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Abstract

The dominant paradigm for neural text gen-
eration is left-to-right decoding from autore-
gressive language models. Constrained or con-
trollable generation under complex lexical con-
straints, however, requires foresight to plan
ahead for feasible future paths.

Drawing inspiration from the A* search algo-
rithm, we propose NEUROLOGIC A*esque,!
a decoding algorithm that incorporates heuris-
tic estimates of future cost. We develop looka-
head heuristics that are efficient for large-scale
language models, making our method a drop-
in replacement for common techniques such
as beam search and top-k sampling. To en-
able constrained generation, we build on NEU-
ROLOGIC decoding (Lu et al., 2021), combin-
ing its flexibility in incorporating logical con-
straints with A*esque estimates of future con-
straint satisfaction.

Our approach outperforms competitive base-
lines on five generation tasks, and achieves
new state-of-the-art performance on table-to-
text generation, constrained machine trans-
lation, and keyword-constrained generation.
The improvements are particularly notable on
tasks that require complex constraint satisfac-
tion or in few-shot or zero-shot settings. NEU-
ROLOGIC A*esque illustrates the power of de-
coding for improving and enabling new capa-
bilities of large-scale language models.

1 Introduction

The dominant paradigm for neural text genera-
tion is based on left-to-right decoding from au-
toregressive language models such as GPT-2/3
(Radford et al., 2019; Brown et al., 2020). Un-
der this paradigm, common decoding techniques
such as beam search or top-k/p sampling (Holtz-
man et al., 2020) determine which token to generate
next based on what happened in the past, without
explicitly looking ahead into the future. While
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Figure 1: NEUROLOGIC* leverages lookahead heuris-
tics to guide generations towards those that satisfy
the given task-specific constraints. In this example
from the CoMMONGEN task, although summer is a
more likely next word given the already-generated past,
NEUROLOGIC* looks ahead to see that selecting win-
ter results in a generation that incorporates unsatis-
fied constraint snow with a higher probability later on.
Thus, winter is preferred despite being lower probabil-
ity than summer.

this lack of foresight often suffices for open-ended
text generation — where any coherent text can be
acceptable — for constrained text generation, plan-
ning ahead is crucial for incorporating all desired
content in the generated output (Hu et al., 2017;
Dathathri et al., 2019).

Classical search algorithms such as A* search
(Hart et al., 1968; Pearl, 1984; Korf, 1985) ad-
dress the challenge of planning ahead by using
heuristic estimation of future cost when making
decisions. Drawing inspiration from A* search,
we develop NEUROLOGIC A*esque (shortened to
NEUROLOGICX), which combines A*-like heuris-
tic estimates of future cost (e.g., perplexity, con-
straint satisfaction) with common decoding algo-
rithms for neural text generation (e.g., beam search,
top-k sampling), while preserving the efficiency
demanded by large-scale neural language models.

As selecting the next token to generate based on
the optimal future cost is NP-complete (Chen et al.,
2018), we develop lookahead heuristics, which ap-
proximate cost at each decoding step based on con-
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tinuations of the sequence-so-far. Figure 1 shows
an example, where NEUROLOGIC A*esque guides
generation towards a decision that would have been
ignored based on the past alone, but is selected af-
ter looking ahead and incorporating the probability
that constraints are satisfied in the future.

Our approach builds on NEUROLOGIC Decod-
ing of Lu et al. (2021), a variation of beam-search
for controlling generation through rich logic-based
lexical constraints expressed in Conjunctive Nor-
mal Form (CNF). Our work generalizes Lu et al.
(2021) by (1) incorporating novel lookahead heuris-
tics to estimate future contraint satisfaction, and (2)
developing additional unconstrained variants that
can work with an empty set of constraints. These
new algorithm variants support broad applications
of NEUROLOGICX, including unconstrained gen-
eration, as demonstrated in our experiments.

Our experiments across five generation tasks
demonstrate that our approach outperforms com-
petitive baselines. We test NEUROLOGICX in
conjunction with both supervised and unsuper-
vised models and find that the performance gain
is pronounced especially in zero-shot or few-shot
settings. On the CommonGEN benchmark, using
NEUROLOGIC* with an off-the-shelf language
model outperforms a host of supervised baselines
with conventional decoding algorithms, demon-
strating that a strong inference-time algorithm such
as NEUROLOGICX can alleviate the need for costly
annotated datasets. Moreover, NEUROLOGIC*
achieves state-of-the-art performance in various set-
tings, including WMT17 English-German machine
translation with lexical constraints (Dinu et al.,
2019) and few-shot E2ENLG table-to-text genera-
tion (Chen et al., 2020b).

In summary, we develop NEUROLOGIC
A*esque, a new decoding algorithm for effective
and efficient text generation. To our knowledge
this is the first A*-like algorithm for guided text
generation via lookahead heuristics. Our algorithm
is versatile, as it can be applied to a variety of tasks
via inference-time constraints, reducing the need
for costly labeled data. Extensive experiments
show its effectiveness on several important
generation benchmarks.

2 NEUROLOGIC A*esque Decoding

We describe NEUROLOGIC A*esque Decoding
(shortened as NEUROLOGICX), our decoding algo-
rithm motivated by A* search (Hart et al., 1968), a
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best-first search algorithm that finds high-scoring
paths using a heuristic estimate of future return.
We first introduce the decoding problem, and then
describe our heuristics with a novel lookahead pro-
cedure for adapting NEUROLOGIC* search to un-
constrained and constrained generation with large-
scale autoregressive models.

2.1 Decoding With A*esque Lookahead

Decoding. Sequence-to-sequence generation is
the task of generating an output sequence y given
an input sequence x. We consider standard left-
to-right, autoregressive models, pyp(y | x)

Hb’|

1 po (Yt | y<t,x), and omit x to reduce clutter.
Decoding consists of solving,

y+ = argmax F(y), (1)

yeY
where ) is the set of all sequences. In our setting,
the objective F'(y) takes the form s(y) + H(y),
where s(y) is log pg(y), and H(y) is either zero
when no constraints are specified, or is a score for
satisfying constraints on y.

Our method takes the perspective of decoding
as discrete search, in which states are partial pre-
fixes, y «¢, actions are tokens in vocabulary V (i.e.,
Yyt € V), and transitions add a token to a prefix,
y <t o y¢. Bach step of decoding consists of (1) ex-
panding a set of candidate next-states, (2) scoring
each candidate, and (3) selecting the £ best candi-
dates:

Y/ ={y<toyt|y<t € Yi-1,us €V},

Y, = argtopk {f(y<t, )},
(y<t:yt)€Y{

(@)

where Yy = {(bos)} and f(-) is a scoring func-
tion that approximates the objective F'. Common
decoding algorithms such as beam search score
candidates without considering future tokens, e.g.,

f(y<t;ut) = logpe(y<t)-

Lookahead heuristics. Our method incorpo-

rates an estimate of the future into candidate se-

lection. Ideally, we want to select candidates that

are on optimal trajectories, replacing Equation 2
Y; = argtopk

with:
( Lo
(y<t:yt)€Y{

where y-; represents future trajectories. However,
computing Equation 3 presents two difficulties: 1)
the objective F'(y) may be unknown or difficult to
compute, and 2) the space of y~ is prohibitively
large.

max F(y<¢, Y, y>t)

Y>t



Motivated by A* search (Hart et al., 1968), a
best-first search algorithm that finds high-scoring
paths by selecting actions that maximize:

f(a) = s(a) + h(a),
where s(a) is the score-so-far and h(a) is a heuris-
tic estimate of the future score, we approximate the
objective using a lightweight heuristic h(-):

Y, = arg topk {s(y<t) +max h(y<, Z/t,}’>t)} )
ygtEYf,' Y>t
“4)

where s(y<:) = log pp(y<¢). To make the search
tractable, we search over a set of lookahead contin-
uations, approximating Equation 3 as,

Y; = arg topk {s(ygt) + max h(y<t+€>} ;
y<i€Y/ Lo(y<e)
5)

where each element y; 1., of L4(y<¢) is alength-
¢ continuation of y<;. Beam search corresponds to
setting £ and h to 0.

A*esque decoding. Beam search, A* search,
and our method fall under a general class of algo-
rithms that differ based on (1) which candidates are
expanded, (2) which candidates are pruned, (3) how
candidates are scored (Meister et al., 2020). We in-
herit the practical advantages of beam search-style
expansion and pruning, while drawing on A*-like
heuristics to incorporate estimates of the future,
and refer to our method as A *esque decoding.

Generating lookaheads. We compare several
methods for generating the lookaheads £y(y<¢).

The greedy lookahead produces a single se-
quence, L; = {yit1:44¢}, starting from y<;
and selecting each token according to yy =
argmax,cy po(y | y<i)-

We also consider a soft lookahead which inter-
polates between providing the greedy token and
a uniform mixture of tokens as input at each step.
Specifically, we adjust the model’s probabilities
with a temperature, pg(y; | y<¢) = softmax(s;/7),
where s; € RVl is a vector of logits, and feed the
expected token embedding as input at step ¢,

et = By, w(yly <) [E ()], (6)

where E' € RIVI*? is the model’s token embedding
matrix. The soft lookahead moves from providing
the greedy token as input (7 — 0) to a uniform
mixture of tokens (7 — o0) based on the value
of temperature 7. When using the soft lookahead,
we use p in place of p when scoring tokens. The

soft (and greedy) lookahead is efficient, but only
explores a single trajectory.

The beam lookahead trades off efficiency for
exploration, returning a set £, containing the top-k
candidates obtained by running beam search for ¢
steps starting from y <.

Finally, the sampling lookahead explores be-
yond the highly-probable beam search continua-
tions, generating each yy41.44+¢ € Ly using,

Yy ~ Pe(y | Y<t')7
for ¢’ from t+1 to t+k.

Next, we move to our proposed lookahead heuris-
tics, starting with the unconstrained setting.

2.2 Unconstrained Generation with
NEUROLOGIC*
First we consider a standard decoding setting,
arg max logpg(y | x).
yey

We score candidates based on a combination of the
history and estimated future, by using the likeli-
hood of the lookahead as a heuristic. That is, at the
tth step of decoding, we use Equation 5 with:

h(y<t+e) = Aogpo(Yitite | y<t, %),  (7)
where A controls how much we rely on the esti-

mated future versus the history, similar to weighted
A* (Pohl, 1970).

2.3 NEUROLOGICX for Constrained
Generation

Our lookahead heuristics lend themselves to de-
coding with lexical constraints in a way that stan-
dard beam search does not. For constrained gener-
ation, we build on and generalize NEUROLOGIC
decoding algorithm of Lu et al. (2021)—a beam-
based search algorithm that supports a wide class
of logical constraints for lexically constrained
generation—with estimates of future constraint sat-
isfaction.

Background of NEUROLOGIC. NEUROLOGIC
(Lu et al., 2021) accepts lexical constraints in CNF:

(D1VDy---VDj)A---A(Dy V-V Dy)

/

C1 5;1
where each D; represents a single positive or nega-
tive constraint, D(a,y) or =D(a,y), enforcing the
phrase a to be included in or omitted from y. Lu
et al. (2021) refer to each constraint D; as a literal,
and each disjunction C; of literals as a clause.

782



NEUROLOGIC is a beam-based approximate
search for an objective which seeks fluent se-
quences in which all clauses are satisfied:

M
arg maxpy (y | x) — N > (-cy),
j=1

where \' >> 0 penalizes unsatisfied clauses. At
each step of the search, NEUROLOGIC scores each
of the kx|V| candidates (y ¢, y;) based on whether
they (partially) satisfy new constraints,

a
f(y<t) = logpe(y<; | X) + A1 max | |7 ®)

D(ay=<:) [a|
where the maximization is over a set of unsatis-
fied multi-token constraints a tracked by NEURO-
LOGIC, and a is the prefix of a in the ongoing gen-
eration. For example, for y<; =*“The boy climbs an
apple” and constraint a=“apple tree”, a is “apple”.
Intuitively, this function rewards candidates that
are in the process of satisfying a constraint.

In lieu of taking the top-k scoring candidates
(Equation 5), NEUROLOGIC prunes candidates that
contain clauses that violate constraints, groups the
candidates to promote diversity, and selects high-
scoring candidates from each group. We use the
same pruning and grouping approach, and refer the
reader to Lu et al. (2021) for further details.

NEUROLOGIC* decoding. Our method im-
proves upon the NEUROLOGIC scoring function
with an estimate of future constraint satisfaction.
Our key addition is a lookahead heuristic that ad-
justs a candidate (y<¢, y;)’s score proportional to
the probability of satisfying additional unsatisfied
constraints in the lookahead y;1.¢4¢:

Pfuture (YSH-E) =

A2 max logpe(D(37Yt+1:t+€)‘XvYSt)v )
D(avyﬁt)

where we define the probability that constraint a is
satisfied using the most probable subsequence,

PG(D(& Yt+1:t+f) ‘ XaYSt> -

max Iy =a|x, ), (10
t/e[t,tJrZ]pg(Yt '+ a| | X, y<r), (10)

Az is a scaling hyperparameter for the heuristic.

Intuitively, this lookahead heuristic brings two
benefits. When ; is a token that would satisfy a
multi-token constraint, the lookahead incorporates
the score of the full constraint. When y; is a token
that is not part of a constraint, the lookahead allows
for incorporating the score of a future constraint
that would be satisfied if y; was selected.

We add our lookahead heuristic to the NEU-
ROLOGIC scoring function (Equation 8), and call
the resulting decoding procedure NEUROLOGIC
A*esque (or, NEUROLOGIC in short).

3 Experiments

We first consider constrained generation bench-
marks: CommoNGEeN (§3.1), constrained machine
translation (§3.2), table-to-text generation (§3.3),
and constrained question generation (§3.4).
NEUROLOGIC* consistently outperforms previ-
ous approaches, especially in zero-shot and few-
shot cases. These low-resource settings are particu-
larly important, as many practical tasks face data
scarcity. Finally, we find that A*esque lookahead
is useful even without constraints, as shown in un-
constrained story generation task (§3.5).

Metrics. As automatic metrics, Wwe use:
BLEU (Papineni et al., 2002), ROUGE (Lin,
2004), METEOR (Banerjee and Lavie, 2005),
CIDEr (Vedantam et al., 2015), SPICE (Anderson
et al., 2016) and NIST (Lin and Hovy, 2003).

3.1 Constrained Commonsense Generation

CommoNGEN (Lin et al., 2020) is a commonsense
generation task with lexical constraints: given a set
of concepts (e.g., {throw, run, javelin, track}), mod-
els need to generate a coherent sentence describing
a plausible scenario using all given concepts (e.g.,
“a man runs on a track and throws a javelin.”).

Approach and Baselines. Following Lu et al.
(2021), we enforce that each concept ¢; appear in
output y under some morphological inflection. We
test in both supervised and zero-shot settings. In
the supervised setting, we finetune GPT-2 (Radford
et al., 2019) as a sequence-to-sequence model. In
the zero-shot setting, we use GPT-2 off-the-shelf
(no fine-tuning) and rely on constrained decoding
to guide generation. We compare with previous
constrained decoding algorithms CBS (Anderson
etal., 2017), GBS (Hokamp and Liu, 2017), DBA
(Post and Vilar, 2018a), NEUROLOGIC (Lu et al.,
2021) and TSMH (Zhang et al., 2020).

Metrics. We report standard automatic metrics
as well as coverage, the average percentage of con-
cepts present in generations. Additionally, we con-
duct human evaluation on 100 test examples using
Amazon Mechanical Turk (AMT), with 3 annota-
tors per example (template in Appendix D). Work-
ers rate each generation on language quality, sce-
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Automatic Evaluation Human Evaluation
Decode Method . -
ROUGE-L BLEU-4 METEOR CIDEr SPICE Coverage | Quality Plausibility Concepts Overall

Supervised

CBS (Anderson et al., 2017) 38.8 20.6 28.5 12.9 27.1 97.6 2.27 2.35 2.51 2.23

GBS (Hokamp and Liu, 2017) 38.2 18.4 26.7 11.7 26.1 97.4 2.06 2.17 2.29 2.01

DBA (Post and Vilar, 2018a) 38.3 18.7 27.7 124 26.3 97.5 223 2.30 243 2.15

NEUROLOGIC (Lu et al., 2021) 42.8 26.7 30.2 14.7 30.3 97.7 2.54 2.56 2.67 2.50
'NEUROLOGIC* (greedy) | 436 282 308 152 308 978 | 266 267 273 259

NEUROLOGIC* (sample) 434 27.9 30.8 153 31.0 97.7 2.64 2.64 2.74 2.58

NEUROLOGIC* (beam) 43.2 28.2 30.7 15.2 31.0 97.6 2.68 2.67 2.76 2.60

Unsupervised

TSMH (Zhang et al., 2020) 24.7 2.2 14.5 3.6 15.4 71.5 1.85 1.92 1.95 1.63

NEUROLOGIC (Lu et al., 2021) 41.9 24.7 29.5 14.4 27.5 96.7 2.64 2.52 2.68 2.50
NEUROLOGIC* (greedy) | ¢ 443 286 307 156 296 971 | 278 270 277 270

Table 1: Performance of various decoding methods with supervised or off-the-shelf GPT-2 on the CoOMMONGEN test
set, measured with automatic and human evaluations. We only tried NEUROLOGIC* (greedy) in the unsupervised
setting because of the computational cost. The best numbers are bolded and the second best ones are underlined.

Words Method Generation

cut GBS Cut a piece of wood to use as a fence.

piece DBA Cut a piece of wood to use as a fence.

use NEUROLOGIC  Piece of wood used for cutting.

wood NEUROLOGIC* A man cuts a piece of wood using a circular saw.
ball GBS A dog is run over by a ball and mouth agape.

dog DBA A dog is run over by a ball and bites his mouth.
mouth NEUROLOGIC A dog is running and chewing on a ball in its mouth.

run NEUROLOGIC* A dog running with a ball in its mouth.

dog GBS Soap and water scrubbed dog with a towel.
scrub  DBA Soap and water on a dog and scrubbed skin.
soap NEUROLOGIC A dog is scrubbing his paws with soap and water.

water NEUROLOGIC* A man is scrubbing a dog with soap and water.

Table 2: Example generations for the CoMMONGEN task
across supervised NEUROLOGIC* and baselines, in-
cluding GBS (Hokamp and Liu, 2017), DBA (Post and
Vilar, 2018a), and NEUROLOGIC (Lu et al., 2021).

nario plausibility, coverage of given concepts, and
an overall score on a 3-point Likert scale.”

Results. Table 1 compares different constrained

decoding methods on top of the finetuned and oft-

the-shelf GPT-2, in supervised and zero-shot set-
tings respectively. The key observations are:

1. NEUROLOGIC* outperforms all previous
constrained-decoding methods in both super-
vised and zero-shot settings. Surprisingly, un-
supervised NEUROLOGIC* outperforms all su-
pervised methods based on human evaluation.

2. Compared to vanilla NEUROLOGIC,
NEUROLOGIC* improves generation quality
while maintaining high constraint satisfaction.
The difference is especially substantial in the
zero-shot setting. Intuitively, this setting leaves

2 Agreement by ordinal Krippendorff alpha (0 < o < 1)
(Krippendorff, 2007) is 0.40, 0.46, 0.36, and 0.44 (respec-
tively) indicating fair to moderate agreement.

Method Dinu et al. Marian MT
BLEU Term% BLEU Term%

Unconstrained 25.8 76.3 329 85.0
train-by-app. 26.0 92.9 - -
train-by-rep. 26.0 94.5 - -
Post and Vilar (2018a) 25.3 82.0 33.0 94.3
NEUROLOGIC 26.5 95.1 334 97.1
NEUROLOGIC* (greedy) 267 958 337 972
NEUROLOGIC* (sample) 26.6 954 337 972
NEUROLOGIC*® (beam) 266 958 336 972

Table 3: Results on constrained MT. The left section
uses the same two-layer transformer as Dinu et al.
(2019), while the right one uses a stronger Marian MT
EN-DE model. The highlighted methods modify train-
ing data specifically for constrained generation, and
thus cannot be applied to off-the-shelf models. The best
numbers are bold, second best are underlined.

more room for incorporating constraint-driven
signals due to the lack of supervision.

3. NEUROLOGICX reaches similar performance
using different lookahead strategies, among
which beam lookahead slightly outperforms the
others based on human evaluation, and greedy
lookahead has the lowest runtime. We analyze
lookahead strategies further in Appendix A.

3.2 Constrained Machine Translation

Next, we test on constrained machine translation
(MT). It is often critical to have control over MT
systems, such as to incorporate domain-specific
terminology (Post and Vilar, 2018a; Dinu et al.,
2019). To achieve this goal, recent work pro-
posed constrained decoding algorithms (Chatterjee
et al., 2017; Hokamp and Liu, 2017; Hasler et al.,
2018; Hu et al., 2019, inter alia) or specialized
training (Dinu et al., 2019). We demonstrate that
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#T # Sents. Decode Method BLEU Term %
Beam search 25.4 79.6
1 378 NEUROLOGIC 26.2 95.2
NEUROLOGIC* 26.3 95.8
Beam search 28.1 85.0
2+ 36 NEUROLOGIC 289 93.7
NEUROLOGIC* 29.3 96.5

Table 4: Constrained MT performance broken down by
the number of constraint terms (# T). All configurations
use the two-layer tranformer from Dinu et al. (2019).
The best numbers are bolded and the second best ones
are underlined.

NEUROLOGICX can be readily applied to off-the-
shelf MT systems for constrained machine trans-
lation. We follow Dinu et al. (2019) and evaluate
on the WMT17 EN-DE test set (Bojar et al., 2017).
The constraint here is to integrate given custom
terminologies into the translation output; constraint
terms are automatically created from the IATE EU
terminology database for 414 test sentences.

Approach, Baselines, and Metrics. We exper-
iment with two MT systems: Dinu et al. (two-
layer transformer) and the off-the-shelf Marian MT
(Junczys-Dowmunt et al., 2018). We compare with
previous constrained decoding algorithms, includ-
ing DBA (Post and Vilar, 2018a), NEUROLOGIC
(Lu et al., 2021), and also specialized training pro-
posed by Dinu et al. (2019). Following Dinu et al.
(2019), we report BLEU and term use rates, i.e.,
percentage of times given constraint terms were
generated out of total number of constraint terms.

Results. Table 3 presents experimental results
with Dinu et al.’s model and Marian MT. In both
cases, NEUROLOGIC* outperforms prior methods
in BLEU and term coverage. Besides higher qual-
ity and coverage, NEUROLOGIC is plug-and-play,
working with any off-the-shelf MT system, unlike
previous training-based methods. Table 4 breaks
down the performance by the number of constraint
terms. We see that the improvement brought by
NEUROLOGICX is especially large when given
complex constraints with multiple terms. (e.g., 96.5
vs. 93.7 from NEUROLOGIC in term of coverage).

3.3 Table-to-text Generation

Next we test on the table-to-text task, where mod-
els need to generate natural language for structured
table data. Constrained generation ensures that the
output text is factual and consistent with the in-
put data. We follow the few-shot setup of Chen
et al. (2020b) on the E2ENLG (Dusek et al., 2018)

Decode Method NIST BLEU METEOR CIDEr ROUGE Coverage
Beam Search 3.82 4238 32.6 10.8 57.8 73.6
CBS 6.50 423 36.4 13.0 54.3 91.6
GBS 6.26 40.7 36.7 12.9 54.2 94.1
NEUROLOGIC 6.95 47.6 38.9 16.3 58.7 97.6
NEUROLOGICX (greedy)| 7.11 49.2 40.0 17.5 60.0 100.0
NEUROLOGIC® (beam) |7.01 489  40.0 172 59.8 99.9
NEUROLOGIC* (sample)| 7.11  49.3 40.1 17.5 60.0 100.0

Table 5: Performance of different decoding methods
with few-shot GPT-2 finetuned on 0.1% E2ENLG data.
The best numbers are bold, second best are underlined.

Method 01% 05% 1% 5%
TGen (Dusek and Juréicek, 2016) 3.6 279 352 573
Template-GPT-2 (Chen et al., 2020a) | 22.5 47.8 533 59.9
KGPT-Graph (Chen et al., 2020b) 39.8 533 551 615

KGPT-Seq (Chen et al., 2020b) 40.2  53.0 54.1 61.1
GPT-2 428 571 568 61.1
GPT-2 + NEUROLOGIC 476 569 58.0 629

GPT-2 + NEUROLOGIC* (greedy) 49.2 58.0 584 634

Table 6: Few-shot results (BLEU-4) on E2ENLG test
set with 0.1%, 0.5%, 1%, 5% of training instances. The
best numbers are bold, second best are underlined.

dataset, where randomly-sampled 0.1%, 0.5%, 1%,
or 5% of training instances are used for finetuning.

Approach, Baselines, and Metrics. Following
Shen et al. (2019), we linearize data tables into
strings and finetune GPT-2 with few-shot examples.
We compare NEUROLOGICX with three previous
constrained decoding algorithms: CBS (Anderson
et al., 2017), GBS (Hokamp and Liu, 2017), and
NEUROLOGIC (Lu et al., 2021), based on few-shot
GPT-2 finetuned with 0.1% data. Then we com-
pare NEUROLOGIC* on top of GPT-2, with previ-
ous table-to-text methods, including TGen (Dusek
and Jurcicek, 2016), Template-GPT-2 (Chen et al.,
2020a), KGPT (Chen et al., 2020b), in multiple
few-shot settings with various numbers of training
instances. We report standard automatic metrics, as
well as information coverage, i.e., percentage of
information present in the generation.

Results. Table 5 compares various decoding
methods with few-shot GPT-2 finetuned on 0.1%
of the data. NEUROLOGIC substantially outper-
forms previous methods on all metrics, consistently
improving quality while achieving near-perfect con-
straint satisfaction. Previous work (CBS and GBS)
improves constraint satisfaction, but negatively af-
fects quality, indicated by drops in BLEU and
ROUGE. Table 6 compares NEUROLOGIC* on top
of GPT-2 with previous table-to-text approaches.
As before, NEUROLOGIC* outperforms past ap-
proaches by a large margin, even if the latter ones
leverage specialized model architectures or addi-
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Figure 2: Performance (y-axis) of supervised GPT-2 on
E2ENLG, with a varying percentage of training data for
supervision (x-axis). The purple, blue, and black lines
denote decoding with NEUROLOGIC*, NEUROLOGIC
and conventional beam search, respectively.

Coverage

tional pretraining on massive table-to-text corpora.
Additionally, Figure 2 compares the performance
(y-axis) of few-shot GPT-2 with NEUROLOGIC*
(purple line), NEUROLOGIC (blue line), and con-
ventional beam search (black line) as a function
of the varying percentage of training instances (x-
axis). The benefit of NEUROLOGIC* grows as data
size is reduced. Indeed, constrained decoding en-
ables impressive low-resource performance.

3.4 Constrained Question Generation

Next, we consider constrained question generation
(Zhang et al., 2020), where models need to generate
interrogative questions using given keywords. This
task is zero-shot without any training data, further
testing the capacity of NEUROLOGICX to guide
off-the-shelf models without finetuning.

Approach, Baselines, and Metrics. We use
GPT-2 off-the-shelf and compare NEUROLOGIC*
with previous constrained decoding methods, in-
cluding CGMH (Miao et al., 2019), TSMH (Zhang
et al., 2020) and NEUROLOGIC (Lu et al., 2021).
We report standard generation metrics and keyword
coverage as in §3.1. We conduct human evaluation
following subsection 3.1, to measure grammar, flu-
ency, meaningfulness, and overall quality of the
generated questions, using a 3-point Likert scale’
(template in Appendix D).

Results. Table 7 presents comparisons across dif-
ferent decoding methods based on off-the-shelf lan-
guage models. NEUROLOGIC* outperforms all
previous methods with respect to both automatic
and manual metrics; it enhances the generation
quality while achieving perfect constraint satisfac-
tion. The difference between NEUROLOGIC and
NEUROLOGICY is particularly large compared to
other tasks. We suspect that the search problem is

3 Agreement by ordinal Krippendorff alpha (0 < o < 1)
(Krippendorff, 2007) is 0.27, 0.28, 0.25 and 0.30, indicating
fair agreement.

much harder here, due to the lack of supervision
and complex logical constraints involving both key-
words and syntax. As a whole, the results demon-
strate the effectiveness of NEUROLOGICX in tack-
ling challenging constrained generation problems.

3.5 Unconstrained Story Generation

Finally, we demonstrate NEUROLOGIC* can also
improve unconstrained generation. We investigate
whether A*esque decoding with our unconstrained
lookahead heuristic (Equation 7) can (1) improve
beam search, which typically struggles in open-
ended settings (Holtzman et al., 2020; Welleck
et al., 2019b), and (2) improve sampling algorithms
that are commonly used in open-ended generation.
We consider conditional story generation on the
RocStories dataset (Mostafazadeh et al., 2016):
given a first sentence x, generate the full story y.

Approach, Baselines and Metrics. We use
GPT-2, fine-tuned on the RocStories training set.
We apply A*esque decoding to (1) beam search,
the setting used so far in the experiments, and (2)
top-k sampling (Fan et al., 2018), a commonly used
sampling algorithm in open-ended generation. For
top-k sampling, we use the heuristic to adjust the
probability scores, then renormalize. We use stan-
dard automatic metrics: perplexity and BLEU for
fluency, and unique n-grams as a measure of di-
versity. We conduct human evaluation following
subsection 3.1, for story flow and overall quality on
a 3-point Likert scale* (template in Appendix D).

Results. Table 8 presents the results of beam
search and top-k sampling with and without
A*esque heuristics. A*Xesque heuristics result in
more fluent, coherent and interesting stories for
both beam search and top-k sampling. For beam
search, A*esque not only enhances generation
quality— e.g. improving human evaluation scores
from 2.32 to 2.63-but also boosts generation diver-
sity, reflected by number of unique n-grams. For
top-k sampling, A*esque heuristics improve qual-
ity, while maintaining comparable diversity. We
further analyze quality and diversity tradeoff in
Appendix A. Moreover, we notice that beam looka-
head works the best for beam search, and greedy
lookahead works the best for top-k sampling. We
suspect that beam lookahead gives the most accu-
rate estimate of future beam path, while greedy

* Agreement by ordinal Krippendorff alpha (0 < a < 1)
(Krippendorff, 2007) of 0.24 and 0.22 (respectively), indicat-
ing fair agreement.
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Automatic Evaluation Human Evaluation
Decode Method .
ROUGE BLEU METEOR CIDEr SPICE Coverage | Grammar Fluency Meaningfulness Overall
CGMH (Miao et al., 2019) 28.8 2.0 18.0 55 21.5 18.3 2.28 2.34 2.11 2.02
TSMH (Zhang et al., 2020) 42.0 4.3 259 10.4 37.7 92.7 2.35 2.28 2.37 222
NEUROLOGIC (Lu et al., 2021) 38.8 11.2 24.5 18.0 41.7 90.6 2.78 271 2.49 2.51
NEUROLOGICX (greedy) 43.7 14.7 28.0 20.9 47.7 100.0 2.83 2.77 2.74 2.76
NEUROLOGIC* (beam) 429 144 27.8 20.3 46.9 100.0 2.81 2.86 2.76 2.75
NEUROLOGIC* (sample) 435 14.6 28.2 20.8 47.8 100.0 2.83 2.75 2.76 2.73

Table 7: Performance of different unsupervised decoding algorithms on constrained question generation.

Decode Method Fluency Diversity Human Eval
PPL BLEU-1 BLEU-2 | Uniq.2-gram Uniq.3-gram Uniq.4-gram | Coherence Overall
beam search 2.24 33.7 16.5 20.13k 34.09k 4191k 2.46 2.32
beam search + A*esque (greedy) 2.11 343 16.7 20.63k 34.94k 43.02k 2.56 2.57
beam search + A*esque (beam) 2.14 34.4 16.8 20.68k 35.03k 43.12k 2.62 2.63
beam search + AXesque (sample) 2.16 344 16.7 20.78k 35.41k 43.64k 2.59 2.57
top-k sample 4.01 314 13.9 28.54k 48.36k 56.62k 2.23 2.15
top-k sample + AXesque (greedy) 3.68 32.1 143 28.47k 48.44k 56.63k 2.48 247
top-k sample + A*Xesque (beam) 3.75 32.2 14.4 28.53k 48.27k 56.36k 2.39 2.34
top-k sample + A*esque (sample) 3.70 32.0 14.2 28.57k 48.04k 56.15k 247 244

Table 8: Performance of different decoding algorithms on RocStories test set.

lookahead provides an estimate which better re-
sembles a continuation from top-k sampling.

4 Related Work

A* search in NLP. Many classical NLP prob-
lems (e.g., parsing, text alignment) can be seen
as structured prediction subject to a set of task-
specific constraints. For many such problems, A*
search has been used effectively (Och et al., 2001;
Haghighi et al., 2007; Hopkins and Langmead,
2009; Meister et al., 2020). For example, Klein
and Manning (2003); Zhang and Gildea (2006);
Auli and Lopez (2011); Lee et al. (2016) have used
it in the context of parsing. Similar approaches are
used for finding high-probability alignments (Naim
et al., 2013). Despite these applications, applying
informed heuristic search to text generation with
autoregressive language models (this work’s focus)
has been underexplored.

Decoding strategies for text generation. The
rise of autoregressive language models like
GPT (Radford et al., 2018) has inspired work on
decoding strategies (Post and Vilar, 2018a; Ippolito
et al., 2019; Zheng et al., 2020; Leblond et al.,
2021; West et al., 2021). These works often fo-
cus on incorporating factors like diversity (Ippolito
et al., 2019), fluency (Holtzman et al., 2020), or
constraints (Anderson et al., 2017; Hokamp and
Liu, 2017; Post and Vilar, 2018b; Miao et al.,
2019; Welleck et al., 2019a; Zhang et al., 2020;
Qin et al., 2020; Lu et al., 2021). Constrained

beam search (Anderson et al., 2017) and grid
beam search (Hokamp and Liu, 2017) extend beam
search to satisfy lexical constraints during genera-
tion. Lu et al. (2021) incorporate logic-based con-
straints into beam search, which we extend with
lookahead heuristics.

Other work addresses the mismatch between
monotonic decoding and satisfying constraints that
can depend on a full generation, through MCMC
sampling (Miao et al., 2019; Zhang et al., 2020),
recursive non-monotonic generation (Welleck et al.,
2019a), continuous optimization (Qin et al., 2020),
or generated contexts (West et al., 2021). Unlike
these past works, NEUROLOGIC A*Xesque explic-
itly decodes future text to estimate the viability of
different paths for satisfying constraints.

5 Conclusion

Inspired by the A* search algorithm, we introduce
NEUROLOGIC A*esque decoding, which brings
A*-like heuristic estimates of the future to com-
mon left-to-right decoding algorithms for neural
text generation. A*esque lookahead heuristics im-
prove over existing decoding methods (e.g., NEU-
ROLOGIC, beam, greedy, sample decoding meth-
ods) in both constrained and unconstrained settings
across a wide spectrum of tasks. Our work demon-
strates the promise of moving beyond the current
paradigm of unidirectional decoding for text gen-
eration, by taking bidirectional information from
both the past and future into account to generate
more globally coherent text.
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Broader Impact and Ethical Implications

Our method deals with improving neural text gen-
eration, thus inheriting the potential impact and
risks brought by text generation applications (e.g.
dual use, see Pandya (2019); Brown et al. (2020)).
Constraining generation through logical constraints
offers the promise of improved control, consis-
tency, and human-machine collaboration in high-
impact applications such as translation, machine-
aided writing, and education. On the other hand,
constrained generation methods could foreseeably
be used to generate text that contains biased, offen-
sive, and/or hateful keywords (e.g., extremist texts;
McGuffie and Newhouse, 2020). For a broader dis-
cussion of these risks, and of the risks of large pre-
trained language models in general, refer to discus-
sions in Brown et al. (2020); Bender et al. (2021).
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Figure 3: Effect of varying the primary hyperparameter
for each lookahead strategy (§2.1) — (a) greedy (looka-
head length), (b) soft (temperature), (c) beam (number
of beams), and (d) sample (number of samples). Perfor-
mance is measured on the CommMONGEN validation set,
using BLEU-4 and Coverage.

A Further Experiments

A.1 Constrained Commonsense Generation

Studying Lookahead Strategies. We further
use CommoNGen to study the lookahead strate-
gies for NEUROLOGIC* proposed in §2.1 (Fig-
ure 3). With infinite lookahead length ¢ and num-
ber of lookaheads | L/, lookahead decoding exactly
solves Equation 3, finding an optimal trajectory.
In practice these are finite, meaning that the qual-
ity of the lookahead approximation can depend
on the lookahead strategy and its hyperparameters.
For practical choices of ¢ and |£,|, we empirically
study how varying the lookahead strategy and hy-
perparameters affects performance. In Figure 3, we
study the greedy, soft, beam, and sampling looka-
head strategies.

Figure 3(a) shows the effect of increasing the
lookahead length ¢ for the greedy lookahead strat-
egy. Increasing the length improves up to one point
—e.g., 5-7 steps — then decreases thereafter, likely
due to the difficulty of long-horizon approximation.

Figure 3(b) studies the temperature in the soft
lookahead, showing that greedy (r = 0.0) per-
forms well, with slight gains if 7 is carefully se-
lected. The results suggest that one can safely by-
pass tuning 7 using fast, greedy lookahead.

Next, Figure 3(c) shows that with beam looka-
head, increasing the beam width improves perfor-
mance up to a certain point (here, 11). Similarly,
increasing the number of samples with sampling
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Figure 4: Likelihood (y-axis) vs. number of unique 3-
grams (x-axis) using supervised GPT-2 on RocStories.
Figure (a) denotes decoding with beam search, with a
varying amount of beam size. Figure (b) denotes decod-
ing with top-k sampling, with a varying amount of k
value. The brown and blue lines denote with and with-
out A*esque heuristics separately.

lookahead improves over a single sample, and then
reaches an inflection point (Figure 3(d)).

A.2  Unconstrained Story Generation

Fluency and Diversity Tradeoff We study the
effect of A*esque decoding in unconstrained gen-
eration with different decoding hyperparameters:
beam size in beam search and k value in top-k
sampling. Figure 4 plots the fluency (measured by
likelihood) versus diversity (measured by unique
3-grams) for generations with various beam sizes
or top-k values. Ideally, we want generations to be
both fluent and diverse (top right). However, we
observe a fluency and diversity tradeoff in practice.
A*esque decoding flattens this trend and results in
larger area under the curve. The effect is especially
strong with beam search. In summary, A*esque de-
coding yields a more favorable balance of fluency
and diversity compared to conventional decoding
methods, regardless of hyperparameters.

B Runtime

Decoding Method Runtime
Beam Search 0.20
NEUROLOGIC 2.04
NEUROLOGIC A¥esque 19.24

Table 9: Runtime (seconds per sentence) of different
decoding algorithms with finetuned GPT2-L on the
CoMMONGEN dataset

C Experimental Details

C.1 Off-the-Shelf Models

We download off-the-shelf models, including pre-
trained GPT-2 and Marian MT, from HuggingFace
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Transformers (Wolf et al., 2020), which are imple-
mented in the PyTorch deep learning framework.

C.2 Model Training Details

All training is performed on a single NVIDIA
Quadro RTX 8000 GPU and costs about 100 GPU
hours in total. Our method is implemented with

C.2.4 Unconstrained Story Generation

We finetune GPT-2 for conditional story generation
on the RocStories dataset: given a first sentence
X, generate the full story y. Hyperparameters for
finetuning are given in Table 12.

Hyperparameter Assignment
PyTorch an the Huggingface Transformers library. model GPT2-Large
number of parameters 774M
C.2.1 CommoNGEN number of steps 10 epochs
For supervised setting, we finetune GPT-2 for con- }’atCh, size © ontini Ag4
ditional generation. We follow Lu et al. (2021)’s carnng rate opumizer am
; . Adam epsilon le-8
setup and use their hyperparameters for finetuning, Adam initial learning rate le-5
as shown in Table 10. learning rate scheduler linear with warmup
warmup steps 1 epoch
Hyperparameter Assignment weight decay 0
model GPT2-Large
number of parameters 774M Table 12: Hyperparameters for finetuning GPT-2 on the
number of steps 15 epochs RocStories dataset.
batch size 64
learning rate optimizer Adam
Adam epsilon le-8 C.3 Generation Details
Adam initial learning rate le-5
learning rate scheduler linear with warmup All generation is performed on a single NVIDIA
warmup steps 1.5 epoch Quadro RTX 8000 GPU and costs about 100 GPU
weight decay 0

Table 10: Hyperparameters for finetuning GPT-2 on
CoMMONGEN dataset.

C.2.2 Constrained Machine Translation

For fair comparison, we reproduced MT model
(two-layer transformer) used by Dinu et al. (2019),
using the same setup and hyperparameters reported
in their original paper.

C.2.3 Table-to-text Generation

We finetune GPT-2 with random sampled few-shot
training instances from E2ENLG dataset. We used
the same hyperparameters for finetuning with Li
and Liang (2021), as shown in Table 11.

hours in total.

C.3.1 CommoNGEN

NEUROLOGIC* hyperparameters for CommoNGEN
in supervised and zero-shot setting are shown in
Table 13 and Table 14 separately. We use the
same NEUROLOGIC hyperparameters with Lu et al.
(2021), including beam size, o, 5 and ;. We per-
formed a hyperparameter grid search for the scaling
factor A over the range [0, 0.3], for the look ahead
step over the the range [1, 15], for the look ahead
temperature over the the range [0, 1.0], for the look
ahead beam width over the the range [1, 10], and
for the look ahead number of sample over the the
range [1, 10], using a small subset of CommoNGEN
development set.

Hyperparameter Assignment

model GPT2-Large Hyperparameter Assignment
number of parameters 774M bean.1 size 20
number of steps 5 epochs pruning threshold « 50
batch size 5 pruning threshold 3 2
learning rate optimizer Adam scaling factor Ay 0
Adam epsilon le-8 scaling factor A\ 0.25
Adam initial learning rate 5e-5 look ahead step 5
learning rate scheduler linear with warmup look ahead (greedy) temperature 0
warmup steps 100 look ahead (beam) beam width 5
weight decay 0 look ahead (sample) number of sample 4

Table 11: Hyperparameters for finetuning GPT-2 on
E2ENLG dataset.

Table 13: NEUROLOGIC* hyperparameters for
ComMONGEN in supervised setting.
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Hyperparameter Assignment Hyperparameter Assignment

beam size 20 beam size 20
pruning threshold o 500000 pruning threshold o 50
pruning threshold 3 2 pruning threshold g 2
scaling factor A\; 0 scaling factor \; 0

scaling factor A2 0.175 scaling factor Ao 0.05
look ahead step 5 look ahead step 7
look ahead (greedy) temperature 0 look ahead (greedy) temperature 0
% look ahead (beam) beam width 5
Table 14: NEUROLOGIC hyperparameters for look ahead (sample) number of sample 4

CoMMONGEN in zero-shot setting.

C.3.2 Constrained Machine Translation

NEUROLOGIC* hyperparameters for constrained
machine translation are shown in Table 15. We use
the same beam size with Dinu et al. (2019) for
fair comparison. We performed a hyperparameter
grid search for the pruning threshold a over the
range [50, 300], for the pruning threshold 3 over
the range [1, 3], for the scaling factor A\; over the
range [0, 1.0], for the scaling factor A2 over the
range [0, 0.3], for the look ahead step over the the
range [5, 40], using a subset of WMT2013 IATE
development set. We use the same hyperparameters
for look ahead temperature, look ahead beam width,
and look ahead number of sample with supervised
CommonGEN and omit the hyperparameter search
due to the computational cost.

Hyperparameter Assignment
beam size 5
pruning threshold o 200
pruning threshold 3 2
scaling factor A\ 0.25
scaling factor Ao 0.05
look ahead step 35
look ahead (greedy) temperature 0
look ahead (beam) beam width 5
look ahead (sample) number of sample 4

Table 15: NEUROLOGIC* hyperparameters for con-
strained machine translation.

C.3.3 Table-to-text Generation

NEUROLOGIC* hyperparameters for table-to-text
generation are shown in Table 16. We performed a
hyperparameter grid search for the scaling factor Ay
over the range [0, 0.3], for the look ahead step over
the the range [1, 15], using E2ENLG development
set. For other hyperparameters, we use the same
value with supervised CommonGEN and omit the
hyperparameter search due to the computational
cost.

Table 16: NEUROLOGIC* hyperparameters for table-
to-text generation.

C.3.4 Constrained Question Generation

NEUROLOGIC* hyperparameters for constrained
question generation are shown in Table 17. The
task is zero-shot and doesn’t provide train or devel-
opment set, so we use the same decoding hyperpa-
rameters with zero-shot CoMmmoNGEN.

Hyperparameter Assignment

beam size 20
pruning threshold o 500000
pruning threshold 3 2
scaling factor Aq 0
scaling factor A, 0.175
look ahead step 5

look ahead (greedy) temperature 0

look ahead (beam) beam width 5

look ahead (sample) number of sample 4

Table 17: NEUROLOGIC* hyperparameters for con-
strained question generation.

C.3.5 Unconstrained Story Generation

A*esque hyperparameters with beam search and
top-k sampling for unconstrained story generation
are shown in Table 18 and Table 19 separately. We
performed a hyperparameter grid search for the
scaling factor Ay over the range [0, 1.0], for the
look ahead step over the the range [1, 15], for the
look ahead temperature over the the range [0, 1.0],
for the look ahead beam width over the the range
[1,15], and for the look ahead number of sample
over the the range [1, 15], using a small subset of
RocStories development set.

C.4 Dataset Details

Details of datasets used for downstream tasks are
provided in Table 22.

D Human Evaluation

We include screenshots of the human evaluation
templates for CommonGen (Figure 5), Constrained
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Hyperparameter Assignment
beam size 4
scaling factor A\ 0.6
look ahead step 4
look ahead (greedy) temperature 0
look ahead (beam) beam width 4
look ahead (sample) number of sample 15

Table 18: A*esque hyperparameters with beam search

for unconstrained story generation.

Hyperparameter Assignment
k value 5
scaling factor Ao 0.5
look ahead step 3
look ahead (greedy) temperature 0
look ahead (beam) beam width 4
look ahead (sample) number of sample 15

Table 19: A*esque hyperparameters with top-k sam-
pling for unconstrained story generation.

Question Generation (Figure 6), and RocStories
(Figure 7) tasks. We ensure the annotators are paid
adequately for at least $15 per hour and we inform
annotators that their annotations are used for model
evaluation purpose.

E Qualitative Generation Examples

Qualitative examples of the constrained question
generation and unconstrained story generation are
shown in Table 21 and 20.

F Limitations and Risks.

Limitations. For constrained generation, NEU-
ROLOGIC A*esque decoding can only take the
constraints that can be formulated as logical ex-
pressions as described in the paper; we leave it to
future work to expand the scope of such logical
constraints.

Risks. Constrained generation methods could
foreseeably be used to generate text that contains
biased, offensive, and/or hateful keywords. (e.g.,
extremist texts; McGuffie and Newhouse, 2020).
For a broader discussion of these risks, and of the
risks of large pretrained language models in gen-
eral, refer to discussions in Brown et al. (2020);
Bender et al. (2021).
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Concepts:
Sentence:

1.| SENTENCE QUALITY |: Is the sentence well-formed?

O Yes: The sentence is well-formed and fluent.
O Somewhat: The sentence is understandable but a bit awkward.

O No: The sentence is neither well-formed or fluent.

2.| PLAUSIBILITY | Does the sentence describe a plausible scenario?

O Yes: The sentence describes a realistic or plausible scenario.
O Somewhat: The sentence describes a acceptable scenario but a bit awkward.

O No: The sentence describes a nonsensical scenario.

3.| CONCEPTS [ Does the sentence include the given concepts meaningfully?

O Yes: The sentence meaningfully includes all of the concepts.

@]
Somewhat: The sentence meaningfully includes some, but not all of the concepts. Or, the sentence includes all
concepts but some of them are not meaningful or properly incorporated.

O No: The sentence does not include concepts in a meaningful way.

4.| OVERALL [ Considering your answers to 1., 2. and 3., Does the sentence meaningfully combine all of the concepts into a
well-formed and plausible scenario?

O
Yes: The sentence is reasonably well-formed/understandable, and meaningfully combines all the concepts into a

plausible scenario.
O Somewhat: The sentence looks okay in terms of above questions.

O
No: The sentence is not well-formed/understandable, or fails to properly combine all the concepts into a
plausible scenario.

Figure 5: Human evaluation template for the Constrained Commonsense Generation task.
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List of Keywords:

Question:

Q1. Is the question written in a grammatically correct way?

It is entirely or mostly grammatically correct, with no or minimal grammatical mistakes.
O T Itis partially grammatically correct, with some grammatical mistakes.
[T Itis mostly not grammatically correct, with many grammatical mistakes.

Q2. Is the question written in a fluent and understandable way?

It is entirely or mostly fluent and understandable.
© ORI Itis somewhat fluent and understandable, but it reads a bit awkward.
([ Itis mostly poorly written and hard to understand.

Q3. | Meaningfulness | Does the given question sentence ask a meaningful question?

It is an entirely or mostly meaningful question.
O OIETED Itis a somewhat meaningful question, but it might be a bit unclear.
[ It is mostly not a meaningful question.

fluency |and| meaningfulness | overall, what's the quality of the question?

r

Q4. Consider Lgrammar

* @) The overall quality is high.
D The overall quality is ok.
The overall quality is low.

Figure 6: Human evaluation template for the Interrogative Sentence Generation task.
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First sentence of the story:

Continuation of the story:

Q1. Is the continuation of the story written in a grammatically correct way?
It is entirely or mostly grammatically correct, with ne or minimal grammatical mistakes.
G It is partially grammatically correct, with some grammatical mistakes.

T 't is mostly not grammatically correct, with many grammatical mistakes.

Q2. Is the continuation of the story written in a fluent and understandable way?
It is entirely or mostly fluent and understandable.
D It is somewhat fluent and understandable, but it reads a bit awkward.

[T It is mostly poorly written and hard to understand.

Q3. Does the continuation of the story flow coherently from the prompt and stay on-topic?
It is entirely or mostly coherent from the prompt, and stays on-topic.
EnET It is somewhat coherent from the prompt, but it reads a bit off-topic.
[T It is mostly not coherent from the prompt, and mostly off-topic.

Q4. | Interestingness | Is the continuation of the story written in an interesting way?

It is a very interesting story.
G It is a somewhat interesting story.
D 'tis not an interesting story.

Q5. Consider the above questions, overall, what's the quality of the continuation of the story?

([ETT) The overall quality is high.
3 The overall quality is ok.
&) The overall quality is low.

Figure 7: Human evaluation template for the RocStories task.
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Prompt Method

Generation

b h
I wanted to buy a video cam seare

game console. *
beam search + A™ esque

I went to the store and looked at all the options. I decided to go with the PS4. I went home and waited
for the PS4 to arrive. When the PS4 arrived, I was very excited.

I went to the store and looked at all the options. I decided to go with the PS4 because it was the most
expensive. When I got home, I plugged the PS4 into my TV. The PS4 turned on and I was happy.

She moved to the United States when she was 16. She has been in the United States for 10 years now.

She is a great roommate.

He came to the United States when he was 10 years old. He had a hard time adjusting to American culture.
One day, he decided to move back to Germany. He was very happy to be back in his homeland.

. beam search
My roommate is from
Germany. *
beam search + A™ esque
. beam search
Oliver was nervous about
his wedding.

beam search + A*esque

He had never been to a wedding before. He decided to go to the rehearsal dinner. The rehearsal dinner
went very well. Oliver had a great time at his wedding.

He had never been married before and didn’t know what to expect. When the day of the wedding came,
he was very nervous. When he walked down the aisle, he knew it was going to be great. Oliver and his
wife had a wonderful wedding.

beam search

My friends all love to go

to the club to dance. *
beam search + A™ esque

One day I decided to go with them. We went to the club and had a great time. We danced all night and
had a great time. We decided to go back next week.

One day, I decided to go with them. We went to the club and danced all night. When we got home, I
told my friends about the fun we had. They all agreed that it was the best night of their lives.

Table 20: Example generations for unconstrained story generation using beam search with and without A*esque.

Words Method Generation
waste CGMH what waste is there, it seems now?
) TSMH where was the waste - water heater?
water .
NEUROLOGIC How much water is waste heat?
heat
x Why do we waste so much water to heat
NEUROLOGIC
our homes?
CGMH when would she finally turn twenty - one?

Naples TSMH
plague
killed

in fact killed?

NEUROLOGICX .
in Naples?

why was the plague epidemic in naples not

NEUROLOGIC  Who was killed in the plague in Naples?
How many people are killed by the plague

CGMH

what war was ever fought after american

imperialism collapsed?

controversial TSMH

what are some controversial aspects of
present - day american imperialism?

aspect . o
. p . NEUROLOGIC  Whose imperialism is it, anyway?
imperialism . .
% What is the most controversial aspect of
NEUROLOGIC™ . o1
imperialism?
or were they the very first steam engines
CGMH Y Y by

efficient enough for mass - production?

engines TSMH
efficient

steam NEUROLOGIC .
efficient?

why are steam engines so energy-efficient,
just like fossil fuels?
Why do you think steam engines are so

NEUROLoGIC* Why are steam engines so efficient?

Table 21: Example generations for constrained ques-
tion generation with NEUROLOGIC* and baselines, in-
cluding CGMH (Miao et al., 2019), TSMH (Zhang
et al., 2020) and NEUROLOGIC (Lu et al., 2021).

Dataset

train dev. test

COMMONGEN (Lin et al., 2020) 32,651 993 1,497

WMT2013/2017 IATE (Dinu et al., 2019)
E2ENLG (Dusek et al., 2018)
Interrogative question (Zhang et al., 2020)

581 414

4,862 547 630

- - 300

RocStories (Mostafazadeh et al., 2016) 45,496 1,871 1,871

Table 22: Details of datasets in downstream tasks.

799



