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Abstract
The information in tables can be an important
complement to text, making table-based ques-
tion answering (QA) systems of great value.
The intrinsic complexity of handling tables of-
ten adds an extra burden to both model design
and data annotation. In this paper, we aim to
develop a simple table-based QA model with
minimal annotation effort. Motivated by the
fact that table-based QA requires both align-
ment between questions and tables and the
ability to perform complicated reasoning over
multiple table elements, we propose an om-
nivorous pretraining approach that consumes
both natural and synthetic data to endow mod-
els with these respective abilities. Specifically,
given freely available tables, we leverage re-
trieval to pair them with relevant natural sen-
tences for mask-based pretraining, and syn-
thesize NL questions by converting SQL sam-
pled from tables for pretraining with a QA
loss. We perform extensive experiments in
both few-shot and full settings, and the re-
sults clearly demonstrate the superiority of our
model OmniTab, with the best multitasking ap-
proach achieving an absolute gain of 16.2%
and 2.7% in 128-shot and full settings respec-
tively, also establishing a new state-of-the-art
on WikiTableQuestions. Detailed ablations
and analyses reveal different characteristics of
natural and synthetic data, shedding light on
future directions in omnivorous pretraining.1

1 Introduction

Humans are voracious information omnivores, con-
suming information in a number of forms. Un-
structured text is the form covered in most work
in NLP, but another form widely used on the web,
academic papers, and reports is the table, where
elements are organized in rows and columns and
presented in a structured and succinct way. Be-
cause of this, systems to aid information access

∗Work was done when interning at Microsoft Azure AI.
1Code, pretraining data, and pretrained models are avail-

able at https://github.com/jzbjyb/OmniTab.

over tables, such as table-based question answering
(QA) (Pasupat and Liang, 2015; Iyyer et al., 2017;
Zhong et al., 2017), hold significant promise. How-
ever, they also require understanding of the table
structure and sophisticated reasoning across multi-
ple elements to get the final answer. This intrinsic
complexity not only often requires special-purpose
model designs such as pipeline systems that gener-
ate structured queries as intermediate steps (Liang
et al., 2018; Wang et al., 2019; Yin et al., 2020;
Yu et al., 2021), but also adds an extra burden to
the process of data annotation (Pasupat and Liang,
2015; Shi et al., 2020).

Given the challenges above, we ask the ques-
tion: “can we create a simple model that is able to
answer complex table-based questions with mini-
mal annotation effort?” Both modeling simplicity
and limited assumptions regarding data availabil-
ity would make it easier to apply table-based QA
systems in practical scenarios. To this end, we fo-
cus on developing a simple and generic end2end
table-based QA model where only a limited num-
ber of annotated natural language (NL) questions
are available; the first attempt to address this prob-
lem under few-shot settings. In order to answer
table-related questions, an end2end model needs
to understand both the NL question and the table,
build connections between the two formats, then
perform complex reasoning. Taking the manually
annotated question in Fig. 1 as an example, models
need to align entities (“Collateral Damage”) and
concepts (“film”, “air”) in the question to elements
in the table (the “Collateral Damage” cell and the
“Film” and “Date” columns) and perform compara-
tive reasoning based on chronological order (indi-
cated by “previous” and “before”) to find the final
answer. Motivated by this, we propose OmniTab,
an omnivorous pretraining approach that consumes
natural data to endow models with the ability to
understand and align NL with tables, and synthetic
data to train models to perform reasoning.
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# Date Film Gross
1 January 6, 2002 The Lord of the Rings:

The Fellowship of the Ring $23,006,447

5 February 3, 2002 Black Hawk Down $11,112,555
6 February 10, 2002 Collateral Damage $15,058,432
18 May 4, 2002 Spider-Man $114,844,116

20 May 19, 2002 Star Wars Episode II:
Attack of the Clones 80,027,814

Title: List of 2002 box office number-one films in the United States

What was the previous film to air before
Collateral Damage? [Table]

Black Hawk Down

Input Output

SELECT film WHERE gross > (SELECT gross WHERE film = ‘Star Wars’)

Spider-Man__ with its $114.8 million__ mark established 
a new opening weekend record. [Table]

Which film has grossed more than Star Wars? [Table]Spider-Man

Spider-Man,
$114.8 million

Annotated
Finetune

Natural

SyntheticPr
et
ra
in

Figure 1: Example of natural and synthetic pretraining data and a
manually annotated finetuning question. Phrases aligned with table
elements and reasoning operations are marked with violet and red re-
spectively. [Table] denotes the linearized table.

Retrieval
Model

SQL
Sampler

SQL2NL
Model

Pretrain
Finetune 

SQL query

Align 
& Mask

Natural sentence

Mentions Answer

Annotated question [Table] Annotated answer

Masked sentence [Table]

Fine-tune

Pre-train
Synthetic question [Table]

Pre-trainOmniTab

Figure 2: The overall framework of
generating and pretraining with natural
data (blue pipeline), synthetic data (green
pipeline), and finetuning with limited an-
notated questions (orange pipeline) for our
OmniTab model.

To obtain natural NL-table pairs, we propose
a novel approach that leverages the multitude of
tables freely available from the web, and uses re-
trieval to pair them with relevant NL sentences.
Compared with manually defined heuristics used in
previous work (Herzig et al., 2020; Yin et al., 2020),
retrieval-based methods have the potential to dis-
cover better-aligned sentences. We explore differ-
ent retrieval methods including string-based match-
ing, sparse retrieval, and dense retrieval (Karpukhin
et al., 2020; Khattab and Zaharia, 2020; Gao et al.,
2021). Given these retrieved pairs, phrases in the
sentence that align with table elements are then
masked and the model takes both the masked sen-
tence and the linearized table as input to predict
masked mentions. For example, in Fig. 1 the re-
trieved sentence describes a particular row and
contains two phrases matching cells in the table
(i.e., “Spider-Man” and “$114.8 million”) which
are masked for prediction. To perform this sort of
masked prediction, models need to understand that
the sentence is about a record-breaking movie and
refer to the table to extract the correct cells. Thus,
training on this data endows models with better
understanding and alignment across both formats.

For the synthetic data approach, we propose a
method where structured queries such as SQL are
first sampled and then converted into NL questions
using an SQL2NL model, which allows for control
of the reasoning operations covered by the SQL.
Compared to existing work that trains directly on
SQL (Liu et al., 2021), an approach hindered by
the gap between structured and natural language,
training on synthetic NL questions can close the

gap, especially when limited annotated NL ques-
tions are available. We train the SQL2NL model
with a small number of SQL-NL pairs and further
boost its performance using verification-based self-
training, which selects high-quality generated NL
questions based on their likelihood to generate the
gold answer. The converted NL question concate-
nated with the linearized table is fed into the model
to directly generate the final answer, as shown in
the synthetic example in Fig. 1 which involves com-
parative reasoning indicated by the phrase “more
than”. Although the fluency and naturalness of
synthetic data is usually lower than natural data,
learning on synthetic data provides a direct way to
simulate different reasoning skills, which is rela-
tively sparse in natural data.

Our overall framework is shown in Fig. 2. We
use tables from Wikipedia and retrieve relevant
sentences from the same page to generate natu-
ral text-table parallel data after masking mentions
aligned to table elements (the blue pipeline on the
left of Fig. 2). We use SQL queries sampled by Liu
et al. (2021) and convert them to NL questions as
synthetic text-table parallel data (the green pipeline
on the right of Fig. 2). We use WikiTableQuestions
(WTQ) (Pasupat and Liang, 2015), a widely used
table-based QA dataset consisting of complex ques-
tions, as our major benchmark to evaluate our pre-
training methods, and further use WikiSQL (Zhong
et al., 2017) and topic-categorized WTQ (Chem-
mengath et al., 2021) to evaluate the robustness of
our methods, all under few-shot setting with sizes
ranging from 16 to 1,024. When using only 128
annotated questions, our model OmniTab improves
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over the best-performing baseline by an absolute
gain of 13.2% and 12.3% with natural and synthetic
pretraining separately and 16.2% when combined,
demonstrating the effectiveness of the approach.
We also achieve state-of-the-art performance on
the full WTQ with an absolute gain of 2.7%. Ex-
tensive ablations and analyses reveal that natural
and synthetic data indeed play the role of enhanc-
ing alignment and injecting reasoning, shedding
light on future works on omnivorous pretraining.

2 End2End Table-based QA

In this section, we first explain the setting of table-
based QA, then introduce the input format as well
as our model architecture.

Table-based QA Each example in table-based
QA consists of an NL question q, a table T , and
an answer a. Both questions and answers are a
sequence of tokens. Each table consists of N rows
{ri}Ni=1 andM columns, where the token sequence
in the cell located at the i-th row and j-th column
is denoted as ci,j . The first row r1 is the header
row, indicating the meaning of each column. Table-
based QA aims to generate the answer a given both
the question q and the table T as the input.

Input Format We follow Liu et al. (2021) in
concatenating the NL context with the linearized
table as input. We flatten the table following a top-
to-bottom and left-to-right order, where we prepend
“col:” to the beginning of the header and “row i:” to
the beginning of the i-th row to separate different
rows: T = [col: r1 row 1: r2 ... row N : rN ]. Cells
within each row are separated by a vertical bar “|”
ri = [ci,1 | ci,2 | ... | ci,M ]. Finally, the question q
is prepended to the linearized table: [q T ].

Model Architecture We use the state-of-the-art
table-based QA model TAPEX (Liu et al., 2021) as
our base model, which is based on BART (Lewis
et al., 2020b). It feeds questions and tables into the
encoder and generates answers from the decoder:
P (a|q, T ). Multiple answers are joined with com-
mas into a single output sequence.

3 OmniTab: Pretraining with Natural
and Synthetic Data

As mentioned in the introduction, table-based QA
requires both (1) the ability to align NL phrases
with table elements that could be expressed in dif-
ferent wording and (2) perform reasoning such as

filtering, aggregation, superlatives, comparatives,
and arithmetic. Compared to synthetic data, real
NL sentences relevant to the table excel at enhanc-
ing the first capability since they are more natural
and fluent, exhibiting various language variations.
Learning on real sentences can endow models to
grasp the nuances in language and align with struc-
tured tables. On the other hand, synthetic data is
flexible, manipulable, and easy to obtain. It is cost-
less to generate synthetic data via manipulating
different aspects of the generated data to incorpo-
rate various desired properties. As a result, we can
generate large amounts of complicated synthetic
data covering various reasoning operations, which
is lacking in the NL corpora. This motivates us to
explore both types of data.

3.1 NL-Table Alignment Through Retrieval

Using the Wikipedia table corpus released by
Herzig et al. (2020), we explore three retrieval
methods to construct aligned NL-Table pairs and
propose a new pretraining objective.

3.1.1 Retrieval Protocol

Since sentences relevant to a table are usually in-
cluded in the same document, we restrict our re-
trieval models to only consider the document con-
taining the table, with the purpose of reducing noise
and increasing efficiency.

String-based Matching For each sentence, we
enumerate over all cells in the table and find the
longest common substring (LCS) between a cell
ci,j and a sentence s. An LCS is considered as a
mention to be masked if it (1) is not a stopword, (2)
contains alphanumeric characters, (3) is a complete
word, and (4) is longer than 70% of the length of
the cell. We choose the sentence with the largest
number of mentions to pair with the table.

Sparse Retrieval with BM25 Another method
of string-based matching is BM25 with tables as
queries and sentences as candidates. Different from
the above method matching whole cells, BM25
treats tables as a bag of tokens. We linearize tables
as queries and choose the most relevant sentence to
compose the pair. Since BM25 retrieval does not
return aligned phrases and cells, we resort to the
above method detect mentions.

Dense Retrieval with Token Representations
The above two methods can only consider exact
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p1 p2 p3 p1 p2 p3 p1 p2 p3
c11 0.2 0.8 0.2 c11 0 0.8 0 c11 0 0.8 0
c12 0.1 0.1 0.7 c12 0 0 0.7 c12 0 0 0.7
c21 0.5 0.1 0.2 c21 0.5 0 0 c21 0.5 0 0
c22 0.4 0.1 0.3 c22 0.4 0 0 c22 0 0 0
c31 0.3 0.1 0.2 c31 0.3 0 0 c31 0 0 0
c32 0.4 0.1 0..1 c32 0.4 0 0 c32 0 0 0

max-sp(A, dim=1) max-sp(A, dim=0)

Figure 3: Applying max-sparsify on a relevance matrix
of cells and phrases on two dimensions consecutively.

string matches, which is sub-optimal because differ-
ent expressions might be used between sentences
and tables such as “$114,844,116” and “$114.8 mil-
lion” in Fig. 1. Tables tend to use full and formal
expressions, while expressions in NL tend to be ca-
sual, often with abbreviations. To address this issue,
we propose to use dense representations to perform
soft matching. Many works use a single dense
vector to represent the whole query/document for
retrieval (Guu et al., 2020; Karpukhin et al., 2020).
However, in our case, queries are tables usually con-
sisting of many cells,2 thus representing a whole
table as a single vector might lead to information
loss, which performs well below BM25 in our pre-
liminary experiments. Additionally, retrieval based
on a single vector only returns sentence-table pairs
without revealing phrase-cell alignment, which is
required for masking purposes. Thus, we pro-
pose to use token representation to directly match
phrases and cells, similar to token-level dense re-
trieval (Khattab and Zaharia, 2020; Gao et al.,
2021) in spirit.

Specifically, we use BART to obtain token rep-
resentations for each sentence s and table T sep-
arately. We then use a named entity recognition
(NER) model to detect candidate phrases {pl}Ll=1

in the sentence. Each phrase and cell are repre-
sented as the average token representation, denoted
as epl

and eci,j respectively after normalized to a
unit vector. We compute a similarity for each cell-
phrase pair using dot product eci,j ·epl

, resulting in
a two-dimensional similarity matrix A ∈ RNM×L,
where each row and column correspond to a cell
and a phrase respectively. We aggregate the rele-
vance matrix A to derive relevance scores for rank-
ing sentences and an assessment score for each
phrase to choose salient mentions for masking.
Given the fact that soft match based on dense vec-
tors usually yields a non-zero relevance score even
for irrelevant pairs, we apply the max-sparsify op-

2Wiki tables have 26 cells on avg with extreme cases 500+.

erator to emphasize relevant matches and eliminate
noisy irrelevant matches, similarly to the max op-
erator in Khattab and Zaharia (2020); Gao et al.
(2021). The max-sp(A, dim = i) keeps the max en-
try along dimension i of the matrix A and changes
other entries to zero. As illustrated in Fig. 3, we
first apply this operator over all phrases (dim = 1),
assigning each cell the best-matching phrase, then
apply it over all cells (dim = 0), assigning each
remaining phrase to its best-matching cell. We use
the sum of the sparsified matrix as the relevance
score to choose the best-matching sentences, rank
remaining phrases in that sentence (p2 > p3 > p1

in Fig. 3), and choose phrases with scores higher
than a threshold τ as mentions to be masked.

rel(s, T ) = sum(max-sp(max-sp(A, 1), 0)). (1)

3.1.2 Learning Objective
Given a retrieved sentence s associated with the
table T , we apply two masking strategies: (1) ran-
domly mask tokens in the sentence or cells in the
table (2) salient mention masking where we first
identify phrases in the sentence that align with table
elements, then mask aligned phrases (denoted as
mentions). Compared to random masking, salient
masking specifically focuses on masking shared
information, enabling the model to better learn the
correspondence across formats, which we will ver-
ify in § 4.3. Since we use TAPEX as the base
model, which is based on BART, we follow the pre-
training format of BART to generate the original
unmasked sequence given the input with masked
tokens (in either NL or table). Instead of comput-
ing the negative log likelihood loss (NLL) over all
tokens, we only compute at masked positions to
emphasize the recovery of missing information:

Lmask = − logPmask(s, T |s∗, T ∗), (2)

where s∗/T ∗ denote the masked sentence/table, and
Pmask(·|·) only computes loss at masked positions.

3.2 Synthetic Questions Converted from SQL
We use synthetic questions to simulate real table-
based questions that involve various reasoning oper-
ations, such as the comparative operation in Fig. 1.
While directly synthesizing complex NL questions
is challenging, it is easier to generate complex struc-
tured queries such as SQL because they follow pre-
defined syntax, and different reasoning operations
can be implemented with different SQL templates.
For example, the SQL query in Fig. 1 is based on
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Figure 4: The procedure of learning a SQL2NL model
with verification-based self-training. Annotated / gen-
erated NL questions are denoted as orange / green.

a template that compares entries w.r.t. a numerical
property. This motivates us to first generate SQL
(o) then convert them to NL questions (q).

Fortunately, Liu et al. (2021) already sampled a
large corpus of SQL with associated answers based
on tables from Wikipedia and used SQL plus ta-
bles as input to pretrain their model TAPEX. They
achieved state-of-the-art performance on table-
based QA, making TAPEX a strong base model.
However, there is a large gap between SQL and NL
questions, and training solely on SQL might hinder
it from closing this gap. Instead, we use NL ques-
tions in the pretraining directly. Given synthesized
NL questions, we pretrain with a standard genera-
tive QA loss that takes NL questions concatenated
with tables as input and decode answers obtained
by executing SQL queries over tables:

LQA = − logP (a|q, T ). (3)

Sampling SQL Based on Templates Liu et al.
(2021) leverage tables from WTQ and instanti-
ate different templates over them to sample large
amounts of SQL, where answers are obtained by
execution. Templates are automatically extracted
from SQUALL (Shi et al., 2020), which includes
SQL corresponding to NL questions in WTQ.

Training SQL2NL Models We use BART as
our base model and finetune it with limited SQL-
NL pairs to strictly conform to the few-shot setting.
We use SQUALL to simulate few-shot scenarios,
by assuming that only a limited number of SQL
queries have annotated NL questions, which we
elaborate in § 4.1. The model takes SQL as input
and generates NL questions autoregressively.3

3We tried adding the corresponding table as an additional
input but found no gain despite increased computational cost.

Self-training with Verification-based Selection
Even with a strong model like BART, the accuracy
of SQL2NL is not perfect, especially in the face of
limited data. To further improve performance, we
devise a verification-based self-training approach
that selects high-quality NL questions generated
from unlabeled SQL by assessing how likely they
elicit correct answers from the table-QA model.

As illustrated in Fig. 4, we first finetune BART
model on supervised SQL-NL pairs to obtain the
initial SQL2NL model (¬), which is used to gen-
erate NL questions for unlabeled SQL (­) in the
second step. We attempted two generation methods
including beam search and top-k sampling (Fan
et al., 2018) and found that beam search leads
to more diverse results. Thus we use a beam
size of 50 to generate candidate NL questions
q̂. Third, we choose high-quality candidates for
self-training based on various criteria. The most
straightforward criterion is to choose questions
with the highest generation probabilities for self-
training scoregen.(q̂) = P SQL2NL(q̂|o), which does
not lead to improvement as we will show in the
ablations (§ 4.3). Motivated by the fact that Om-
niTab has a strong capacity to answer table-related
questions after large-scale pretraining and finetun-
ing, we rank generated sentences by verifying how
likely they elicit the correct answer using OmniTab
scorever.(q̂) = P (a|q̂, T ), which provides a sim-
ple and effective way to leverage the QA capacity
of OmniTab to indirectly provide feedback to the
SQL2NL model (®). Given the verification scores,
we first pair each unlabeled SQL with the sentence
with the highest score among 50 candidates, then
keep the top-K SQL-NL ranked based on the score
as our self-training data. At the last step, the small
supervised data is combined with the enlarged self-
training data to train the final SQL2NL model (¯).

3.3 Combining Natural and Synthetic Data

We perform multitasking using the two previously
defined objectives (Eq. 2, Eq. 3) to combine nat-
ural and synthetic data. In addition, since we use
TAPEX as initialization and their SQL-based pre-
training has demonstrated effective in endowing
models with reasoning capability, we add SQL-
based pretraining in the multitask setting. Lsql =
− logP (a|o, T ), resulting a combination of three
parts Lmask + LQA + Lsql as the multitask loss.
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4 Experiments

We first detail the experimental settings (§ 4.1).
Then we report on extensive experiments, starting
with the overall result including all design elements
to achieve the best results (§ 4.2), then breaking
down into each design choice to analyze their in-
dividual contribution (§ 4.3). Finally, we analyze
concrete examples to provide insight on different
characteristics of natural and synthetic data (§ 4.4).

4.1 Experimental Settings
Few-shot Settings We use WikiTableQuestions
(Pasupat and Liang, 2015) as our major benchmark,
as it is a widely used table-based QA dataset in-
volving various complex reasoning operations, and
report the answer accuracy given by the official
evaluator. Following work on few-shot QA (Ram
et al., 2021), we create few-shot settings of WTQ
by sampling a subset from the original training con-
taining 11K examples in total, with sizes changing
on a logarithmic scale from 16 to 1024.

Another component that requires annotated NL
questions is the SQL2NL model. We use SQUALL
(Shi et al., 2020), which contains ≈10K annota-
tions in total, to simulate few-shot scenarios by
varying the number of SQL annotated with NL
from 16 to 4,096. In the f -shot setting, we use
SQUALL-f to train the SQL2NL model and WTQ-
f to finetune QA models. Since SQUALL and
WTQ share the same set of NL questions, we make
sure that SQUALL-f also includes the same ques-
tions as WTQ-f , so in total only f annotated ques-
tions are used in the f -shot setting.

We also report on WikiSQL (Zhong et al., 2017),
another table-based QA benchmark with relatively
simple questions. To evaluate robustness under top-
ical shift, we further use WikiTableQuestions-TS
which split WTQ into five topics (Chemmengath
et al., 2021) based on Wikipedia categories. We
follow their creation procedure to reproduce the
split, and evaluate our methods by finetuning on
one topic and testing on the other four topics.

Pretraining Corpora We use the table corpus
by Herzig et al. (2020) extracted from Wikipedia
as our source of tables for retrieval. All tables
are preprocessed into a two-dimensional structure
with a single header and one or multiple data rows.
We use a subset of this corpus and find the corre-
sponding Wikipedia page through its URL, which
is preprocessed into sentences using SLING. Since
some tables are noisy and some Wikipedia pages

do not contain meaningful sentences, eventually
we pair approximately 0.5M tables with sentences
using our three retrieval methods. To make the syn-
thetic data of similar size, we also use 0.5M SQL
sampled by Liu et al. (2021) to generate synthetic
questions.

Baselines We consider two types of models as
baselines (1) pipeline methods that execute gen-
erated SQL to get answers such as TaBERT (Yin
et al., 2020) with MAPO (Liang et al., 2018) as
the semantic parser and (2) end2end methods that
directly generate answers, such as BART (Lewis
et al., 2020b), TAPAS (Herzig et al., 2020), and
TAPEX (Liu et al., 2021). More discussions about
table-related models can be found in the related
work section in § 5. Since we also incorporate the
SQL data used by TAPEX in our final multitask set-
ting, we report TAPEX∗ when comparing with our
multitask setting, which continued to train TAPEX
on SQL data for as many steps as OmniTab to make
a fair and rigorous comparison. We use OmniTab
to denote our full model trained in the multitask
setting with both natural, synthetic, and SQL data
(§ 3.3).

Implementation Details During pretraining, we
use a batch size of 512 and train OmniTab for 5
epochs, which takes about 20 hours on 8 V100
GPUs for multitasking on both natural and syn-
thetic data. During finetuning, we use a batch size
of 96 and finetune OmniTab for 50 epochs, which
takes about 30 minutes on 8 V100 GPUs. We use a
learning rate of 2e-5 for both pretraining, finetun-
ing. We use BART-large and TAPEX-large in all
experiments. For dense retrieval, since we use the
max operation, all phrases have scores ∈ [−1, 1].
We bucket phrases into bins with an interval of
0.1, manually inspect the quality of some randomly
sampled phrases from each bin, and found that
phrases with scores larger than τ = 0.6 are of high
quality. We use spaCy4 to detect named entities for
dense retrieval. For self-training of the SQL2NL
model, we use the best-performing OmniTab model
without self-training as the verification QA model,
and make sure that it uses the same amount of an-
notations as the final model (i.e. if the final model
is a f -shot model, we also use f annotations to
train the verification model). In our final model,
we added approximately 10K SQL-NL pairs for
self-training.

4https://spacy.io/
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Model f -shot: 16 128 1024 full

Pipeline systems
TaBERT+MAPO (Yin et al., 2020) 7.7 15.1 33.3 52.3

End2end systems
BART (Lewis et al., 2020b) 2.9 8.4 17.3 38.0
TAPAS (Herzig et al., 2020) 9.8 18.9 33.6 48.8
TAPEX (Liu et al., 2021) 10.4 23.1 45.5 59.5
TAPEX∗ 15.7 25.2 44.6 60.1

Ours (end2end)
OmniTab w/ natural data 22.8 38.4 49.8 61.3
OmniTab w/ synthetic data 21.5 37.5 48.8 61.3
OmniTab (w/ all) 26.8 41.4 51.9 62.8

Table 1: Accuracy on WTQ test comparing OmniTab
with baselines. Overall best results and best baseline
results are in bold and italic separately.
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Figure 5: WTQ test accuracy in all settings.

4.2 Overall Results

The overall results comparing OmniTab with other
baselines are listed in Tab. 1. Across three few-
shot settings, simulating low, medium, and high
resource scenarios, pretraining on natural or syn-
thetic data individually both outperform baselines
significantly, and multitasking further increases
the performance by a large margin. OmniTab
improves over the best baseline performance by
11.1%, 16.2%, and 6.4% across the three settings,
clearly demonstrating that pretraining on natural
sentences relevant to tables and synthetic questions
provides OmniTab with a stronger capacity to align
text and tables and perform reasoning. The two
types of data are complementary to each other,
which we will analyze in detail in § 4.4. Despite the
fact that we focus on the few-shot setting, we also
observe significant improvements of 2.7% on the
full setting, establishing a new state-of-the-art on
WTQ. The performance in all few-shot/full settings
shown in Fig. 5 clearly indicates the superiority
of OmniTab across the whole spectrum. The im-
provement is larger when annotations are fewer,
indicating the value of pretraining especially when
fewer annotations are available. We also observe
improvements on WikiSQL as shown in Tab. 2,

Model f -shot: 16 128 1024 full

TAPEX∗ 43.4 63.6 75.6 88.1
OmniTab 63.6 75.6 82.9 88.7

Table 2: Accuracy on WikiSQL test.

reinforcing the effectiveness of our methods.

4.3 Ablation Study

Next, we study the contribution of individual
components, including different retrieval methods,
masking strategies, self-training methods, and vary-
ing the number of training pairs.

Comparison of Different Retrieval Methods
Our first ablation concerns the influence of differ-
ent retrieval methods on the final performance. We
examined three retrieval methods to pair tables with
a relevant sentence, including string-based match-
ing, BM25, and dense retrieval (§ 3.1), as summa-
rized in Tab. 3. We also add a baseline (title-based
heuristic) that pairs a table with the caption, article
title, and description used by Herzig et al. (2020)
to validate the utility of retrieval. (1) Our three
retrieval methods usually perform better than the
title-based heuristic, indicating that retrieving sen-
tences based on the table content is better than fixed
heuristics that always pair a table with pre-specified
content. (2) By comparing two string-based match-
ing variants, we found that selecting the sentence
with the maximal number of mentions is better than
sentences with minimal overlap,5 confirming our
intuition that sentences more aligned with the ta-
ble enable models to learn better alignment. (3)
BM25 performs similarly to string-based match-
ing, partially because we still rely on string-based
matching to locate mentions after BM25 returns a
similar sentence. (4) Dense retrieval with threshold
τ = 0.6 achieves the best overall performance, but
it is relatively sensitive to the threshold. A high
threshold only keeps highly relevant phrase-cell
pairs, while a low threshold can discover more par-
tial matches for masked pretraining, leading to a
trade-off between quality and quantity. Given that
this initial attempt to use dense retrieval for text-
table alignment directly uses BART without further
tuning, further advances in retriever could likely
improve this trade-off.

Random Masking vs. Salient Masking We use
both salient mention masking that only masks men-

5Average #mentions for max and min are 2.0 vs 1.2.
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Model f -shot: 16 128 1024

TAPEX (Liu et al., 2021) 10.4 23.1 45.5

OmniTab w/ natural data obtained by
title-based heuristic 21.5 34.2 48.4
retrieval method other option

string-based (min) 23.3 35.5 47.5
(max) 24.2 36.7 49.2

BM25 23.8 36.4 49.1

dense retrieval
(τ = 0.5) 22.7 35.9 48.4
(τ = 0.7) 19.8 36.8 48.2
(τ = 0.6) 22.8 38.4 49.8

dense retrieval
(τ = 0.6)

w/o salient mask 17.5 33.6 47.1
w/o random mask 23.1 37.8 48.5

Table 3: WTQ test accuracy when pretraining on natu-
ral data obtained by different retrieval methods, and us-
ing two masking strategies separately. Design choices
used in our final model are underlined.

tions of cells in the sentence and random masking
in our final model. To examine the contribution
of each masking strategy, we remove one masking
strategy from the underlined model at the bottom
of Tab. 3. It is clear that both maskings help, with
salient masking being the major contributor, which
indicates that masking tokens indicative of align-
ment is more effective than aimless masking.

Comparison of Different Self-training Methods
To study which element is crucial in self-training,
we perform ablations to study various aspects of
self-training including (1) selection criterion for
questions (generation- vs verification-based) and
(2) models used for verification (BART vs Om-
niTab) by comparing all variants under the same
setting of 128 annotated SQL-NL. As summarized
in Tab. 4, self-training on selected questions with
the highest generation probabilities given by the
SQL2NL model does not improve over the base-
line without self-training, which is mainly because
the SQL2NL model is too weak to output reliable
generation probabilities. However, our method that
selects questions with the highest probabilities to
elicit answers from OmniTab (last line) improve
over no self-training by a large margin (4.3%, 2.5%,
and 1.8%), validating the idea of leveraging the
strong QA capacity of OmniTab to assess the qual-
ity of generated questions. To confirm the source
of success, we perform a sanity check that selects
sentences most unlikely to elicit answers (min), and
the performance indeed becomes much lower. We
also replace OmniTab with BART that is only fine-
tuned with 128 annotations, and the performance
is significantly lower, confirming that stronger QA

Model WTQ- 16 128 1024

TAPEX (Liu et al., 2021) 10.4 23.1 45.5

OmniTab w/ synthetic data from SQL2NL trained
criteria op. verify
w/o self-training - - 26.5 35.0 45.5
w/ generation-based max - 24.0 35.8 44.3

w/ verification-based
min OmniTab 15.5 27.4 41.9
max BART 28.9 36.4 45.4
max OmniTab 30.8 37.5 47.3

Table 4: WTQ test accuracy when pretraining on syn-
thetic data generated from an SQL2NL model trained
with 128 annotations and various self-training methods.
Design choices used in our final model are underlined.
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Figure 6: WTQ test accuracy (128-shot) using different
numbers of annotated and self-training SQL-NL pairs.

models can provide a better assessment.

Performance w.r.t. Number of Annotated and
Self-training Pairs Here we study the influence
of increasing either annotated or self-training SQL-
NL pairs. We use the SQL2NL model trained with
128 annotated pairs as a starting point, and addi-
tionally using more annotated or self-training pairs.
As shown in Fig. 6, using more annotated or self-
training pairs both improves over the initial perfor-
mance of 35.0%. However, the improvement due
to self-training still falls far behind the supervised
approach, demonstrating the challenge of learning
a robust SQL2NL model with very few annotations.
The increasing trend of self-training suggests that
further improvements may be provided by using
more pairs in self-training.

4.4 Analysis
Roles of Natural and Synthetic Data We quan-
titatively verified using the multitasking experiment
that natural and synthetic are complementary to

Cases favoring: Natural Synthetic

Avg #tok in questions / SQL 10.6 / 11.4 10.8 / 12.9
Avg #aligned question tok with tables 1.8 1.0

Table 5: Statistics of cases favoring natural vs synthetic
data. Numbers indicating advantages are in bold.
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Figure 7: Frequent SQL keywords in cases favoring
natural vs synthetic data. Keywords with a large fre-
quency difference are annotated with frequencies.

each other, with the hypothetical reason that natu-
ral data excels at enhancing alignment while syn-
thetic data is more targeted on endowing reasoning
capabilities. Our analysis on cases where natural
pretraining succeeds but synthetic fails and the op-
posite cases confirms that this is indeed the case.
Enabled by the fine-grained annotation in SQUALL
(Shi et al., 2020), we compare OmniTab trained on
natural or synthetic data separately in the 128-shot
setting, and study on the two groups of cases in the
development set of WikiTableQuestions. Based on
309/315 cases favoring natural/synthetic pretrain-
ing, we witness a clear distinction on the average
number of question tokens aligned with tables be-
tween the two groups in Tab. 5, indicating that
natural data is indeed more targeted at addressing
the alignment across formats. We also compute the
frequency of each SQL keyword for the two con-
trasting groups of cases. As shown in Fig. 7, cases
favoring synthetic data indeed involves reasoning-
rich keywords more frequently, such as “where =
( )” which are often used in nested queries, and
“count * id” which are often used in aggregation.

Performance under Topical Distributional Shift
Last, we analyze the robustness of OmniTab un-
der topical distributional shift on WTQ-TS, which
splits WTQ into five topics. We finetune OmniTab
on one topic (128-shot) and test the resulting model
on all five topics. As indicated by Tab. 6, OmniTab
outperforms TAPEX by a large margin across all
topics, validating the robustness of our methods
under topical shift.

5 Related Work

Table-based QA is a well-studied area from early
systems using structured queries as intermediate
steps (Krishnamurthy et al., 2017; Liang et al.,
2018; Wang et al., 2019; Yin et al., 2020; Yu et al.,
2021) to recent advances that generate answers in
an end2end fashion (Herzig et al., 2020; Liu et al.,

Train/test Sports Culture People Politics Misc

Sports +16.3 +14.1 +15.8 +14.4 +18.8
Culture +13.9 +12.7 +14.3 +13.0 +10.3
People +21.5 +14.6 +20.6 +14.6 +17.5
Politics +18.5 +14.3 +17.8 +16.0 +13.5
Misc +18.3 +14.7 +17.2 +14.6 +14.9

Table 6: Accuracy gain (128-shot) of OmniTab over
TAPEX when finetuned on one topic and tested on all.

2021). Our methods follow the end2end approach
because of its modeling simplicity and higher flex-
ibility. Given large amounts of table and text on
the web, table-based QA and other table-related
tasks such as semantic parsing (Deng et al., 2021;
Shi et al., 2021) and table understanding (Deng
et al., 2020; Wang et al., 2021) start witnessing
efforts invested in pretraining on both structured
and unstructured information. Most works leverag-
ing retrieval to find relevant information to assist
pretraining are designed for text format only (Guu
et al., 2020; Lewis et al., 2020a), while the major-
ity of table-based pretraining still use alignment
heuristics (Herzig et al., 2020; Yin et al., 2020).
There are some initial attempts to perform retrieval
over tables (Oğuz et al., 2020; Herzig et al., 2021;
Ma et al., 2021), but they mainly use tables as an
additional information source while we focus on
pairing tables with text for pretraining.

6 Conclusion

We propose an omnivorous pretraining approach
that consumes both natural and synthetic data to
enhance the ability to understand and align text and
tables and the ability to perform reasoning. Our
extensive results demonstrate the effectiveness of
both data and verify their complementary value.
Our empirical results together with the case analy-
sis indicate that omnivorous pretraining can indeed
benefit from the merits of both data, encouraging
future advances in retrieval and synthesis to obtain
higher-quality data and better pretraining strategies
to combine heterogeneous data.
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