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Abstract

Warning: This paper contains content that is
offensive and may be upsetting.

Biased or toxic speech can be harmful to var-
ious demographic groups. Therefore, it is
not only important for models to detect these
speech, but to also output explanations of why
a given text is toxic. Previous literature has
mostly focused on classifying and detecting
toxic speech, and existing efforts on explaining
stereotypes in toxic speech mainly use standard
text generation approaches, resulting in generic
and repetitive explanations. Building on these
prior works, we introduce a novel knowledge-
informed encoder-decoder framework to utilize
multiple knowledge sources to generate impli-
cations of biased text. Experiments show that
our knowledge informed models outperform
prior state-of-the-art models significantly, and
can generate detailed explanations of stereo-
types in toxic speech compared to baselines,
both quantitatively and qualitatively.

1 Introduction

The toxic speech detection and classification prob-
lem has seen increasing interest in recent years.
However, it is not only important for Al agents
to recognize and classify toxic speech, but to also
explain why it is toxic. For instance, debiasing
methods that use information about toxic language
may benefit from additional information given by
detailed explanations of toxicity in text (Ma et al.,
2020). Furthermore, detailed explanations of tox-
icity may facilitate human interaction with toxic-
ity detection systems (Rosenfeld and Richardson,
2019). They can also help humans who work with
toxicity classifiers use more information about the
input when making decisions about toxic speech.
To elucidate, consider the following offensive joke:
“What type of punch do you use against a kinder-
gartener? A sandy-hook.". While the literal text is
not toxic, the implied meaning is offensive, partic-
ularly to those affected by school shootings. An Al
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agent capable of generating the implied meaning
could thus provide additional information to down-
stream actors. Note that, we use the term biased
and foxic interchangeably in this work.

Existing work largely addresses the problem of
detecting and classifying toxic speech (Waseem
and Hovy, 2016; Founta et al., 2018; Davidson
et al., 2017). As mentioned earlier, explanations
of toxicity can help with downstream tasks such
as debiasing or decision making by humans, thus
there has been increasing demand for explainable
machine learning classifiers (Ribeiro et al., 2016;
Dosilovié et al., 2018). Recent work around ex-
plainable toxicity classification introduced Social
Bias Frames (Sap et al., 2020), a formal framework
which combines explanations of toxicity along with
toxicity classifications along multiple dimensions.
However the explanations generated from the cur-
rent state-of-the-art methods tend to be generic,
without much detail. For instance, explanations
may focus on certain toxic components of the input
but ignore others, or include irrelevant stereotypes
about the minority group affected.

To fill this gap, our work proposes to leverage
different types of knowledge to provide rich context
and background for toxicity explanation. Specif-
ically, we introduce a novel framework to utilize
three distinct knowledge sources. Prior work (Yu
et al., 2022) divides knowledge broadly into inter-
nal and external knowledge, where internal knowl-
edge is knowledge embedded in the input text, and
external knowledge is derived from sources outside
the input. Building upon these, we leverage expert
knowledge that comes from high-quality expert
annotations of the input, and explicit knowledge
from knowledge graphs and bases, as such sym-
bolic knowledge can provide relevant information
to the output text (Yu et al., 2022; Mou et al., 2016).
While knowledge graphs and bases deterministi-
cally retrieve and restructure knowledge from raw
text sources, large pretrained generative models are
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Say what you will about pedophiles ...
at least they slow down past schools.
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Figure 1: MixGEN takes 3 types of knowledge sources
and outputs an implied explanation for the input post.

found to be effective in outputting useful knowl-
edge in a probabilistic manner, complementing the
expert and explicit knowledge (Razniewski et al.,
2021). To this end, we also include implicit knowl-
edge models which source knowledge from large
pretrained text generation models. We further build
a family of mixture models, MIXGEN, to synthe-
size knowledge from all three sources, as shown
in Figure 1. To sum up, our contributions are two-
fold: (1) We leverage three different sources of
knowledge, and further combine them using simple
yet effective mixture models to explain toxic text.
(2) We show that our models outperform prior state-
of-the-art baselines and generate more detailed ex-
planations.

2 Related Work

Prior work on knowledge enhanced text generation
(Yu et al., 2020) can be viewed across two different
knowledge sources.

2.1 Internal Knowledge

Internal knowledge includes knowledge that is
available within the input. For instance, Latent
Dirichlet Allocation (LDA) (Blei et al., 2003) can
learn topics from inputs, which can then be incorpo-
rated into text generation models (Cao et al., 2015;
Guo et al., 2020). Keywords may also be extracted
from input text using techniques like TF-IDF, PMI
or independent classifiers. In one such work, Song
et al. (2019) extract emotion oriented keywords us-
ing an independent emotion classifier to enhance
dialogue generation. Similarly, Mou et al. (2016)
use PMI to find relevant keywords for short text
conversation. Forbes et al. (2020) develop concep-
tual formalisms that rely on annotations about the
input to generate text. In this work, we denote the
use of independent annotations on input to enhance

text generation as expert knowledge, as such an-
notations often come from human experts.

2.2 External Knowledge

Knowledge graphs and bases are commonly used as
a form of external knowledge. Zhang et al. (2019)
use knowledge graph embeddings to model con-
versation flow, while Guan et al. (2020) use triples
extracted from knowledge graphs to enhance story
generation. Finally, Lian et al. (2019) develop
probabilistic mechanisms to select knowledge from
knowledge bases for response generation. Knowl-
edge from conventional sources are determinsti-
cally created, in that they simply restructure raw
text and store them in a knowledge base or graph.
We refer to this type of external knowledge as ex-
plicit knowledge. On the other hand, there has
been increasing interest in the use of large pre-
trained generative models as a source of knowl-
edge. Heinzerling and Inui (2021) argue that large
pretrained models can in fact serve as knowledge
bases, while Davison et al. (2019) argue that pre-
trained models can accurately assess the validity of
knowledge mined from raw text. While pretrained
models are also trained on raw texts, similar to
knowledge bases and graphs, they draw from this
knowledge probabilistically and thus are a distinct
approach. We denote this type of external knowl-
edge as implicit knowledge.

2.3 Toxic Text Understanding

Prior work around toxicity understanding mainly
focuses on detection (Schmidt and Wiegand, 2017).
Early approaches include using n-grams (Waseem
and Hovy, 2016; Sood et al., 2012; Perera and Fer-
nando, 2021) as well as word clustering (Xiang
et al., 2012; Zhong et al., 2016). Recently, knowl-
edge enhanced approaches have also been used
for toxicity detection. For instance, Dinakar et al.
(2012) use ConceptNet to detect anti-LGBT bul-
lying. The use of meta-information, such as infor-
mation about the user (Dadvar et al., 2012), has
proven to be useful, depending on the type of in-
formation used. Sap et al. (2020) use Social Bias
Frames to produce both toxicity classifications and
explanations of toxicity. Similarly, our approach
attempts to explain toxicity by leveraging different
sources of knowledge to provide more context and
grounding for the models to generate explanations.
Different from many prior works, we synthesize
these diverse knowledge sources in a unified frame-
work to utilize the unique contribution from each
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individual knowledge source.

3 Knowledge Enhanced MIXGEN

This section presents our selected three different
types of knowledge— expert knowledge, explicit
knowledge and implicit knowledge, and our M1X-
GEN models for toxicity explanation.

3.1 Expert Knowledge

Expert knowledge is sourced from annotations of
the input. For instance, in the Social Bias Frames
dataset (Sap et al., 2020), such expert knowledge
include human judgements towards the lewdness,
offensiveness, intent to offend, and group targeted
categories. This type of expert knowledge provides
useful insights and heuristics for the toxicity expla-
nation task, if they are available.

We incorporate expert knowledge into the gener-
ation process using the join embedding technique
(Pryzant et al., 2020) along with toxicity classifi-
cation models. The join embedding architecture
uses attention weights from the toxicity classifiers
to inform the text generation model about parts
of the input post relevant to toxicity classification,
thus providing a heuristic for the related toxicity
explanation task. Formal details of the architecture
can be found in Appendix A.1.

We denote these models with the naming conven-
tion, “EXPERT [FEATURE]", where “[ FEATURE]"
is the categorical variable we use for the join em-
bedding. We replace “[FEATURE]" with “ALL"
when we train on all features.

3.2 Explicit Knowledge

Explicit knowledge is sourced from some knowl-
edge base or graph. Common sources include Con-
ceptNET, DBpedia, WikiData, etc. (Auer et al.,
2007; Vrandeci¢ and Krétzsch, 2014). We opt
to use ConceptNet (Speer et al., 2017), since it
contains commonsense knowledge (Liu and Singh,
2004). Commonsense knowledge incorporates ev-
eryday concepts, especially knowledge regarding
social groups and situations.

Following Chang et al. (2020), given a BART
model and an input, we extract ranked triples re-
lated to the input post and keep the top & triples per
post where we vary the k € {3,5, 10, 15, 20, 25}.
We experiment with both concatenation and atten-
tion based methods to incorporate the top k triples,
but settle on a concatenation based approach due
to its simplicity and the lack of performance gains

from the attention based approach. Results and
analysis for both the concatenation and attention
based approaches are provided in Appendix 12. We
denote these models with the naming convention,
“EXPLICIT (K)", where K denotes the number of
triples used.

3.3 Implicit Knowledge

Implicit knowledge is obtained from some text gen-
erator, such as a large pretrained generative model.
Prior work such as Heinzerling and Inui (2021),
argue that large pretrained models can in fact serve
as knowledge bases. Implicit knowledge grants
models a probabilistic view of external raw text
sources related to a given scenario or input, since
generative models tend to generate based on sta-
tistical correlations found in their training corpora
(Razniewski et al., 2021).

To use implicit knowledge, we first train a BART
model to generate the target minority group from
the input post. Following Sheng et al. (2019), we
use the predicted target minority corresponding
to each input post and a set of prompts to induce
biased prompt completions from GPT models. We
may use multiple prompts per input post, where
the number of prompt completions generated is
governed by a hyperparameter, k. Then we train an
independent BART model to generate these biased
prompt completions, given the origin input post.
This BART model is then retrained to produce the
implied stereotype, given the input post. Again, we
provide a formal description in Appendix A.3.

We denote these models with “IMPLICIT
[GPT|GPT-2] (x)", where “GPT" and “GPT-2"
correspond to the model used for prompt comple-
tion, while K corresponds to the number of biased
prompt completions generated per input post.

3.4 MIXGEN Models

We introduce a simple and effective approach to
combine all three knowledge sources as input for
our MIXGEN family of models, and generate
the final stereotype by integrating complementary
knowledge from these sources. In our design, we
take inspiration from Mixture of Experts models
(Masoudnia and Ebrahimpour, 2012), which com-
bine base expert model outputs into a final output
using a gating mechanism. Here, we rely on at-
tention mechanisms over the knowledge informed
model outputs to serve as the gating mechanism.
We build two variants. The first variant is called
MixGEN CONCAT which uses concatenation to

813



Type

Description

Pros

Cons

Expert Knowledge

Explicit Knowledge

Expert judgements from an-
notations on the input.

External knowledge sourced
from knowledge bases and
graphs. Restructured, de-
terminstic interpretations of
raw text sources.

* Easy-to-use.
e High quality and accurate

knowledge.

Many knowledge bases and
graphs exist.

Easy to query due to symbolic
representation.

Explainable since knowledge

* Sparse and hard to obtain.
« Difficult to get a lot of diverse
knowledge.

* Fixed knowledge, thus limited
retrieval diversity.

» Explicitly constructed, thus
may not be complete.

source is known.

Implicit Knowledge External knowledge sourced
from large pretrained mod-
els. Probabilistically gener-

ated from raw text sources

 Easy to retrieval. .
* Probabilistic, thus increasing
diversity in retrieval.

Low explainability.
Low quality, since the knowl-
edge is implicitly learned.

Table 1: Some pros and cons about different types of knowledge used for toxicity explanation.

MixGEN [

Input Post }
Concat

Explicit Implicit
Knowledge Knowledge Knowledge
Models Models Models

Output Output Output Output]

N

Concatenate Outputs Using Separator Token

BART
Model

[Concatenated Outputs H H Implied stereotype ]

Figure 2: The MIXGEN model takes in the output of
multiple trained knowledge models, concatenates them
with separator tokens and uses the concatenation as
input to a BART model to output the explanation. We
test with six models, two from each knowledge source.

combine outputs from the knowledge informed
models, as shown in Figure 2. The second vari-
ant is called MIXGEN MULTIVIEW which uses
views to perform self attention over outputs of
the knowledge informed models (Chen and Yang,
2020). Since the BART model already uses self
attention over input tokens, we experiment with
the MultiView architecture to see whether the addi-
tional self attention mechanisms of the MultiView
model causes changes in performance.

For MiXGEN CONCAT, suppose we have k
trained models, Mi,..., M, each trained to
produce the implied stereotype given the in-
put post, and each informed by one of the
aforementioned knowledge types. We con-

catenate the outputs of each knowledge based
model, M;, to produce a new input string.
Thus if each model M; outputs “siour 11", we
get the following concatenated input string:
“stour_11[SEP]s[our_2; - - - [SEP]sour_k]". Now,
let M be a standard pretrained BART model. We
train model M to produce the implied stereotype
using “sjour_11[SEP]s[our_2) - - - [SEP]s[our_x1"
as input. Note that the knowledge based models,
My, ..., My are fixed when training M. Model M
serves as the final MIXGEN CONCAT model.

MixGEN MULTIVIEW uses the MultiView ar-
chitecture proposed by Chen and Yang (2020). In
this case, the outputs of My, ..., M are treated
as separate views. If each model M; outputs
“siour 11" given the input post, then for each
model M; we configure the corresponding view
as the string “Ulis[OUT_l] [SEP] - -- V2;S[ouT_1]V3i *
[SEP]s[our_x1", Where vy;, vg;, and vs; are view
tokens. Here, vy; is always the first token in the
view string and vg; and v3; surround M;’s output.
We configure k such views (one for each model)
and pass each into the BART MultiView model as
a set of views corresponding to the original input
post. The BART MultiView model is then trained
to produce the corresponding output stereotype.
For details on the MultiView architecture, please
see Chen and Yang (2020).

3.5 Training

We utilize the BART encoder decoder framework
throughout (Lewis et al., 2020). We use batch gra-
dient descent when training. For a batch B with
padded input sequences X; of length N and corre-
sponding padded target sequences Y; of length V¢,
along with knowledge K; from some knowledge
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Dataset # Posts  Annotations/Post
SBIC Train 35933 3.14

SBIC Dev 4680 3.58

SBIC Test 4705 3.72
Implicit Hate Train 5722 1
Implicit Hate Test 636 1

Table 2: Dataset statistics.

source, we minimize cross entropy loss:

1
|BIN;
1Bl Ny (1
Z Z log (Y351 Yi(1:5-1), Xi, )

i=1 j=1

L=

4 Experimental Setup
4.1 Dataset

We conduct our experiments on the SBIC dataset
(Sap et al., 2020) and the Implicit Hate dataset
(ElSherief et al., 2021). The SBIC dataset contains
an input post, toxicity annotations and free text an-
notations of the implied stereotype. We work with
the input post and the the implied stereotype. The
Implicit Hate dataset (ElSherief et al., 2021) con-
tains free text annotations of the implied stereotype.
Dataset statistics are provided in Table 2.

4.2 Baselines

We compare our models with BART, and state of
the art baselines from Sap et al. (2020):

* GPT: Following Sap et al. (2020), we train
the GPT pretrained model from huggingface
to generate the toxicity classifications, the Tar-
get Minority, and the Implied Stereotype as a
string, when prompted with the input post.

* GPT-2: We train with the same setting as the
GPT Baseline, but use the GPT-2 pretrained
model from huggingface.

* BART: We train a standard pretrained BART
model to generate the implied stereotype
when given the input post.

4.3 Evaluation Metrics

We use BLEU (Papineni et al., 2002), ROUGE-L
(Lin, 2004) and BERTScore (Zhang* et al., 2020)
to evaluate our models and take the maximum score
for each hypothesis over all of the corresponding
references. We use BERTScore since it looks for

semantic similarity, unlike the other two metrics.
While we acknowledge it as a limitation, we ulti-
mately do not use human evaluation for multiple
reasons. First, the generated stereotypes are min-
imal in length compared to other text generation
tasks. Moreover, we perform manual analyses of
the results in Section 5. Second, we are following
precedent set by prior work (Sap et al., 2020). Fi-
nally, we want to minimize annotator exposure to
harmful content.

4.4 Results on SBIC

Our results on both dev and test are described in
Table 3. Here we focus on dev since both sets of
results track similar trends. We observe that the
MIxGEN models outperform all other models. Af-
ter MIXGEN, the model using Implicit Knowledge
sources perform best. These are followed by the
model using Explicit Knowledge, in turn followed
by model using Expert Knowledge.

Both models with explicit and with implicit
knowledge outperform expert language models.
The models using implicit knowledge tend to per-
form best overall (BLEU: from 0.650 to 0.683,
ROUGE-L: from 0.624 to 0.659, BERTScore:
from 0.759 to 0.800). This is likely because im-
plicit knowledge is less structured and hence easier
to induce bias from (Petroni et al., 2019). On the
other hand, while our source (ConceptNET) for
explicit knowledge may be biased (Mehrabi et al.,
2021), retrieved stereotypes are often mixed with
general, unbiased facts.

The MIXGEN models outperform every other
model. This makes intuitive sense since MIXGEN
synthesizes multiple types of knowledge. Unex-
pectedly, MIXGEN MULTIVIEW model does not
improve performance (the absolute difference is
within 0.002 across all scores) over MIXGEN
CONCAT. This is likely due to the fact that the
MultiView model was intended to capture meta-
sequences in text (Chen and Yang, 2020), whereas
in our setting the input is not sequential. We also
note that the MIXGEN models perform better than
the source models, despite their input being sourced
from the source models. Thus, despite differing
performance, models from different knowledge
sources are likely providing some distinct and com-
plementary information.

4.5 Results on Implicit Hate Speech Corpus

Results on the implicit hate corpus (ElSherief et al.,
2021) are given in Table 4. All models (including
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Model dev test

BLEU ROUGE-L BERTScore BLEU ROUGE-L BERTScore
GPT 0.597 0.579 0.712 0.591 0.574 0.713
GPT-2 0.617 0.601 0.733 0.620 0.605 0.741
BART Base 0.495 0.467 0.624 0.505 0.476 0.638
EXPERT (GROUP) 0.630* 0.604* 0.765* 0.637**  0.608* 0.776*
EXPLICIT (20) 0.650**  0.624** 0.770** 0.645**  0.617** 0.773**
ImpLICIT GPT-2 (15) 0.683**  0.659** 0.800** 0.689**  0.662** 0.811**
MiXGEN CONCAT 0.692"* 0.665"* 0.807** 0.696" 0.669"* 0.817**
MIXGEN MULTIVIEW  0.691**  0.664** 0.806** 0.694**  0.666** 0.816**

Table 3: We report performance of baseline models (first three rows) and our representative models from each
knowledge source. A superscript of * indicates statistically significant (p-value < 0.05) improvements over the GPT
and BART baselines, while a superscript of ** indicates statistically significant improvements over all baselines.
We use Wilcoxon’s signed rank test with a one sided alternative hypothesis to compute p values (Wilcoxon, 1992).

Model BLEU ROUGE-L BERTS. 0.40 :
B Non-Existent Stereotype mmm Incorrect Target Group
BART Base 0.460 0.323 0.909 0.354 Ignores Stereotype BN Incorrect Stereotype
Exp. (Grp) 0.404 0.234 0.894 0.301
Expl. (20) 0.463*  0.327* 0.909
Impl. GPT-2 (15) 0.463*  0.331* 0.910* 0.251
MIixGEN C 0.467* 0.340" 0.912%
MIXGEN MV 0.459  0.325* 0.910* 020
0.154
Table 4: This table shows the performance of our mod-
els on the implicit hate corpus (ElSherief et al., 2021). 0.101
BERTS. stands for BERTScore. A superscript of * indi- 0.051
cates statistically significant (p value < 0.05) improve- 0.00

ments over the BART baseline.

baselines) generally perform worse than they do
on the SBIC dataset. This is likely because the im-
plicit hate corpus contains one reference per post,
in contrast to the SBIC dataset (see Table 2). While
the Expert knowledge model performs worse than
the baseline, the other models perform slightly bet-
ter. This is likely because the Expert model relies
on toxicity classifications, which weren’t available
in the implicit hate corpus. We believe our models
can be generalized to text generation tasks on other
datasets, but they likely need multiple reference
points where the implicit hate corpus only has one.

5 Error Analysis and Ablation Studies

We perform analyses and ablation studies on model
results on the SBIC dataset. We do not perform
these on the implicit hate dataset, since we have
too few references per example. Examples of the
error and challenge types below are given in Table
5. An additional full set of examples for each error
and challenge type is given in Appendix 13.

GPT GPT2 gypet® £yl nph iGN

Figure 3: Distribution on the four error types across
knowledge types and baselines.

5.1 Error Analysis

We categorize the types of errors made by models
on a small sample of 200 examples from the dev
set and provide the distributions in Figure 3. We
provide the error categories below.

1. Non-Existent Stereotype: Model gener-
ates a stereotype when the reference stereo-
type is an empty string.

2. Ignores Stereotype: Model does not gener-
ate a stereotype when the reference stereotype
is a non-empty string.

3. Incorrect Target Minority: Model uses
the incorrect target minority.

4. Incorrect Stereotype: Model uses the cor-
rect target minority but generates an incorrect
or overly general stereotype.
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Figure 4: Distribution of challenges across knowledge
types and baselines. We leave out cases of where models
detect non existent stereotypes from challenge type 2.

The baseline GPT models tend to make more
errors of every type, except that the expert model
makes more errors of type 4. The expert model
likely focuses on tokens that trigger toxicity clas-
sifications, which makes it less likely to focus on
other relevant tokens. In the second example of
Table 5, the token “black" may be triggering the
Expert Model, causing an error of type 4.

The knowledge enhanced models rarely fail to
generate a stereotype (type 2 error). On the other
hand, they often detect non existent stereotypes
(type 1 error), but less often than the baselines. In
the third example of Table 5, “contraceptive" may
be incorrectly triggering the implicit and explicit
models, while the expert model is not triggered.

5.2 Challenges in Stereotype Generation

We categorize the various challenges faced by our
text generation models and provide distributions in
Figure 4 and counts in Appendix 15. We analyze
the same sample of 200 examples from Section 5.1.

1. Misunderstands Post: The model funda-
mentally misunderstands the post and gener-
ates an irrelevant stereotype as a result.

2. High Sensitivity: The model is highly
sensitive to trigger words, which causes it
to detect non-existent stereotypes or generate
stereotypes based on the triggers alone.

3. Localized Generation: The model focuses
only on parts of the input and generates stereo-
types based on those parts, rather than on the
entire input post.

4. Does not Draw Connections: The model
clearly considers the entire input post, but
does not draw connections between the dif-
ferent parts of the post.

5. Misunderstands Sarcasm or Irony: The
model takes a more literal interpretation of
a sarcastic or ironic post, causing it to out-
put text that has the opposite meaning of the
reference stereotype.

6. Ignores Stereotype: The model does not
generate a stereotype despite a non-empty ref-
erence stereotype.

Interestingly, the MIXGEN model tends to mis-
understand sarcasm and irony at a slightly higher
rate than the other knowledge model types. In the
fourth example of 5, MIXGEN and the Implicit
Model take literal interpretations of the input post.
The Implicit Model type has difficulty with drawing
connections over the input (challenge type 4). An
example is given in the 6th row of Table 5, where
the model does not draw a connection between the
target minority and the stereotypes present.

5.3 How MIXGEN Synthesizes Knowledge

Table 5 provides examples of MIXGEN synthesiz-
ing knowledge across sources. In the third example,
MixGEN produces an empty string even though
two of the more reliable sources (explicit and im-
plicit knowledge) produce non empty strings. In
the fifth example, MIXGEN clearly combines parts
of all the knowledge sources, while in the sixth ex-
ample MIXGEN produces a more accurate stereo-
type than any of the other models. Thus, it seems
that MIXGEN does not simply attempt to copy the
correct model, but actually possess a deeper under-
standing of the knowledge types it synthesizes.

5.4 Implicit Knowledge Ablation Study

Table 6 contains results of ablations on the Implicit
Knowledge models. We vary the amount (k) and
source (GPT and GPT-2) of implicit knowledge.
The model which sources knowledge using GPT
only outperforms the model sourcing knowledge
using GPT-2 when k& = 3. When k = 15, the latter
model sourcing GPT-2 knowledge outperforms the
model sourcing knowledge from GPT. It is possible
that GPT-2 is less biased than GPT, thus benefiting
our model for low &, but that these benefits decrease
as k increases. With greater k, both models have a
greater chance of exhibiting bias.
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Input Post Target Stereotype | Expert Explicit Implicit | MIXGEN

what’s the best part about being  can fit inside a per- | mentally dis- midgets are midgets midgets

a midget pedophile? your dick  son sexually abled folks are  gross (4,2) have small | have small

can fit. incompetent penises (-,-) | penises (-,-)
3.1

what’s the most perfect thing? a  black people are | black peopleare black people black people | black people

rainbow, because it has no black  worth less

on it.

criminals (4,2)

are  inferior

('9')

are inferior

(_v_)

are inferior

(_7_)

«@n

when we finally get the male

()

women are

women are

()

contraceptive pill, it should be promiscuous promiscu-

red. 1,2) ous (1,2)

what do a dull blade and a lethar- mentally ill people | makes light of mentally emos don’t | physically

gic emo have in common? they  cut themselves child molesta- disabled folks cut (4,5) disabled

both don’t cut like they used to tion (3,1) aren’t smart folks are
4,1) useless (3,5)

what do you call two anorexic  lesbians are dirty lesbians can’t anorexics are  anorexics lesbians are

lesbians with yeast infections: drive (4,2) gross (4,3) are  gross | gross (-,-)

double quarter pounder with 4,3)

cheese

what’s can a white man say that  black folks are crim- | black people are  black people black people | black men

a black man can’t? “thanks offi- inals,black fathers | criminals (-,-) don’t have fa- can’t be | abandon

cer!" and “hey dad!" are not present in thers (-,-) trusted (4,4) | their  kids

childrens lives

('a')

Table 5: Examples of generation from MIXGEN. The Error Type and the Challenge Type are given in parenthesis,
“(error type number, challenge type number.)", with a “(-,-)" signifying no error.

Model dev test

GPT 0.712 0.713
GPT-2 0.733 0.741
BART Base 0.624 0.638
ImpLICIT GPT (3) 0.787 0.796
ImpLICIT GPT (15) 0.796 0.807
ImpLICIT GPT-2 (3) 0.783 0.795
ImpLICIT GPT-2 (15) 0.800 0.811

Table 6: BERTScores of baseline models and the im-
plicit knowledge models.

5.5 MIXGEN CONCAT Ablation Study

Model dev test

GPT 0.712 0.713
GPT-2 0.733 0.741
BART Base 0.624 0.638
MIXGEN CONCAT (3) 0.803 0.814
MIXGEN CONCAT (6) 0.807 0.817
MIXGEN CONCAT (9) 0.799 0.804

Table 7: BERTScores of baselines and our MIXGEN
CONCAT models. The value in parentheses indicates
the number of knowledge informed models used.

In Table 7, we look at ablations on the number
of knowledge informed models, for the MIXGEN
CONCAT model. Let k be the number of knowl-
edge informed models. The variant using k = 6
models performs best. Since the models variants

within each knowledge type only vary by some hy-
perparameter, information gain probably saturates
as the number of models increases; however per-
formance decreases when & = 9. Since we tend to
include models with lower performance for larger
k, worse performing models are likely counter pro-
ductive.

6 Limitations

We discuss limitations of our study here. Per the
discussion in Subsection 4.3, we do not perform
human evaluation of our results for multiple rea-
sons. We do believe this is a limitation, and think
future work may benefit from some form of human
evaluation, while mitigating some of the concerns
mentioned in Subsection 4.3.

The MIXGEN model requires significant com-
putational power. One needs to train models across
knowledge sources, and then train the MIXGEN
model itself. Future work may alleviate this bur-
den by considering end to end solutions, or more
efficient knowledge retrieval techniques.

Future work could perform an “in the wild" anal-
ysis, produced by procuring random comments
from the internet and running our proposed models
on these comments, to determine how effective the
models might be in a real world setting. Further
ablations may also provide insight. For instance,
with respect to our implicit knowledge models, it
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may be helpful to remove BART altogether and
instead use GPT for predicting the target minority,
pretraining on implicit knowledge and for generat-
ing the final stereotype. Finally, it may be helpful
to standardize the incorporation of knowledge into
the models, such that the models using different
knowledge types may be directly compared.

7 Conclusion

In this paper, we propose a novel framework MI1X-
GEN to generate the stereotypes present in toxic so-
cial media posts, using multiple knowledge sources.
We categorized three different sources of knowl-
edge and synthesize the sources of knowledge us-
ing the MIXGEN models. While the knowledge
models perform as well as baselines, models built
on different knowledge types vary in strengths and
weaknesses. For instance, the expert model suffers
from high sensitivity to trigger words, while the
implicit models may not draw connections over
complex inputs. The MIXGEN models takes this
into account and minimizes the number of exam-
ples on which it has errors and/or faces challenges.
We conclude that mixture and ensemble methods
as simple as concatenation can leverage the com-
plementary nature of distinct knowledge sources to
produce high quality text generations.

Ethical Considerations

Models such as the one proposed in this paper,
which output toxicity classifications of text or
speech and reasoning behind such classifications
should be used with care. Considerations of al-
gorithmic fairness should be taken into account
(Corbett-Davies et al., 2017), as well as cultural
differences (Oliva et al., 2020) and racial biases
(Xia et al., 2020) which can lead to misclassifica-
tions of offensiveness. Care should be taken to
avoid political bias in training datasets, when train-
ing these models for deployment purposes (Wich
et al., 2020). Finally, concerns about censorship
should be taken seriously (Heins, 2014).
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also pass the input to the BART model and retrieve
the BART encoded input, namely H € R"*?, Let
v1,...,Um in R? be trainable weight vectors. For
the j-th row vector, h; of H, we compute an en-
riched hidden state h; as follows:

()T =hl +) " aijv; (2)
=1

We then pass the enriched hidden state through the
BART decoder to generate the output stereotype.
To combine knowledge from multiple variables, we
sum the enriched hidden state in Equation (2) over
each variable.

A.2 Explicit Knowledge

A.2.1 Incorporating Explicit Knowledge using
Concatenation

In this section, we provide formal details on how
we incorporate explicit knowledge from Concept-
NET using concatenation. In order to retrieve the
top k triples (varying k € {3,5,10,15,20,25}),
we first extract nouns, verbs, and adjectives from
the input as our query tokens. We then query Con-
ceptNet for triples associated with the query tokens
and sort the triples by the product of the query’s
IDF weight and the triple’s edge weight.

We then translate the triples into English (Robyn
Speer, 2019). For example, if the entities “car”
and “vehicle" are connected by the edge relation
“IsA", the translation would be “Car is a vehi-
cle". We concatenate the translations to the input
post to form a new input. Formally, let the in-
put be “sposc" and “syyp_j)" be the sentence derived
from the ¢-th triple. The modified input is then
“5post [ SEP]S[up_11[SEP] - - - [SEP]S[yp_11". We then
pass the modified to the BART model which gener-
ates the implied stereotype.

The concatenation based approach allows the
model to encode the external knowledge into its
own embedding space.

A.2.2 Incorporating Explicit Knowledge using
Attention

In this section, we provide formal details on how
we incorporate explicit knowledge from Concept-
NET using attention and the fusion layer described
in Chang et al. (2020). This is an alternative method
we tried in addition to the method described in Sec-
tion A.2.1.

We first accumulate the top k triples (varying
k € {5,10,20}) associated with a post, using the

method described in Appendix A.2.1. We then
concatenate the numberbatch embeddings (each of
dimension p) of the two entities in each of the &
triples vertically to produce a vector in R?. We
then horizontally stack the concatenations to pro-
duce a matrix, Hx g € R¥*?P_ The encoded input
generated by the BART model can be represented
by the matrix Hg € R™*?, where n is the input
length and d is the hidden size of the BART model.
We compute knowledge aware attention over the
input as follows:

Q=Hp+« Wi +b" 3)

K = Hgg * Wa + b1 4)

V = Hygg * W3 + b2 (5)
T

K
V) ©
where W7 € R™ W, W3 € R¥»*4 and
b1, b, b3 € R% The knowledge aware matrix is
H EG € R™*4, Finally, we concatenate the origi-
nal encoded input and the knowledge aware matrix,
H EG and perform an affine transformation:

HE. = softmax(

H = (Hgp® HEZ) « Wy +bT (7

where @ denotes column-wise concatenation,
Wy € R4 and by € R4 H' € R"™ % is the
new hidden state, which fuses the old hidden state
and the new knowledge aware hidden state. H' is
passed into the BART decoder.

A.3 Implicit Knowledge

A.3.1 Incorporating Implicit Knowledge
using GPT

In this section, we provide formal details on in-

corporating implicit knowledge using a pretrained

GPT models.

Let My, be a BART model trained to predict
the target minority of a given input post. Let the
target minority string predicted by M) be “sjm]"
and let “sp" be a prompt. We provide a list
of prompts in Table 8 We then prompt the GPT
models with the following string “The stm] Sipr"-
The GPT models complete the prompt with a gen-
erated string, “spgpy", so that the final string is
“The S{um] S[pr] S[gpt)'- For GPT generations, we
choose hyper-parameters based on methods in
Patrick von Platen (2020). For each input, we ran-
domly select various prompts to generate k sen-
tences of the form “The S| S{pr] Sgpy”> varying
k € {3,15}. Note that if there is no predicted
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Prompt

were known for

were described as

were regarded as

were thought of as

were well-known for
were seen as a

have a reputation for
would frequently

worked as

have a job as

have a part-time job as
earned money by

started working as

have various hobbies such as
would regularly engage in
frequently talked about
behaved as though

liked to

Table 8: Prompts for the GPT/GPT-2 biased sentence
generators. The biased sentences are used to train the
BART model, which is then retrained to produce the
output stereotype. The predicted target minority of the
input post is prepended to some of the prompts above,
chosen at random. The GPT models then complete the
prompt.

target minority, Sppn) is the empty string and no
sentence is generated using GPT. In this case, the
input is paired with just the empty string.

We then pair the input with each of the & gener-
ated sentences (or the empty string if there is no
predicted target minority) and train a BART model
M to predict the generated sentences. Model M
is then used as a pretrained model and is retrained
to predict the implied stereotype given the same in-
put. The retrained BART model is our final implied
stereotype generator.

B Implementation Details

B.1 Implementation Details for BART
Encoder Decoder Models

We train our BART models using a learning rate
of 5e — 6 for 3 epochs with a batch size of 2 or
4, depending on the size of the input. This ex-
cludes the BERT classifier models, whose settings
are given in Appendix B. The BART models have
406M parameters and all training is done on an
Nvidia TITAN V GPU, with 12 GB memory, a
boost clock speed of 1455 MHz, 640 Tensor cores

and 5120 CUDA cores. Training under this regime
takes approximately 90 - 120 minutes. We remove
all URLs, “RT" strings, and “@" mentions from the
input post. We train these models on just a single
seed and results are reported on just that seed, as
we had limited time to train and test our models.
The baseline GPT-2 and GPT models are trained
for 5 epochs, as in the original paper by Sap et al.
(2020). Following the paper, we perform minimal
preprocessing to the input text before training and
testing and only remove all URLs. During infer-
ence, we pass batches of input from the dev and
test sets to the generate method of the huggingface
BART model class. We use beam search for gener-
ation, with a beam width of 10 and a length penalty
of 5.0.

B.2 Implementation Details for BERT
Classifier Models

We train base BERT models, which have 110M
parameters. Training takes approximately 30 - 40
minutes on the GPUs described in B. We train these
models on just a single seed, as results did not vary
much as the seed varied and we had limited time
to train and test our models.

Model LR Batch Size Epochs
Offensiveness S5e-6 32 2
Intent to Offend | Se-7 32 1
Lewdness 5e-6 32 1
Group Targeted | 5e-6 32 2

Table 9: Training Settings for BERT Classifier Models.
LR stands for Learning Rate.

BERT Classifier Model training settings are
given in Table 9 and Table 10.

C Further Ablation Studies

In this section, we look at ablation studies con-
ducted on the Expert Knowledge models and the
Explicit Knowledge models.

C.1 Expert Knowledge Ablation Study

Recall that we use the last attention layer of a BERT
classifier with the join embedding architecture in-
troduced in Pryzant et al. (2020) to enhance the hid-
den states of the BART model performing stereo-
type generation. We perform ablation studies by
replacing the classifier over a few different anno-
tated categories, namely Offensiveness, Intent to
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Model dev test

Offensive Intent Lewd Group Offensive Intent Lewd Group
GPT 0.834 0.818 0.608 0.740 0.835 0.818 0.577 0.754
GPT-2 0.832 0.812 0.654 0.754 0.847 0.824 0.670 0.774
BERT 0.863 0.832 0.726 0.810 0.867 0.828 0.708 0.826

Table 10: GPT/GPT-2/BERT Classifier Performance on Dev and Test sets.

dev test
Models BERTScore BERTScore
GPT 0.712 0.713
GPT-2 0.733 0.741
BART Base 0.624 0.638
EXPERT (OFFENSIVE) 0.759 0.767
EXPERT (INTENT) 0.761 0.764
EXPERT (LEWD) 0.757 0.764
EXPERT (GROUP) 0.765 0.776
EXPERT (ALL) 0.765 0.770

Table 11: We report BERTScores of baseline models
(first three rows) and the expert knowledge models. The
Expert Knowledge Models leverage annotations of cat-
egorical variables on the input to enhance stereotype
generation. The All variant leverages all of the categori-
cal variables.

Offend, Lewdness, and Group Targeted. We also
train a model that uses all of the classifiers. The
results for the ablations are in Table 11.

It is important to note the relative performance
of the models. The Expert Knowledge model us-
ing the Group Targeted BERT classifiers performs
better than the other single classifier models, and
performs on par with the Expert Knowledge model
leveraging all of the classifiers. It’s likely that the
tokens used by the BERT model to identify whether
a minority group is targeted aligns closely with the
portions of the encoded input used to generate the
stereotypes. This makes intuitive sense, since the
set of posts targeting some minority group likely
has some stereotype mentioned in the post and vice
versa. The same cannot be said for the other cat-
egories. This intuition is further strengthened by
the fact that the Expert Knowledge model using all
the classifiers does not perform much better than
the Expert Knowledge model using just the Group
Targeted classifier. Thus the other classifiers may
be contributing little additional knowledge to the
stereotype generation task.

C.2 Explicit Knowledge Ablation Study

In this section, we specifically discuss the num-
ber of knowledge triples we use when training ex-

Model dev test

GPT 0.712 0.713
GPT-2 0.733 0.741
BART Base 0.624 0.638
EXPLICIT (INPUT) (3) 0.761 0.768
EXPLICIT (INPUT) (5) 0.748 0.757
ExpLiCIT (INPUT) (10) 0.764 0.770
ExpLICIT (INPUT) (15) 0.769 0.772
ExpLiCIT (INPUT) (20) 0.770 0.773
ExpLICIT (INPUT) (25) 0.752 0.763
EXPLICIT (ATTN) (5) 0.761 0.768
EXPLICIT (ATTN) (10)  0.759 0.765
EXPLICIT (ATTN) (20) 0.768 0.769

Table 12: We report BERTScores of baseline models
(first three rows) and the explicit knowledge models.

plicit knowledge models and note trends in the
BERTScore as k varies. The results are in Table
12. We discuss an additional attention based model
not mentioned in the main paper. The detailed
methodology for this model is given in Appendix
A2.2.

We note that when concatenated directly to the
input, performance increases as k increases up to a
point and then starts to decrease. We believe that
this occurs because the usefulness of knowledge
initially increases then decreases as k increases. In
particular, as k increases, many of the latter triples
tend to be synonymous with earlier triples or un-
related to the original input. We also note that
incorporating knowledge as attention tends to pro-
duce a better BERTScore, while not performing as
well on other metrics. We suspect that this is due
to the numerbatch embeddings capturing more se-
mantic meaning than the BART embeddings. The
numberbatch embeddings draw from a variety of
sources, in addition to the graph structure itself and
they perform well on benchmarks measuring word
similarity.

D Analysis

We provide a few examples of stereotype genera-
tion, comparing and contrasting the different model
types in Table 13.
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Error/Challenge Type

Input Post

Generated Stereotype

Explanation

Error Type 1 (Non-Existent Stereotype)

what do you call it when
you fuck an apple? an
inside job

makes light of child
abuse

The post does not refer
or imply anything about
children in any way.

Error Type 2 (Ignores Stereotype)

why do bitches hate
so much tho? what’s
wrong with congratulat-
ing and giving people
props sometimes?

«wn

The post clearly refers
to women in a deroga-
tory manner.

Error Type 3 (Incorrect Target Minority)

if harvey and irma are
god’s fidget spinners,
wouldn’t god be autis-
tic?

trivializes harm to vic-
tims

The post refers to autis-
tic folks, but the gen-
erate stereotype doesn’t
capture it.

Error Type 4 (Incorrect Stereotype)

why don’t black people
go on cruises? because
they already fell for that
shit once.

black people deserve to
die

The post refers to
African American
history (those arriving
on slave ships), yet the
generated  stereotype
does not mention this.

Challenge Type 1 (Misunderstands Post)

if the operation to re-
move your tonsils is
called a tonsillectomy,
then what is the name
of the operation for
a female do male sex
change? addadictomy

women are only good
for sex

The generate stereotype
has nothing to do with
the original post.

Challenge Type 2 (High Sensitivity)

why do jews have big
noses? to smell the
money.

jews were killed in the
holocaust

The token “jew" triggers
an irrelevant generation.

Challenge Type 3 (Localized Genera-
tion)

how do you know the
asian food is under-
cooked? when it starts
barking.

asians have no food

The post focuses on the
first part of the sentence,
but ignores the remain-
der.

Challenge Type 4 (Does not Draw Con-
nections)

enjoy having multicul-
turalism shoved down
your throat, fighting for
israel and having a black
or asian as your new
best friend.

non-whites are inferior

The generated stereo-
type understands that
the stereotype is about
non-whites, but does not
connect it to the broader
stereotype of non-white
cultures having a nega-
tive impact.

Challenge Type 5 (Misunderstands Sar-
casm/Irony)

dating rules for women
* don’t be morbidly
obese *

women shouldn’t be

skinny

The generated stereo-
type inverts the sarcasm
of the original post and
thus fails to capture the
stereotype.

Challenge Type 6 (Ignores Stereotype)

fight anyone that tells
you there’s nothing
wrong with being fat.
and help your body and
bones and lose weight,
seriously.

«@n

The input post targets
those who are obese, yet
the model does not gen-
erate a stereotype.

Table 13: Examples of generation from each of the error types described in Sections 5.1 and 5.2

D.1 Error Analysis

D.2 Challenges in Stereotype Generation

Table 15 provides the counts for the Challenges
faced by each model. Clearly, the MIXGEN mod-
els minimize the total number of challenges face,
although MIXGEN may not have faced the mini-

Table 14 provides the counts for the Error Analysis. o
mal number of challenges within each category.

Clearly, the MIXGEN models minimize the total
number of errors made, although MIXGEN may
not have the minimal number of errors in each
category.
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Error Type GPT GPT-2 Expert Explicit Implicit MIXGEN

1 45 46 37 44 30 24
2 8 7 1 0 3 4
3 13 11 11 10 10 8
4 28 37 41 24 27 27
5 106 99 110 122 130 137

Table 14: This table contains the counts for the error analysis. Though it is not quite an error and isn’t mentioned in
the main paper, Error Type 5 accounts for the examples in which the model outputs an accurate stereotype.

Challenge Type GPT GPT-2 Expert Explicit Implicit MIXGEN
1 8 6 6 4 2 4

2 (Non-existent Stereotypes) 44 46 37 44 30 24

2 (Remainder) 15 9 33 13 18 11

3 8 19 10 7 8 8

4 7 9 2 5 6 5

5 4 5 1 5 3 7

6 8 7 0 3 4

7 106 99 110 122 130 137

Table 15: This table contains the counts for the error analysis. Though it is not quite a challenge and isn’t mentioned
in the main paper, Challenge Type 7 accounts for accurate generations by the model. Challenge Type 2 is partitioned
into two sub-categories, one which includes only cases where the model detects non-existent stereotypes and another
which does include such cases.
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