST results on MultiWOZ for
DSI is lower than that reported in Min et al. (2020).
As shown in Section 4.1, the original number was
reported by mapping predicted slot types to target
ontology at the turn level (before accumulating for
the final prediction), where a small subset is used.
This process makes mapping more evident (for ex-
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ample, instead of mapping a predicted slot type to
the target 30 slot types, it only compares a slot type
to one of two slot types that appear in the refer-
ence). Hence, it overestimates the performance and
is very different from how a human expert would
assign labels when inducing the schema for a new
corpus without (turn-level) annotation. Since DST
is evaluated to make sure that the slot type matches,
an incorrect slot type matching would result in a 0
true positive score. The actual performance in our
experiments is thus lower.

In addition, we follow the exactly same settings
including training and evaluation scripts (on DST)
with their provided pre-processed span-level data
and suggested hyperparameters. We use the same
metrics and scripts to evaluate all methods. Accord-
ingly, all the numbers reported in Table 2 are fair
and comparable.

Lastly, since we use fuzzy matching scores (Ras-
togi et al., 2020; Min et al., 2020), turn-level per-
formance is accumulated to the joint level. For
that reason, different from joint goal accuracy com-
monly used where all slot types and values are re-
quired to be exactly match, partial true positives are
counted again in future turns. For example, if the
current turn predicts “train leave-at: 10” with the
target dialog state “train leave-at: 10:00”, even if
the next turn predicts nothing correctly, this partial
score is counted in the joint level score in the next
turn. This procedure follows the setting of Min
et al. (2020). In fact, in their reported performance
of DSI-GM on MultiWOZ 2.1 with precision and
recall of 52.5, 39.3, and 49.2, 43.2 at turn and joint
level respectively, the actual F1 scores are actually
45.0 for the turn level and 46.0 at the joint level.
Similar to ours, they also received higher score on
the joint level due to accumulative partial scores
(by calculating F1 using their reported precision
and recall scores directly). Since we follow the
same evaluation script and metrics, the results and
conclusion we have in our experiments comparing
different methods are comparable.

A.9 Further analysis of schema induction
among datasets (including realistic data)

When we apply our method on internal customer
data for slot schema induction, we follow the same
pipeline introduced in Section 3. For intent schema
induction, we consider both the system turn and
utterance turn as the context to our multi-step clus-
tering to find schema with the hierarchy. Because

our method is data-driven and does not require
heuristics, it can induce expected slots explained
before (e.g. “until the 30th”). We observed empiri-
cally satisfying performance but the results cannot
be reported publicly because of restrictions. There-
fore, we only report results on the public datasets to
compare to previous research, as well as to inspire
follow-up works for comparison.

We also applied our approach to the Ubuntu dia-
log corpus (Lowe et al., 2015). Compared to gen-
eral TOD systems where a user and an knowledge-
able agent communicate with each other, this data
is collected from online forms to discuss technical
issues. The utterances are less conversational, and
include coding scripts, making it very noisy. We
experiment on this more realistic dataset only for
reference, since it is significantly different from
building a TOD systems to interact with real users
where schema is critical. We sample 8k utterances
from the training data, and apply our method on
both the intent level and the slot level. On the intent
level, our method generates 70 clusters from the
first step, and 154 clusters after three steps. Apart
from greetings (which appear very frequently), we
can induce intents such as suggesting one ques-
tion is off topic (e.g. “this is a support channel;
please leave and go to xxx channel”). There are
also some more evident intent clusters such as sug-
gested command line, suggested url, and questions
for installations in a specific setup (e.g. “how to
install firefox on 64 bit”). When the input sentence
is long with mixed intents, our method may group
these into one large cluster (such as providing sug-
gestions to a specific problem, which is more simi-
lar to dialog act). We may choose to mix slot- and
utterance-level clustering to solve such an issue
by treating each complete segment in an utterance
as a long span. On the slot level induction, our
method generates 36 clusters from the first step,
and 287 clusters after three steps. Our method can
induce slot types such as “ubuntu verision” and
“software name”. However, compared to Multi-
WOZ and SGD, the induced slots are much nosier
with lower precision where meaningless verbs (e.g.
“set up” are grouped). Meanwhile, there a many
other slot types that are not meaning such as a clus-
ter regarding part of a path (e.g., “/var/”), which
may be due to that we use the same LM trained
on TOD dat which does not handle code scripts.
Further in-domain pre-training within the Ubuntu
dialog corpus may solve this issue. To conclude,

1191



even though this dataset is noisy and different from
TOD, our method is still applicable to discover use-
ful schema on both the intent and the slot level
without any supervision.

A.10 Applying induced schema on testing
data

After inducing the schema on the training data, we
may apply the induced schema directly to a differ-
ent set of data (such as testing data) for downstream
applications (such as DST). Since we already in-
duced slot clusters and mapped them to ground
truth, we do not need to follow the same span ex-
traction before clustering again. Alternatively, we
adopt the following procedure. We extract all can-
didate phrases in the same way, but instead of clus-
tering, we map the extracted phrases to clustered
groups. Specifically, similar to mapping induced
latent clusters to ground truth groups in schema
induction, we find the most similar latent cluster
to the candidate in the contextualized embedding
space, and assign the cluster name to the phrase
as its slot type. We observed that even though the
schema is not induced on the testing data, the per-
formance on both turn and joint level maintains
(36.58 and 48.98).

A.11 Related work in schema induction of
other natural language processing tasks

Similar to grammar induction and unsupervised
parsing, schema induction can help to eliminate
the time-consuming manual process and serves as
the first step to build a large corpus (Klein and
Manning, 2002; Klasinas et al., 2014). Related
tasks include event type induction (Huang et al.,
2016, 2018), semantic frame induction (Yamada
et al., 2021), and semantic role induction (Lang
and Lapata, 2010; Michael and Zettlemoyer, 2021).
Relationship in these tasks such as predicate and
head or patient and agent are relatively evident
compared to that in conversational dialog. In ad-
dition, most of previous research requires either
strong statistical assumptions based on pre-defined
parsers, or existing ontologies and annotations for
some seen types, and formulate the problem similar
to word sense disambiguation on predicate-object
pairs (Shen et al., 2021). In contrast, our method
does not require any formal syntactic or semantic
supervision.

A.12 Incorporating task-specific annotation
requirements for schema induction

Our method is data-driven, indicating that if two to-
kens appear frequently (thus form a span), it might
be a good idea to consider them as a slot together.
Our motivation here is to induce the most prob-
abilistic schema based on distributed representa-
tions. Incorporating annotation requirement is not
specific to schema induction from corpus, and is a
broader concept of neuro-symbolic integration by
merging symbolic rules with connectionist models
like neural networks.

However, if there is a specific requirement, we
can either inject inductive bias similar to Shi et al.
(2019); Kim et al. (2020) to change the attention
distribution (so that the requirement-specific bias
can result in smaller or larger divergence explicitly).
We can also add such requirements as rules directly
on certain spans. In this way, we can incorporate
the requirements. In comparison, previous methods
relying on supervised parser are not applicable.

A.13 Detailed schema induction results
Table 10 shows detailed results comparison on
different proposed methods on schema induction.
All methods result in a similar number of clusters,
while span-based further pre-training methods con-
strained on unsupervised PCFG structures achieve
the best performance overall.
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slot type slot value

method # clusters precision recall f1 precision recall f1

Baseline

DSI 522 96.15 80.65 87.72 41.53 57.40 37.18

Parser only

NP 88 94.44 54.84 69.39 42.26 67.80 47.46
DSI cand. 113 100.00 74.19 85.19 56.46 60.80 49.71
PCFG 339 96.43 87.10 91.53 62.14 58.01 53.62
CoreNLP 292 96.15 80.65 87.72 57.80 63.18 54.43

Language model only

BERT 340 96.00 77.42 85.71 62.11 58.60 55.80
SpanBERT 343 96.30 83.87 89.66 56.34 51.95 45.21
TOD-BERT 219 96.30 83.87 89.66 63.58 57.64 50.89
TOD-Span 374 96.00 77.42 85.71 54.88 69.13 55.29
freq 100 93.33 45.16 60.87 47.31 63.32 45.97
freq w/o stop 337 95.65 70.97 81.48 48.63 63.66 48.27
PMI 369 100.00 80.65 89.29 53.97 73.60 56.38
PMI_seg 551 96.55 90.32 93.33 60.37 66.68 58.33
SCP 374 96.00 77.42 85.71 55.06 61.23 51.78

Language model contrained on unsupervised PCFG

BERT 350 96.15 80.66 87.72 58.85 57.49 52.32
SpanBERT 203 96.30 83.87 89.66 60.54 48.23 44.51
TOD-BERT 245 96.43 87.10 91.53 55.40 57.26 48.13
TOD-Span 290 100.00 93.55 96.67 61.34 67.26 58.71
freq 379 100.00 83.87 91.23 56.67 68.19 57.19
freq w/o stop 315 96.55 90.32 93.33 56.40 66.43 53.74
PMI 335 96.55 90.32 93.33 57.90 67.50 56.91
PMI_seg 275 96.55 90.32 93.33 55.19 65.04 54.54
SCP 290 100.00 90.32 94.92 53.62 65.31 53.00

Table 10: Schema induction results for different proposed methods. High precision scores indicate that the clusters
are relatively clean without noises that result in fuzzy representations for mapping.
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