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Abstract

Despite the success of multilingual sequence-
to-sequence pretraining, most existing ap-
proaches rely on monolingual corpora, and do
not make use of the strong cross-lingual sig-
nal contained in parallel data. In this paper,
we present PARADISE (PARAllel & Denoising
Integration in SEquence-to-sequence mod-
els), which extends the conventional denoising
objective used to train these models by (i) re-
placing words in the noised sequence accord-
ing to a multilingual dictionary, and (ii) pre-
dicting the reference translation according to a
parallel corpus instead of recovering the orig-
inal sequence. Our experiments on machine
translation and cross-lingual natural language
inference show an average improvement of 2.0
BLEU points and 6.7 accuracy points from in-
tegrating parallel data into pretraining, respec-
tively, obtaining results that are competitive
with several popular models at a fraction of
their computational cost.1

1 Introduction

Multilingual sequence-to-sequence pretraining has
achieved strong results both in cross-lingual clas-
sification (Xue et al., 2021) and machine transla-
tion (Liu et al., 2020). These models are usually
pretrained on combined monolingual corpora in
multiple languages using some form of denoising
objective. More concretely, they noise each se-
quence x with a noising function gφ, and maximize
the probability of recovering x given gφ(x):

`mono(x) = − logP
(
x|gφ(x)

)
(1)

Common noising functions include sentence-
permutation and span masking (Lewis et al., 2020;
Liu et al., 2020).

While these methods obtain strong cross-lingual
performance without parallel data, they are usually

1Source code available at https://github.com/
machelreid/paradise

trained at a scale that is prohibitive for most NLP
practitioners. At the same time, it has been argued
that the strict unsupervised scenario is not realis-
tic (Artetxe et al., 2020), and parallel data could
provide a stronger signal and make training more
efficient.

Motivated by this, we propose PARADISE, a pre-
training method for sequence-to-sequence models
that exploits both word-level and sentence-level
parallel data. The core idea of our approach is to
augment the conventional denoising objective intro-
duced above by (i) replacing words in the noised se-
quence according to a bilingual dictionary, and (ii)
predicting the reference translation rather than the
input sequence. Despite their simplicity, we find
that both techniques bring substantial gains over
conventional pretraining on monolingual data, as
evaluated both in machine translation and zero-shot
cross-lingual transfer. Our results are competitive
with several popular models despite using only a
fraction of the compute, providing strong support
for the importance of the inclusion of parallel in-
formation in smaller-scale multilingual pretraining
methods.

2 Proposed method

As illustrated in Figure 1, we propose two meth-
ods for introducing parallel data into pretraining:
dictionary denoising and bitext denoising.

Dictionary denoising. Our first method encour-
ages learning similar representations at the word-
level by introducing anchor words through multi-
lingual dictionaries (Conneau et al., 2020b). Let
Dl(w) denote the translation of word w into lan-
guage l ∈ L according to the dictionary D. Given
the source sentence x = (x1, x2, . . . , xn), we de-
fine its noised version gψ (x) = (x̃1, x̃2, . . . , x̃n),
where x̃i = Dl(xi) with probability pr

|L| and x̃i =
xi otherwise (i.e. we replace each word with its
translation into a random language with probability
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Their 仕事

Encoder Decoder

est <mask> حیرت انگیز Their absolutelywork is amazing<s>

Their absolutelywork is amazing </s>

(a) Dictionary Denoising

<mask>

Encoder
仕事 <mask> 素晴らしい

Decoder

Their absolutelywork is amazing<s>

Their absolutelywork is amazing </s>

(b) Bitext Denoising

Figure 1: Our proposed techniques for integrating parallel data into sequence-to-sequence pretraining.

pr). We set pr = 0.4. Given the dictionary-noised
sentence, we train our model using the denoising
auto-encoding objective in Eq. 1:

`dict(x) = − logP
(
x|gφ(gψ(x))

)
(2)

Bitext denoising. Our second approach encour-
ages learning from both monolingual and parallel
data sources, by including translation data in the
pretraining process. Given a source-target bitext
pair (x, y) in the parallel corpus, assumed to be
semantically equivalent, we model the following:

`bitext(x, y) = − logP
(
y|gφ(x)

)
(3)

in which we optimize the likelihood of generating
the target sentence y conditioned on the noised
version of the source sentence, gφ(x).2

Combined objective. Our final objective com-
bines `mono, `dict and `bitext.3 Given that our cor-
pus contains languages with varying data sizes, we
sample sentences using the exponential sampling
technique from Conneau and Lample (2019). We
use αmono = 0.5 to sample from the monolingual
corpus, and αbitext = 0.3 to sample from the par-
allel corpus. To prevent over-exposure to English
on the decoder side when sampling from the paral-
lel corpus, we halve the probability of to-English
directions and renormalize the probabilities. In ad-
dition, given that we have fewer amounts of parallel
data (used for `bitext) than monolingual data (used
for `mono and `dict), we sample between each task
using αtask = 0.3.

3 Experimental settings

We pretrain our models on 20 languages (English,
French, Spanish, German, Greek, Bulgarian, Rus-
sian, Turkish, Arabic, Vietnamese, Thai, Chinese,

2To make our pretraining sequence length consistent with
`mono and `dict, we concatentate randomly sampled sentence
pairs from the same language pair to fit the maximum length.

3We use the same noising function gφ used by Lewis et al.
(2020) and Liu et al. (2020).

Hindi, Swahili, Urdu, Japanese, Basque, Romanian,
Sinhala and Nepalese), and evaluate them on ma-
chine translation and cross-lingual classification.

3.1 Pretraining

Data. We use Wikipedia as our monolingual cor-
pus, and complement it with OSCAR (Ortiz Suárez
et al., 2020), and CC100 (Conneau et al., 2020a)
for low-resource languages. For a fair comparison
with monolingually pretrained baselines, we use
the same parallel data as in our downstream ma-
chine translation experiments (detailed in §3.2). In
addition, we train a separate variant (detailed be-
low) using additional parallel data from ParaCrawl
(Esplà et al., 2019), UNPC (Ziemski et al., 2016),
CCAligned (El-Kishky et al., 2020), and OpenSub-
titles (Lison and Tiedemann, 2016).4 We tokenize
all data using SentencePiece (Kudo and Richard-
son, 2018) with a joint vocabulary of 125k sub-
words. We use bilingual dictionaries from FLoRes5

(Guzmán et al., 2019) for Nepalese and Sinhala,
and MUSE6 (Lample et al., 2018) for the rest of
languages. Refer to Appendix A for more details.

Models. We use the same architecture as BART-
base (Lewis et al., 2020), totaling ∼196M param-
eters, and train for 100k steps with a batch size
of ∼520k tokens. This takes around a day on
32 NVIDIA V100 16GB GPUs. As discussed
before, we train two variants of our full model:
PARADISE, which uses the same parallel data as
the machine translation experiments, and PAR-
ADISE++, which uses additional parallel data. To
better understand the contribution of each objec-
tive, we train two additional models without dictio-
nary denoising, which we name PARADISE (w/o
dict.) and PARADISE++ (w/o dict.), as well as a
model without bitext denoising, which we name
PARADISE++ (only dict.). Finally, we train a base-
line system using the monolingual objective alone,

4We cap the size of each language pair to 2GB.
5https://github.com/facebookresearch/flores
6https://github.com/facebookresearch/MUSE
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Languages En-Vi En-Tr En-Ja En-Ar En-Ne En-Ro En-Si En-Hi En-Es En-Fr
Data Source IWSLT15 WMT17 IWSLT17 IWSLT17 FLoRes WMT16 FLoRes IITB WMT13 WMT14
Size 133K 207K 223K 250K 564K 608K 647K 1.56M 15M 41M
Direction ← → ← → ← → ← → ← → ← → ← → ← → ← → ← →
Random init. 23.6 24.8 12.2 9.5 10.4 12.3 27.5 16.9 7.6 4.3 34.0 34.3 7.2 1.2 10.9 14.2 32.1 31.4 37.0 38.9
mBART (ours) 29.1 31.5 21.3 15.8 15.7 17.3 32.1 19.2 10.3 6.1 34.3 34.9 11.0 2.7 20.2 19.0 29.8 30.4 36.0 38.2

PARADISE 30.0 32.6 23.5 17.2 17.2 19.2 35.3 21.1 13.7 7.9 35.9 36.5 14.0 3.7 23.6 20.7 32.6 32.7 37.8 39.8

Table 1: Machine translation results. Random initialization numbers taken from Liu et al. (2020).

which we refer to as mBART (ours). This follows
the original mBART work (Liu et al., 2020), but
is directly comparable to the rest of our models in
terms of data and hyperparameters.

3.2 Downstream settings
Machine translation. Following Liu et al.
(2020), we evaluate our models on sentence-level
machine translation from and to English using the
following datasets: IWSLT (Cettolo et al., 2015,
2017) for Vietnamese, Japanese and Arabic, WMT
(Callison-Burch et al., 2009a,b; Bojar et al., 2016,
2017) for Spanish, French, Romanian and Turk-
ish, FLoRes (Guzmán et al., 2019) for Sinhala and
Nepalese, and IITB (Kunchukuttan et al., 2018) for
Hindi. We report performance in BLEU as detailed
in Appendix C.

Cross-lingual classification. We evaluate our
models on zero-shot cross-lingual transfer on XNLI
(Conneau et al., 2018) and PAWS-X7 (Yang et al.,
2019), where we finetune on English data and test
performance on other languages. We develop a
new approach for applying sequence-to-sequence
models for classification: feeding the sequence into
both the encoder and decoder, and taking the con-
catenation of the encoder’s <s> representation and
the decoder’s </s> representation as the input of
the classification head. We provide an empirical
rationale for this in Appendix E. We finetune all
models with a batch size of 64 and a learning rate
of 2 × 10−5 for a maximum of 100k iterations,
performing early stopping on the validation set.

4 Results

4.1 Machine translation
As shown in Table 1, PARADISE consistently out-
performs our mBART baseline across all language
pairs. Note that these two models have seen the
exact same corpora, but mBART uses the parallel

7Following Hu et al. (2021), we use English, German,
Spanish, French and Chinese for PAWS-X.

Lang. pair (En-XX) Tr Ro Si Hi Es Avg∆

mBART (ours) 15.8 34.9 2.7 19.0 30.4 20.6±0.0
PARADISE (w/o dict.) 16.8 36.2 3.2 20.5 32.4 21.8+1.2
PARADISE 17.2 36.5 3.7 20.7 32.7 22.2+1.6
PARADISE++ 19.0 37.3 4.2 20.7 33.0 22.8+2.2

Lang. pair (XX-En) Tr Ro Si Hi Es Avg∆

mBART (ours) 21.3 34.3 11.0 20.2 29.8 23.3±0.0
PARADISE (w/o dict.) 23.2 35.6 13.2 22.3 31.6 25.2+1.9
PARADISE 23.5 35.9 14.0 23.6 32.6 25.9+2.6
PARADISE++ 24.9 36.8 15.1 23.5 32.9 26.6+3.3

Table 2: Ablation results on machine translation.

data for finetuning only, whereas PARADISE also
uses it at the pretraining stage. This suggests that
incorporating parallel data into pretraining helps
learn better representations, which results in better
downstream performance.

Table 2 reports additional ablation results on a
subset of languages. As can be seen, removing
dictionary denoising hurts, but is still better than
our mBART baseline. This shows that both of our
proposed approaches—dictionary denoising and
bitext denoising—are helpful and complementary.
Finally, PARADISE++ improves over PARADISE,
indicating that a more balanced corpus with more
parallel data is helpful.

4.2 Cross-lingual classification

We report XNLI results in Table 3 and PAWS-X
results in Appendix F. Our proposed approach out-
performs mBART in all languages by a large mar-
gin. To our surprise, we also observe big gains in
English. We conjecture that this could be explained
by bitext denoising providing a stronger training
signal from all tokens akin to ELECTRA (Clark
et al., 2020), whereas monolingual denoising only
gets effective signal from predicting the masked
portion. In addition, given that we are using par-
allel data between English and other languages,
PARADISE ends up seeing much more English text
compared to mBART—yet a similar amount in the
rest of languages—which could also contribute to
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Model en zh es de ar ur ru bg el fr hi sw th tr vi avg

mBART (ours) 77.5 68.0 70.7 68.8 66.7 62.2 68.6 72.1 69.6 70.1 63.4 62.6 66.6 65.0 69.7 68.1
PARADISE++ (only dict.) 79.6 70.9 74.9 75.4 64.4 66.0 69.0 72.2 75.4 73.4 63.9 65.1 70.9 69.0 72.1 70.8
PARADISE 83.4 73.8 77.6 76.0 72.4 65.1 74.0 74.4 73.2 77.7 70.6 66.2 70.4 72.1 75.3 73.5
PARADISE++ (w/o dict.) 83.3 72.9 77.2 75.7 64.4 66.9 73.4 74.8 75.7 77.7 68.5 67.4 71.0 73.3 75.0 73.1
PARADISE++ 83.0 74.0 79.0 76.5 68.5 66.8 74.3 76.0 76.4 77.7 70.2 70.5 72.3 74.2 75.4 74.3

Table 3: Accuracy of zero-shot crosslingual classification on the XNLI dataset.

Model #Langs Task Params. Est. GPU Days Data (GB) XNLI PAWS-X MT

mBERT (Devlin et al., 2019)† 104 MLM 179M (0.9x) — 60 65.4 86.2 —
MMTE (Siddhant et al., 2019)† 102 Translation 375M (1.9x) — 5000 67.4 85.6 —
mT5-small (Xue et al., 2021) 101 Eq. 1 300M (1.5x) — 27000 67.5 85.8 —
mT6 (Chi et al., 2021a) 94 SC+PNAT+TSC 300M (1.5x) 40 (1.3x) 2120 64.7 86.6 —
AMBER (Hu et al., 2021) 104 MLM+TLM 179M (0.9x) 1000 (31x) 100 71.6 89.2 —
XLM-15 (Conneau and Lample, 2019)‡ 15 MLM+TLM 250M (1.3x) 450 (14x) 100 72.6 88.0 —
XLM-R-base (Conneau et al., 2020a)‡ 100 MLM 270M (1.4x) 13K (406x) 2400 73.4 87.4 —
mBART (Liu et al., 2020) 25 Eq. 1 680M (3.5x) 4.5K (140x) 2400 — — 23.5

mBART (ours) 20 Eq. 1 196M (1.0x) 32 (1.0x) 72 68.1 85.4 21.1
PARADISE 20 Eq. 1, 2, 3 196M (1.0x) 32 (1.0x) 81 73.5 89.0 23.1
PARADISE++ 20 Eq. 1, 2, 3 196M (1.0x) 32 (1.0x) 95 74.3 89.2 23.8

Table 4: Comparison with prior work. † denotes results taken from Hu et al. (2020). ‡ denotes results taken from
Hu et al. (2021). 1 GPU day = 1 day on an NVIDIA V100 GPU.

its better performance in this language. Finally, we
observe that all of our different variants perform
similarly in English, but incorporating dictionary
denoising and using additional parallel data both
reduce the cross-lingual transfer gap.

4.3 Comparison with prior work

So as to put our results into perspective, we com-
pare our models with several popular systems from
the literature. As shown in Table 4, our proposed
approach obtains competitive results despite being
trained at a much smaller scale. Just in line with
our previous results, this suggests that incorporat-
ing parallel data makes pretraining more efficient
given that we outperform XLM-R base, mT5, and
mBART despite using less data/compute/model
size. Interestingly, our method also outperforms
XLM-15, MMTE, and mT6 which also use par-
allel data, as well as AMBER, showing evidence
contrary to Hu et al. (2021)’s suggestion that us-
ing dictionaries may hurt performance. Detailed
per-language results for each task can be found in
Appendix F.

5 Related work

Most prior work on multilingual pretraining uses
monolingual data only (Pires et al., 2019; Conneau
et al., 2020a; Song et al., 2019; Liu et al., 2020;
Xue et al., 2021). There have been several propos-
als to incorporate parallel data into encoder-only

models (Lample and Conneau, 2019; Huang et al.,
2019; Hu et al., 2021; Chi et al., 2021b), with some
approaches replacing words according to a bilin-
gual dictionary, similar to our dictionary denois-
ing objective (Conneau et al., 2020b; Chaudhary
et al., 2020; Dufter and Schütze, 2020). In contrast,
we focus on sequence-to-sequence models, which
we believe are more flexible and provide a more
natural way of integrating parallel data. In that
spirit, Siddhant et al. (2019) showed that vanilla
machine translation models are already competitive
in cross-lingual classification. Closer to our work,
Chi et al. (2021a) incorporated parallel corpora
into sequence-to-sequence pretraining by feeding
concatenated parallel sentences to the encoder and
using different masking strategies. In contrast, our
approach feeds a noised sentence into the encoder,
and tries to recover its translation in the decoder
side, obtaining better results with a similar compu-
tational budget. Concurrent to our work, Kale et al.
(2021) extended T5 to incorporate parallel corpora
using a similar approach to our bitext denoising.

6 Conclusions

In this work, we proposed PARADISE, which intro-
duces two new objectives to integrate parallel data
into sequence-to-sequence pretraining. Experimen-
tal results on machine translation and cross-lingual
classification show that PARADISE provides signifi-
cant improvements over mBART-style pretraining
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on monolingual corpora, obtaining results that are
competitive with several popular models at a much
smaller scale. Given these findings, we encourage
use of parallel data in smaller-scale multilingual
pretraining work. In the future, we look to see if
our improvements also hold at a larger scale.
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A Data

We list data sources used for pretraining PAR-
ADISE++ in Table 5 (monolingual data) and Table 6
(parallel data).

B Pretraining hyperparameters

We use the Adam optimizer (ε = 10−6, β =
(0.9, 0.98)), and warm up the learning rate to a peak
of 7×10−4 after 10K iterations and then proceed to
decay the learning rate with the polynomial decay
schedule up until 100K iterations. All code and ex-
periments are performed with fairseq (Ott et al.,
2019). Following Liu et al. (2020), we add an addi-
tional layer-normalization layer on top of both the
encoder and decoder to stabilize training with FP16
precision (Micikevicius et al., 2018). All models
are trained on 32 V100 16GB GPUs and take 24
hours to finish training.

C Machine translation evaluation

Following Liu et al. (2020), we use detokenized
SacreBLEU (Post, 2018) for all languages unless
specified otherwise next. For Japanese we use
KyTea8, for Nepalese, Sinhala, and Hindi we use
Indic-NLP9, for Arabic we use the QCRI Arabic
Normalizer10,11, and for Romanian we use Moses
tokenization and script normalization following
Sennrich et al. (2016); Liu et al. (2020).

D Machine translation finetuning

We finetune our models using the same setup as
mBART, warming up the learning rate to 3× 10−5

over 2500 iterations and then decaying with a poly-
nomial schedule. We use 0.3 dropout and label
smoothing ε = 0.2.

E Comparison of finetuning approaches

Table 7 compares our proposed finetuning ap-
proach, which combines the representations from
both the encoder and the decoder (see §3), to using
either of them alone.12 While prior work either
minimally used the decoder if at all (Siddhant et al.,

8http://www.phontron.com/kytea/
9https://github.com/anoopkunchukuttan/

indic_nlp_library
10https://github.com/qntfy/gomosesgo
11https://alt.qcri.org/tools/

arabic-normalizer/
12For decoder-only, we feed the input sequence to both the

encoder and the decoder, but add a classification head on top
of the decoder only, following Lewis et al. (2020).

Language Data source Data size (GB)

En Wiki 14G
De Wiki 5.9G
Fr Wiki 4.5G
Es Wiki 3.7G
Ja Wiki 3.0G
Ru Wiki 6.2G
Ar Wiki 1.7G
Ne CC100 3.8G
Si CC100 3.7G
Ro Wiki+WLM 2.5G
Zh Wiki+WLM 4.4G
El Wiki+WLM 2.9G
Eu Wiki+OSCAR 0.6G
Bg Wiki+OSCAR 2.5G
Hi Wiki+OSCAR 2.3G
Sw Wiki+CC100 1.1G
Th Wiki+OSCAR 2.4G
Ur Wiki+OSCAR 1.9G
Vi Wiki+OSCAR 2.8G
Tr Wiki+OSCAR 2.4G
Total — 72G

Table 5: Monolingual Data Statistics. Wiki refers to
Wikipedia, and WLM refers to the News Crawl data
from CommonCrawl used in WMT.

Language Data source Data size (GB) # Pairs

Ar UNPC 2.0G 5554595
Bg ParaCrawl 1.9G 6470710
De ParaCrawl 2.0G 9685483
El ParaCrawl 2.0G 6676200
Es ParaCrawl 2.0G 9138031
Eu OPUS 0.1G 585210
Fr ParaCrawl 2.0G 8485669
Hi IITB 0.4G 1609682
Ja JParaCrawl 2.0G 6366802
Ne CCAligned 0.2G 487157
Ro ParaCrawl 1.3G 6160525
Ru ParaCrawl 1.6G 5377911
Si CCAligned 0.2G 619730
Sw OPUS 0.2G 699719
Th OpenSubtitles 0.4G 3281533
Tr OpenSubtitles 2.0G 32077240
Ur CCAligned 0.3G 1371930
Vi OpenSubtitles 0.2G 3505276
Zh UNPC 2.0G 7706183
Total — 23G 126882448

Table 6: Parallel Data Statistics

Model avg ∆

PARADISE++ (encoder-decoder) 74.3 —
decoder-only 73.8 -0.5
encoder-only 72.0 -2.3

Table 7: Ablation of finetuning methods on XNLI.

2019; Xue et al., 2021), or only added a classifica-
tion head on top of the decoder (Lewis et al., 2020),
we find that combining them both works best.
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F Additional results

We list detailed results by language in this section
with results on XNLI in Table 8, PAWS-X in Ta-
ble 9, and our machine translation ablation (with
mBART (Liu et al., 2020) results included) in Table
10. We note that mBART underperforms XLM-R-
large on XNLI, however that may be attributed to
the fact that XLM-R was trained for much longer
rather than the architectural design.
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Models en zh es de ar ur ru bg el fr hi sw th tr vi avg

mBERT 80.8 67.8 73.5 70.0 64.3 57.2 67.8 68.0 65.3 73.4 58.9 49.7 54.1 60.9 69.3 65.4
MMTE 79.6 69.2 71.6 68.2 64.9 60.0 66.2 70.4 67.3 69.5 63.5 61.9 66.2 63.6 69.7 67.5
mT5-small 79.6 65.8 72.7 69.2 65.2 59.9 70.1 71.3 68.6 70.7 62.5 59.7 66.3 64.4 66.3 67.5
AMBER 84.7 71.6 76.9 74.2 70.2 61.0 73.3 74.3 72.5 76.6 66.2 59.9 65.7 73.2 73.4 71.6
XLM-15 (MLM+TLM) 84.1 68.8 77.8 75.7 70.4 62.2 75.0 75.7 73.3 78.0 67.3 67.5 70.5 70.0 73.0 72.6
XLM-100 82.8 70.2 75.5 72.7 66.0 59.8 69.9 71.9 70.4 74.3 62.5 58.1 65.5 66.4 70.7 69.1
XLM-R-base 83.9 73.6 78.3 75.2 71.9 65.4 75.1 76.7 75.4 77.4 69.1 62.2 72.0 70.9 74.0 73.4
mBART 87.7 76.4 81.5 79.8 75.5 — 78.9 — — 80.6 73.0 — — 76.1 77.4 —
XLM-R-large 88.7 78.2 83.7 82.5 77.2 71.7 79.1 83.0 80.8 82.2 75.6 71.2 77.4 78.0 79.3 79.2

mBART (ours) 77.5 68.0 70.7 68.8 66.7 62.2 68.6 72.1 69.6 70.1 63.4 62.6 66.6 65.0 69.7 68.1
PARADISE (w/o dict.) 83.3 72.9 77.2 75.7 64.4 66.9 73.4 74.8 75.7 77.7 68.5 67.4 71.0 73.3 75.0 73.1
PARADISE 83.0 74.0 79.0 76.5 68.5 66.8 74.3 76.0 76.4 77.7 70.2 70.5 72.3 74.2 75.4 74.3

Table 8: Accuracy of zero-shot crosslingual classification on the XNLI dataset. Bold numbers highlight the highest
scores across languages on the existing models (upper part) and PARADISE variants (bottom part). Results for
previous work are sourced from Hu et al. (2020, 2021); Xue et al. (2021).

Model de en es fr zh Avg

mBERT 85.7 94.0 87.4 87.0 77.0 86.2
MMTE 85.1 93.1 87.2 86.9 75.9 85.6
mT5-small 86.2 92.2 86.1 86.6 77.9 85.8
AMBER 89.4 95.6 89.2 90.7 80.9 89.2
XLM-15 88.5 94.7 89.3 89.6 78.1 88.0
XLM-100 85.9 94.0 88.3 87.4 76.5 86.4
XLM-R-base 87.0 94.2 88.6 88.7 78.5 87.4
XLM-R-large 89.7 94.7 90.1 90.4 82.3 89.4

PARADISE++ 89.1 94.3 89.6 90.6 82.3 89.2

Table 9: Accuracy of zero-shot cross-lingual classifica-
tion on PAWS-X. Bold numbers highlight the highest
scores across languages on the existing models (upper
part) and PARADISE variants (bottom part). We source
baseline results from Hu et al. (2020, 2021); Xue et al.
(2021).
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Lang. Pair En-Tr En-Ro En-Si En-Hi En-Es Tr-En Ro-En Si-En Hi-En

mBART (ours) 15.8 34.9 2.7 19.0 30.4 21.3 34.3 11.0 20.2
PARADISE (w/o dict.) 16.8 36.2 3.2 20.5 32.4 23.2 35.6 13.2 22.3
PARADISE 17.2 36.5 3.7 20.7 32.7 23.5 35.9 14.0 23.6
PARADISE++ 19.0 37.3 4.2 20.7 33.0 24.9 36.8 15.1 23.5

mBART 17.8 37.7 3.3 20.8 34.0 22.5 37.8 13.7 23.5

Table 10: Ablation results on machine translation. Note that mBART is trained with 140x more compute and 3.5x
more parameters.
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