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Abstract

Deep learning has been the mainstream tech-
nique in natural language processing (NLP)
area. However, the techniques require many
labeled data and are less generalizable across
domains. Meta-learning is an arising field
in machine learning studying approaches to
learn better learning algorithms. Approaches
aim at improving algorithms in various as-
pects, including data efficiency and generaliz-
ability. Efficacy of approaches has been shown
in many NLP tasks, but there is no systematic
survey of these approaches in NLP, which hin-
ders more researchers from joining the field.
Our goal with this survey paper is to offer
researchers pointers to relevant meta-learning
works in NLP and attract more attention from
the NLP community to drive future innovation.
This paper first introduces the general concepts
of meta-learning and the common approaches.
Then we summarize task construction settings
and application of meta-learning for various
NLP problems and review the development of
meta-learning in NLP community.

1 Introduction

Recently, deep learning (DL) based natural lan-
guage processing (NLP) has been one of the re-
search mainstreams and yields significant perfor-
mance improvement in many NLP problems. How-
ever, DL models are data-hungry. The downside
limits such models’ application to different do-
mains, languages, countries, or styles because col-
lecting in-genre data for model training are costly.

To address the challenges, meta-learning tech-
niques are gaining attention. Meta-learning,
or Learning to Learn, aims to learn better
learning algorithms, including better parameter
initialization (Finn et al., 2017), optimization
strategy (Andrychowicz et al., 2016; Ravi and
Larochelle, 2017), network architecture (Zoph

∗∗Work done while working at Amazon Inc. The current
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and Le, 2017; Zoph et al., 2018; Pham et al.,
2018a), distance metrics (Vinyals et al., 2016;
Gao et al., 2019a; Sung et al., 2018), and be-
yond (Mishra et al., 2018). Meta-learning allows
faster fine-tuning, converges to better performance,
yields more generalizable models, and it achieves
outstanding results for few-shot image classifi-
caition (Triantafillou et al., 2020). The benefits
alleviate the dependency of learning algorithms on
labels and make model development more scalable.
Image processing is one of the machine learning
areas with abundant applications and established
most of the examples in the previous survey papers
on meta-learning (Hospedales et al., 2021; Huis-
man et al., 2021).

On the other hand, there are works showing ben-
efits of meta-learning techniques in performance
and data efficiency via applying meta-learning to
NLP problems. Please refer to Tables 2 and 3 in the
appendix for NLP applications improved by meta-
learning. Tutorial (Lee et al., 2021b) and Work-
shop (Lee et al., 2021a) are organized at ACL 2021
to encourage exchange and collaboration among
NLP researchers interested in these techniques. To
facilitate more NLP researchers and practitioners
benefiting from the advance of meta-learning and
participating in the area, we provide a systematic
survey of meta-learning to NLP problems in this pa-
per. There is another survey paper on meta-learning
in NLP (Yin, 2020). While Yin (2020) describes
meta-learning methods in general, this paper fo-
cuses on the idea of making meta-learning success-
ful when applied to NLP and provides a broader
review of publications on NLP meta-learning. This
paper is organized as below.

• A brief introduction of meta-learning back-
grounds, general concepts, and algorithms in
Section 2.

• Common settings for constructing meta-
learning tasks in Section 3.
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• Adaptation of general meta-learning ap-
proaches to NLP problems in Section 4.

• Meta-learning approaches for special topics,
including knowledge distillation and life-long
learning for NLP applications in Section 5.

Due to space constraints, we will not give too many
detailed descriptions of general meta-learning tech-
niques in this survey paper. For general concepts
of meta-learning, we encourage readers to read the
previous overview paper (Yin, 2020; Hospedales
et al., 2021; Huisman et al., 2021).

2 Background Knowledge for Meta
Learning

The goal of machine learning (ML) is to find a
function fθ(x) parametrized by model parameters
θ for inference from training data. For machine
translation (MT), the input x is a sentence, while
fθ(x) is the translation of x; for automatic speech
recognitoin (ASR), x is an utterance, while fθ(x)
is the transcription; In DL, θ are the network pa-
rameters, or weights and biases of a network. To
learn θ, there is a loss function l(θ;D), where D is
a set of paired examples for training,

D = {(x1, y1), (x2, y2), ..., (xK , yK)}, (1)

where xk is function input, yk is the ground truth,
and K is the number of examples in D. The loss
function l(θ;D) is defined as below:

l(θ;D) =

K∑

k=1

d(fθ(xk), yk). (2)

where d(fθ(xk), yk) is the “distance” between the
function output fθ(xk) and the ground truth yk. For
classification problem, d(., .) can be cross-entropy;
for regression, it can be L1/L2 distance. The fol-
lowing optimization problem is solved to find the
optimal parameter set θ∗ for inference via minimiz-
ing the loss function l(θ;D).

θ∗ = argmin
θ
l(θ;D). (3)

In meta-learning, what we want to learn is a
learning algorithm. The learning algorithm can
also be considered as a function, denoted as Fφ(.).
The input of Fφ(.) is the training data, while the
output of the function Fφ(.) is the learned model pa-
rameters, or θ∗ in (3). The learning algorithm Fφ(.)
is parameterized by meta-parameters φ, which is

what we want to learn in meta-learning. If Fφ(.)
represents gradient descent for deep network, φ can
be initial parameters, learning rate, network archi-
tecture, etc. Different meta-learning approaches
focus on learning different components. For ex-
ample, model-agnostic meta-learning (MAML) fo-
cuses on learning initial parameters (Finn et al.,
2017), which will be further descried in Section 4.1.
Learning to Compare methods like Prototypical
Network (Snell et al., 2017) in Section 4.2 learn
the latent representation of the inputs and their dis-
tance metrics for comparison. Network architec-
ture search (NAS) in Section 4.3 learns the network
architecture (Zoph and Le, 2017; Zoph et al., 2018;
Pham et al., 2018a).

To learn meta-parameters φ, meta-training tasks
Ttrain are required.

Ttrain = {T1, T2, ..., TN}, (4)

where Tn is a task, and N is the number of tasks
in Ttrain. Usually, all the tasks belong to the same
NLP problem; for example, all the Tn are QA but
from different corpora, but it is also possible that
the tasks belong to various problems. Each task Tn
includes a support set Sn and a query set Qn. Both
Sn and Qn are paired examples as D in (1). The
support set plays the role of training data in typical
ML, while the query set can be understood as the
testing data in typical ML. However, to not confuse
the reader, we use the terms support and query sets
in the context of meta-learning instead of training
and testing sets.

In meta-learning, there is a loss function
L(φ; Ttrain), which represents how “bad” a learn-
ing algorihtm paramereized by φ is on Ttrain.
L(φ; Ttrain) is the performance over all the tasks
in Ttrain,

L(φ; Ttrain) =
N∑

n=1

l(θn;Qn). (5)

The definition of the function l(.) above is the same
as in (2). l(θn;Qn) for each task Tn is obtained
as below. For each task Tn in Ttrain, we use a
support set Sn to learn a model by the learning
algorihtm Fφ. The learned model is denoted as θn,
where θn = Fφ(Sn). This procedure is equivalent
to typical ML training. We called this step within-
task training. Then θn is evaluated on Qn to obtain
l(θn;Qn) in (5). We called this step within-task
testing. One execution of within-task training and
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followed by one execution of within-task testing is
called an episode.

The optimization task below is solved to learn
meta-parameteres φ.

φ∗ = argmin
φ
L(φ; Ttrain). (6)

If φ is differentiable with respect to L(φ; Ttrain),
then we can use gradient descent to learn meta-
parameters; if not, we can use reinforcement learn-
ing algorithm or evolutionary algorithm. Solv-
ing (6) is called cross-task training in this pa-
per, which usually involves running many episodes
on meta-training tasks. To evaluate φ∗, we need
meta-testing tasks Ttest, tasks for evaluating algo-
rithms parameterized by meta-parameters φ∗1. We
do cross-task testing on Ttest, that is, running an
episode on each meta-testing task to evaluate algo-
rithms parameterized by meta-parameters φ∗.

In order to facilitate the reading of our paper, we
summarize the most important terminologies and
their meanings in Table 1 in the appendix.

3 Task Construction

In this section, we discuss different settings of
constructing meta-training tasks Ttrain and meta-
testing tasks Ttest.

3.1 Cross-domain Transfer
A typical setting for constructing the tasks is based
on domains (Qian and Yu, 2019; Yan et al., 2020; Li
et al., 2020a; Park et al., 2021; Chen et al., 2020b;
Huang et al., 2020a; Dai et al., 2020; Wang et al.,
2021b; Dingliwal et al., 2021; Qian et al., 2021).
In this setting, all the tasks, no matter belonging
to Ttrain or Ttest, are the same NLP problems. In
each task Tn, the support set Sn and the query set
Qn are from the same domain, while different tasks
contain the examples from different domains. In
each task, the model is trained on the support set
of a domain (usually having a small size) and eval-
uated on the query set in the same domain, which
can be considered as domain adaptation. From the
meta-training tasks Ttrain, cross-task training finds
meta-parameters φ∗ parameterizing the learning al-
gorithm Fφ∗ . With a sufficient number of tasks in
Ttrain, cross-task training should find a suitable φ∗

for a wide range of domains, and thus also works
1If the learning processing of φ also involve some hyper-

perparameter selection, then meta-validation tasks are needed,
but in this paper, we ignore the discussion of meta-validation
tasks for simplicity.

well on the tasks in Ttest containing the domains
unseen during cross-task training. Hence, meta-
learning can be considered as one way to improve
domain adaptation. If the support set in each task
includes only a few examples, the meta-learning
has to find the meta-parameters φ∗ that can learn
from a small support set and generalize well to the
query set in the same domain. Therefore, meta-
learning is considered one way to achieve few-shot
learning.

The cross-domain setting is widespread. We
only provide a few examples in this subsection.
In MT, each meta-training task includes the doc-
uments from a specific domain (e.g., news, laws,
etc.), while each meta-testing task also contains
documents from one domain but not covered by the
meta-training tasks (e.g., medical records) (Li et al.,
2020a). For another example, both meta-training
and meta-testing tasks are DST. The meta-training
tasks include hotel booking, flight ticket booking,
etc., while the testing task is taxi booking (Huang
et al., 2020a; Wang et al., 2021b; Dingliwal et al.,
2021). Domain has different meanings in different
NLP problems. For example, in speech process-
ing tasks, the domains can refer to accents (Winata
et al., 2020b; Huang et al., 2021) or speakers (Kle-
jch et al., 2019; Wu et al., 2021b; Huang et al.,
2022).

3.2 Cross-lingual Transfer

If we consider different languages as different do-
mains, then the cross-lingual transfer can be re-
garded as a special case of cross-domain transfer.
Suppose each task contains the examples of an
NLP problem from one language, and different
tasks are in different languages. In this case, cross-
task training finds meta-parameters φ∗ from the
languages in Ttrain, and cross-task testing evaluate
the meta-parameters φ∗ on new langauges in Ttest.
This setting aims at finding the learning algorithm
Fφ∗(.) that works well on the NLP problem of
any language given the support set of the language.
Cross-language settings have been applied to NLI
and QA in X-MAML (Nooralahzadeh et al., 2020),
documentation classification (van der Heijden et al.,
2021), dependency parsing (Langedijk et al., 2021),
MT (Gu et al., 2018), and ASR (Hsu et al., 2020;
Winata et al., 2020a; Chen et al., 2020d; Xiao et al.,
2021).

For the meta-learning methods aiming at learn-
ing the initial parameters like MAML (will be intro-
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duced in Section 4.1), the network architecture used
in all tasks must have the same network architec-
ture. A unified network architecture across all tasks
is not obvious in cross-lingual learning because the
vocabularies in different tasks are different. Be-
fore multilingual pretrained models are available,
unified word embeddings across languages are re-
quired. Gu et al. (2018) uses the universal lexical
representation to overcome the input-output mis-
match across different languages. Recently, by
using multilingual pretrained models as encoders,
such as M-BERT (Devlin et al., 2019) or XLM-
R (Conneau et al., 2020), all languages can share
the same network architecture (Nooralahzadeh
et al., 2020; van der Heijden et al., 2021).

3.3 Cross-problem Training

Here the meta-training and meta-testing tasks can
come from different problems. For example, the
meta-training tasks include MT and NLI, while
the meta-testing tasks include QA and DST. The
cross-problem setting is not usual, but there are
still some examples. In Bansal et al. (2020a),
the meta-training tasks are the GLUE benchmark
tasks (Wang et al., 2018), while the meta-testing
tasks are NLP problems, including entity typing,
NLI, sentiment classification, and various other
text classification tasks, not in the GLUE. All the
meta-training and meta-testing tasks can be for-
mulated as classification but with different classes.
In Indurthi et al. (2020), the meta-training tasks are
MT and ASR, while the meta-testing task is speech
translation (ST). CrossFit is a benchmark corpus
for this cross-problem setting (Ye et al., 2021).

The intrinsic challenge in the cross-problem
setting is that different NLP problems may need
very different meta-parameters in learning algo-
rithms, so it may be challenging to find unified
meta-parameters on the meta-training tasks that
can generalize to meta-testing tasks. In addition,
the meta-learning algorithms learning initial pa-
rameters such as MAML require all the tasks to
have a unified network architecture. If different
problems need different network architecture, then
the original MAML cannot be used in the cross-
problem setting. LEOPARD (Bansal et al., 2020a)
and ProtoMAML (van der Heijden et al., 2021) are
the MAML variants that can be used in the classi-
fication tasks with different class numbers. Both
approaches use the data of a class to generate the
class-specific head, so only the parameters of the

Figure 1: The task construction of cross-domain tran-
fer in Section 3.1 and domain generalization in Sec-
tion 3.4. Different colors represents data from different
domains.

head parameter generation model are required. The
head parameter generation model is shared across
all classes, so the network architecture becomes
class-number agnostic. On the other hand, recently,
universal models for a wide range of NLP prob-
lems have been emgered (Raffel et al., 2019; Chen
et al., 2021; Ao et al., 2021). We believe the de-
velopment of the universal models will intrigue the
cross-problem setting in meta-learning.

3.4 Domain Generalization
Traditional supervised learning assumes that the
training and testing data have the same distribution.
Domain shift refers to the problem that a model
performs poorly when training data and testing
data have very different statistics. Domain adapta-
tion in Section 3.1 uses little domain-specific data
to adapt the model2. On the other hand, domain
generalization techniques attempt to alleviate the
domain mismatch issue by producing models that
generalize well to novel testing domains.

Meta-learning can also be used to realize domain
generalization by learning an algorithm that can
train from one domain but evaluate on the other. To
simulate the domain generalization scenario, a set
of meta-training tasks are constructed by sampling
data from different domains as the support and
query sets. With the meta-training tasks above,
cross-task training will find the meta-parameters φ∗

that work well on the scenario where the training
(support) and testing (query) examples are from
different domains. Fig. 1 shows how to construct
tasks for domain generalization and compares the
construction with the cross-domain transfer setting.
The setting has been used to improve the domain
generalization for semantic parsing (Wang et al.,

2The domain-specific data are usually labelled, but unla-
belled domain-specific data can be leveraged as well (Kouw
and Loog, 2021), which is out of scope here.

669



2021a) and language generalization3 for sentiment
classification and relevance classification (Li et al.,
2020c).

3.5 Task Augmentation
In meta-learning, it is critical to have a large num-
ber of diverse tasks in the meta-training tasks Ttrain
to find a set of meta-parameters φ∗ that can gener-
alize well to the meta-testing tasks. However, con-
sidering the setting in the previous subsections, dif-
ferent tasks contain examples in various domains,
language, or even NLP problems, so a large and di-
verse Ttrain are often not available. In typical ML,
data augmentation comes in handy when data is
lacking. In meta-learning, augmenting tasks is sim-
ilarly understood as data augmentation in ML. Data
augmentation becomes task augmentation because
the “training examples” in meta-learning are a col-
lection of tasks. Task augmentation approaches
in meta-learning can be categorized into two main
directions: a) Inventing more tasks (without human
labeling efforts) to increase the number and diver-
sity of the meta-training tasks Ttrain. b) Splitting
training data from one single dataset into homoge-
nous partitions that allow applying meta-learning
techniques and therefore improve the performance.
NLP-specific methods have been proposed in both
categories.

Inventing more tasks The main question is
how to construct a massive amount of tasks ef-
ficiently. There is already some general task aug-
mentation approahces proposed for general meta-
learning (Yao et al., 2021a; Ni et al., 2021; Ra-
jendran et al., 2020; Yao et al., 2021b). Here
we only focus on NLP-specific approaches. In-
spired from the self-supervised learning, Bansal
et al. (2020b) generates a large number of cloze
tasks, which can be considered as multi-class clas-
sification tasks but obtained without labeling ef-
fort, to augment the meta-training tasks. Bansal
et al. (2021) further explores the influence of un-
supervised task distribution and creates task distri-
butions that are inductive to better meta-training
efficacy. The self-supervised generated tasks im-
prove the performance on a wide range of different
meta-testing tasks which are classification prob-
lems (Bansal et al., 2020b), and it even performs
comparably with supervised meta-learning meth-
ods on FewRel 2.0 benchmark (Gao et al., 2019b)
on 5-shot evaluation (Bansal et al., 2021).

3if a language is considered as a domain

Generating tasks from a monolithic corpus
Many tasks can be constructed with one monolithic
corpus (Huang et al. (2018); Guo et al. (2019);
Wu et al. (2019); Jiang et al. (2019); Chien and
Lieow (2019); Li et al. (2020b); MacLaughlin et al.
(2020); Wang et al. (2020a); Pasunuru and Bansal
(2020); Xu et al. (2021a); Murty et al. (2021)).
First, the training set of the corpus is split into sup-
port partition, Ds, and query partition, Dq. Two
subsets of examples are sampled from Ds and Dq

as the support set, S , and query set, Q, respectively.
In each episode, model parameters θ are updated
with S, and then the losses are computed with the
updated model and Q. The meta-parameters φ
are then updated based on the losses, as the meta-
learning framework introduced in Section 2. The
test set of the corpus is used to build Ttest for eval-
uation. As compared to constructing Ttrain from
multiple relevant corpora, which are often not avail-
able, building Ttrain with one corpus makes meta-
learning methodology more applicable. Besides,
results obtained from one corpus are more compa-
rable with existing NLP studies. However, only
using a single data stream makes the resulting mod-
els less generalizable to various attributes such as
domains and languages.

How to sample the data points to form a task4

is the key in such category. In NAS research in
Section 4.3, the support and query sets are usually
randomly sampled. Learning to Compare in Sec-
tion 4.2 splits the data points of different classes in
different tasks based on some predefined criteria.
There are some NLP-specific ways to construct the
tasks. In Huang et al. (2018), a relevance function
is designed to sample the support set S based on its
relevance to the query set Q. In Guo et al. (2019),
a retrieval model is used to retrieve the support set
S from the whole dataset. DReCa (Murty et al.,
2021) applies clustering on BERT representations
to create tasks.

4 Meta-Learning for NLP Tasks

This section shows the most popular meta-learning
methods for NLP and how they fit into NLP tasks.
Due to space limitations, only the major trends are
mentioned. Please refer to Table 2 and 3 in the
appendix for a complete survey.

4If a corpus includes data from different domains, and we
sample the data in the same domain to create a task, then the
setting here becomes cross-domain in Section 3.1.
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4.1 Learning to Initialize

In typical DL, gradient descent is widely used to
solve (3). Gradient descent starts from a set of
initial parameters θ0, and then the parameters θ
are updated iteratively according to the directions
of the gradient. There is a series of meta-learning
approaches targeting at learning the initial parame-
ters θ0. In these learn-to-init approaches, the meta-
parameters φ to be learned are the initial parameters
θ0 for gradient descent, or φ = θ0. MAML (Finn
et al., 2017) and its first-order approximation, FO-
MAML (Finn et al., 2017), Reptile (Nichol et al.,
2018), etc., are the representative approaches of
learn-to-init. We surveyed a large number of papers
using MAML-based approaches to NLP applica-
tions in the last three years and summarized them
in Table 4 in the appendix.

Learning to Initialize v.s. Self-supervised
Learning The learn-to-init approaches aim at
learning a set of good initial parameters. On the
other hand, self-supervised approaches like BERT
also have the same target. There is a natural ques-
tion: are they complementary? Based on the sur-
vey in Table 4 in the appendix, it is common to
use the self-supervised models to “initialize” the
meta-parameters φ in learn-to-init approaches. To
find the optimal φ∗ in (5), gradient descent is used
as well, and thus the “initial parameters for initial
parameters”, or φ0 is required. A self-supervised
model usually serves the role of φ0, and the learn-
to-init approaches further update φ0 to find φ∗.

Learn-to-init and self-supervised learning are
complementary. The self-supervised objectives are
different from the objective of the target NLP prob-
lem, so there is a “learning gap”. On the other hand,
learn-to-init approaches learn to achieve good per-
formance on the query sets of the meta-training
tasks, so it directly optimizes the objective of the
NLP problems. The benefit of self-supervised
learning is that it does not require labeled data,
while labeling is still needed to prepare the exam-
ples in meta-training tasks.

Learning to Initialize v.s. Multi-task Learning
Multi-task learning is another way to initialize
model parameters, which usually serves as the
baseline of learn-to-init in the literature. In multi-
task learning, all the labelled data from the meta-
training tasks is put together to train a model. That
is, all the support sets Sn and query sets Qn in
the meta-training tasks Ttrain are put together as a

training set D, and the loss (3) is optimized to find a
parameter θ∗. Then θ∗ is used as initial parameters
for the meta-testing tasks.

Both multi-task learning and meta-learning lever-
age the examples in the meta-training tasks, but
with different training criteria. Learn-to-init finds
the initial parameters suitable to be updated by up-
dating the model on the support sets and then eval-
uating it on the query sets. In contrast, multi-task
learning does not consider that the initial parame-
ters would be further updated at all during training.
Therefore, in terms of performance, learn-to-init
is usually shown to be better than multi-task learn-
ing (Dou et al., 2019; Chen et al., 2020b). On
the other hand, in terms of training speed, meta-
learning, which optimizes (5), is more computation-
ally intensive than multi-task learning optimizing
(3).

Three-stage Initialization Since learn-to-init,
multi-task, self-supervised learning all have their
pros and cons, they can be integrated to draw on
the strong points of each other. A common way to
integrate the three approaches is “three-stage ini-
tialization” as below. a) First, initialize a model
by self-supervised learning, which leverages un-
labeled data. Its objective is usually not directly
related to the target NLP problem. b) Then, multi-
task learning is used to fine-tune the self-supervised
model. The objective of multi-task learning is
the target NLP problem but does not consider the
update procedure in gradient descent. c) Finally,
learn-to-init, which finds the initial parameters suit-
able for update, is used to fine-tune the multi-task
model.

Learn-to-init is chosen to be the last stage be-
cause its training objective is closest to the target
of looking for good initial parameters, but it is
the most computationally intensive method, and
thus it is only used to change the model a little bit.
The three-stage initialization has been tested in sev-
eral works (Nooralahzadeh et al., 2020; Wu et al.,
2021b; van der Heijden et al., 2021; Langedijk
et al., 2021), but it does not always improve the
performance (Wu et al., 2021b; van der Heijden
et al., 2021).

Challenges Learn-to-init is an essential
paradigm for few-shot learning and usually
achieves outstanding results in the few-shot
learning benchmarks of image classification (Tri-
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antafillou et al., 2020). However, it has fallen short
of yielding state-of-the-art results on NLP few-shot
learning benchmarks (Ye et al., 2021; Chen et al.,
2022; Bragg et al., 2021). For example, on the
cross-task few-shot learning benchmark, CrossFit,
simple multi-task learning outperforms existing
learn-to-init in many cases (Ye et al., 2021). One
possible reason is meta-learning methods are
susceptible to hyper-parameters and even random
seeds (Antoniou et al., 2019). Hence, it is difficult
to obtain decent performance without exhaustively
tuning hyperparameters. The research about
developing more stable learn-to-init methods may
lead to more practical real-world applications for
the approaches. There is a study about stabilizing
the cross-task training of learn-to-init methods by
reducing the variance of gradients for NLP (Wang
et al., 2021b).

4.2 Learning to Compare
Learning to Compare methods are widely applied
to NLP tasks. Among many others, we find appli-
cations of Learning to Compare methods in text
classification (Yu et al., 2018; Tan et al., 2019;
Geng et al., 2019; Sun et al., 2019b; Geng et al.,
2020), sequence labeling (Hou et al., 2020; Oguz
and Vu, 2021), semantic relation classification (Ye
and Ling, 2019; Chen et al., 2019a; Gao et al.,
2019a; Ren et al., 2020), knowledege completion
(Xiong et al., 2018; Wang et al., 2019b; Zhang et al.,
2020; Sheng et al., 2020) and speech recognition
(Lux and Vu, 2021) tasks.

Most of the proposed methods are based on
Matching Network (Vinyals et al., 2016), Prototyp-
ical Network (Snell et al., 2017) and Relation Net-
work (Sung et al., 2018), and extend these architec-
tures in two aspects: a) how to embed text input in a
vector space with/without context information, and
b) how to compute the distance/similarity/relation
between two inputs in this space. Since these ques-
tions have had deep roots in the computation lin-
guistics research for many years (Schütze, 1992;
Manning and Schutze, 1999), Learning to Com-
pare methods is one of the most important methods
among other meta-learning methods in the context
of NLP despite their simplicity. Notably, to date,
such family of methods is mainly applied to classi-
fication tasks.

4.3 Neural Network Architecture Search
Neural network architecture search (NAS) is an-
other common meta-learning technique applied

to NLP including language modeling (WikiText-
103 (Merity et al., 2017), PTB (Mikolov et al.,
2010)), NER (CoNLL-2003 (Sang and De Meul-
der, 2003)), TC (GLUE (Wang et al., 2019a)),
and MT (WMT’14 (Bojar et al., 2014)). As dis-
cussed in Section 3.5, these techniques are often
trained/evaluated with a single, matched dataset,
which is different from other meta-learning ap-
proaches.

Moreover, in contrast to conventional NAS meth-
ods that focus on learning the topology in an indi-
vidual recurrent or convolutional cell, NAS meth-
ods have to be redesigned in order to make the
search space suitable for NLP problems, where
contextual information often plays an important
role. Jiang et al. (2019) pioneers the application
of NAS to NLP tasks beyond language modeling
(NER in this case), and improves differentiable
NAS by redesigning its search space for natural
language processing. Li et al. (2020b) extends
the search space of NAS to cover more RNN ar-
chitectures and allow the exploring of intra- and
inter-token connection to increase the expressibil-
ity of searched networks. As the popularity of pre-
trained language models (PLM) grows in NLP area,
researchers also apply NAS to discover better topol-
ogy for PLM such as BERT. Wang et al. (2020a)
introduces Hardware-Aware Transformers (HAT)
to search Transformer architecture optimized for
inference speed and memory footprint in different
hardware platforms. NAS-BERT (Xu et al., 2021b)
and AdaBERT (Chen et al., 2020a) explores task-
agnostic and task-dependent network compression
techniques with NAS respectively. EfficientBERT
(Dong et al., 2021) applies NAS to search for more
efficient architecture of feed-forward network that
is suitable for edge device deployment.

To show the efficacy of NAS, we summarize
the performance of several state-of-the-art NAS
approaches on GLUE benchmarks (Wang et al.,
2019a) in Table 5 in the appendix. These ap-
proaches are applied to BERT to discover ar-
chitectures with smaller sizes, faster inference
speed, and better model accuracy. For com-
parison, performance from original and manu-
ally compressed BERT models is also presented.
The results show that the BERT architecture im-
proved by NAS yields performance competitive
to BERT (c.f., 82.3 from EfficientBERT vs 82.5
from BERT) and is 6.9x smaller and 4.4x faster.
The searched architecture also outperforms man-
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ually designed, parameter- and inference-efficient
model (MobileBERTTINY) at similar size and speed.
These results suggest the efficacy of NAS in dis-
covering more efficient network architectures. As
NLP researchers continue to design even larger
PLMs while the need of deployment on edge de-
vices grows, we expect there will be increasing
investment in innovating NAS techniques to make
PLM networks more compact and accelerate infer-
ence.

Challenges The main bottleneck for NAS be-
ing widely applied is the prohibitive requirement
in computation resources for architecture search.
Approaches such as Efficient Neural Architecture
Search (ENAS, Pham et al. (2018b)) and Flexible
and Expressive Neural Architecture Search (FE-
NAS, Pasunuru and Bansal (2020)) are proposed
to improve the search efficiency. As PLMs usually
have bulky sizes and slow training speed, search
efficiency is even more critical when applying NAS
to PLM. Weight-sharing techniques are often ap-
plied to accelerate searching (Wang et al., 2020a;
Dong et al., 2021; Xu et al., 2021b).

4.4 Meta-learning for Data Selection

Multi-linguality, multi-task, and multi-label see
many impacts on NLP problems due to the diver-
sity of human languages. To learn models with bal-
anced performance over attributes (e.g., languages,
tasks, labels), a common approach is to weight the
training examples for data selection to learn models
with balanced performance over the attributes, and
it is a natural assumption that meta-learning tech-
niques derive more generalizable weighting than
manually tuned hyperparameters. For example, Wu
et al. (2019) add another gradient update step wrap-
ping the conventional classifier update for training
meta-parameters that controls the weight when ag-
gregating losses from different labels to update clas-
sifier’s parameters. In addition to gradient update,
meta-learned weights are also applied directly to
training examples for data selection to address the
issue of noisy labeling. Shu et al. (2019) propose a
technique to jointly learn a classifier and a weight-
ing function, where a conventional gradient update
for the classifier and a meta-learning update for
the weighting is performed alternatively. The func-
tion weights examples to mitigate model overfitting
towards biased training data caused by corrupted
labels or class imbalance. Zheng et al. (2021) apply
a similar framework but extend the weighting with

a label correction model. Both techniques show
improvement over SOTA in text classification with
biased training data.

Additionally, as the progress in the research of
pre-training and transfer learning, there is a trend
of leveraging datasets in multiple languages, do-
mains, or tasks to jointly pre-train models to learn
transferable knowledge. A meta-learned data se-
lector can also help in this scenario by choosing
examples that benefit model training and transfer-
ability. For instance, Wang et al. (2020b) investi-
gate the common challenge of imbalanced train-
ing examples across languages in multilingual MT,
which is conventionally addressed by tuning hyper-
parameters manually to up-sample languages with
less resources. The authors propose Differentiable
Data Selection (DDS) to parameterize the sampling
strategies. DDS is trained with episodes and REIN-
FORCE algorithm to optimize parameters of sam-
pler and MT models in an alternating way for the
MT models to converge with better performance
across languages. Pham et al. (2021) formulate
data sampling for multilingual MT as a problem of
back-translation to generate examples of parallel
utterances from unlabeled corpora in target lan-
guage. The back-translation is jointly trained with
MT models to improve translation result through
better distribution of training examples and data
augmentation. Tarunesh et al. (2021) further study
knowledge transferring across tasks and languages.
The authors combine Reptile and DDS to meta-
learn samplers with six different languages (en, hi,
es, de, fr, and zh) and five different tasks (QA,
NLI, paraphrase identification, POS tagging, and
NER) and demonstrate competitive performance
on XTREME multilingual benchmark dataset (Hu
et al., 2020).

5 Meta-learning beyond Accuracy

In the previous sections, meta-learning is used to
obtain better evaluation metrics for NLP applica-
tions. This section illustrates how meta-learning
can improve NLP applications from more aspects
beyond performance.

5.1 Learn to Knowledge Distillation

Knowledge distillation method was proposed in
(Hinton et al., 2015). The main goal is to transfer
knowledge from a so-called teacher model, e.g., a
vast neural network trained with a lot of training
data, to a more compact student model, e.g., a neu-
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ral network with much less trainable parameters.
The main weaknesses of this method are as follows:
a) the number of teacher models is fixed to one that
could limit the power of the transferring process; b)
the teacher model is not optimized for the transfer-
ring process and c) the teacher model is not aware
of the student model during the transferring pro-
cess. Meta-learning methods can be applied to
partially fix these issues. The high-level idea is
to increase the number of teacher models and the
number of student models and consider each pair
of a teacher model and a student model as a task
in the meta-learning framework. By doing so, we
can train a meta teacher model that works better
than a single teacher model (Pan et al., 2020), and
we can optimize the transferring process and force
the teacher model to be aware of the student model
(Zhou et al., 2022).

5.2 Learn to Life-long learning
This subsection discusses how to use meta-learning
to improve lifelong learning (LLL) (Chen and Liu,
2018). The real world is changing and evolving
from time to time, and therefore machines natu-
rally need to update and adapt to the new data they
receive. However, when a trained deep neural net-
work is adapted to a new dataset with a different
distribution, it often loses the knowledge previously
acquired and performs the previous seen data worse
than before. This phenomenon is called catas-
trophic forgetting (McCloskey and Cohen, 1989).
There is a wide range of LLL approaches aiming
for solving catastrophic forgetting (Parisi et al.,
2019). Among them, the following directions ap-
ply meta-learning: 5

Meta-learning for Regularization-based LLL
methods Regularization-based LLL methods
aim to consolidate essential parameters in a model
when adapting models with new data (Kirkpatrick
et al., 2017; Zenke et al., 2017; Schwarz et al.,
2018; Aljundi et al., 2018; Ehret et al., 2021). Meta-
learning targets “how to consolidate” and has some
successful examples in NLP applications. Knowl-
edgeEditor (De Cao et al., 2021) learns the parame-
ter update strategies that can learn the new data and
simultaneously retain the same predictions on the
old data. KnowledgeEditor has been applied to fact-

5On the other hand, in meta-learning, usually, we assume
stationary task distribution. Can we do meta-learning with
evident distributional shift or when tasks arrive sequentially?
There is also research along the direction (Finn et al., 2019;
Yap et al., 2021), but out of the scope of this review paper.

checking and QA. Editable Training (Sinitsin et al.,
2020) employs learn-to-init approaches to find the
set of initial parameters, ensuring that new knowl-
edge can be learned after updates without harming
the performance of old data. Editable Training
empirically demonstrates the effectiveness on MT.

Meta-learning for Data-based LLL Methods
The basic idea of data-based methods is to store a
limited number of previously seen training exam-
ples in memory and then use them for empirical
replay, that is, training on seen examples to re-
cover knowledge learned (Sprechmann et al., 2018;
de Masson d'Autume et al., 2019; Sun et al., 2019a)
or to derive optimization constraints (Lopez-Paz
and Ranzato, 2017; Li and Hoiem, 2017; Saha and
Roy, 2021). A hurdle for data-based approaches
is the need to store an unrealistically large number
of training examples in memory to achieve good
performance. To achieve sample efficiency, Oba-
muyide and Vlachos (2019a); Wang et al. (2020c);
Wu et al. (2021a) uses meta-learning to learn a
better adaptation algorithm that recovers the knowl-
edge learned with a limited amount of previously
seen data. Experiments on text classification and
QA benchmarks validate the effectiveness of the
framework, achieving state-of-the-art performance
using only 1% of the memory size (Wang et al.,
2020c).

6 Conclusion

This paper investigates how meta-learning is used
in NLP applications. We review the task construc-
tion settings (Section 3), the commonly used meth-
ods including learning to initialize, learning to com-
pare and neural architecture search (Section 4), and
highlight research directions that go beyond im-
proving performance (Section 5). We hope this
paper will encourage more researchers in the NLP
community to work on meta-learning.
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A Appendx

Table 1: Terminologies and their meanings.

Terminologies Meaning
(NLP) Problem a type of NLP problems like QA, POS, or MT
Model Parameter parameters of models making inference for underlying problems
Meta-parameter parameters of learning algorithms (e.g., model init, optimizers) that are shared across tasks
Support Set a set of training examples for updating model parameters
Query Set a set of testing examples for evaluating model parameters
Task combination of one support set and one query set
Within-task Training learning model parameter with support set
Within-task Testing using query set to evaluate model parameters
Episode one execution of within-task training and followed by one execution of within-task testing
Meta-training Tasks tasks generated for learning meta-parameter
Meta-testing Tasks tasks generated for evaluating algorithms parameterized by meta-parameter
Cross-task Training learning meta-parameter, which usually involves running many episodes on meta-training tasks
Ccross-task Testing running an episode on each meta-testing task to evaluate algorithms parameterized by meta-parameter
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Table 2: An organization of works on meta-learning in NLP. The Application column lists the applications that
are performed in corresponding papers. We use the following abbreviations. QA: Question Answering. MT:
Machine Translation. TC: Text Classification (including Natural Langauge Inference). IE: Information Extraction
(including Relation Classificaiton and Knowledge Graph Completion). WE: Word Ebedding TAG: Sequence
Tagging. PAR: Parsing. DST: Dialgoue State Tracking. DG: Dialgoue Generation (including Natural Language
Generation). MG: Multimodal Grounding. ASR: Automatic Speech Recognition. SS: Source Separation. KS:
Keyword Spotting. VC: Voice Cloning. SED: Sound Event Detection. The Method column lists the involving
meta-learning methods. INIT is learning to initialize; COM is learning to compare; NAS is network architecture
search; OPT is learning to optimize; ALG is learning the learning algorithm; SEL is learning to select data. Task
construction column lists the way each work is built for training meta-parameters. Please refer to Section 3 for
the description about task construction.

Work Method Application Task construction

(Dou et al., 2019) INIT TC Cross-problem
(Bansal et al., 2020a) INIT TC Cross-problem
(Holla et al., 2020) INIT TC A task includes sentences containing the same word with different senses.
(Zhou et al., 2022) INIT TC Knowledge Distallation
(Pan et al., 2020) COM TC Knowledge Distallation
(van der Heijden et al., 2021) INIT TC Cross-lingual
(Bansal et al., 2020b) INIT TC Cross-problem (some tasks are generated in an self-supervised way)
(Murty et al., 2021) INIT TC Cross-problem
(Wang et al., 2021b) INIT TC, DST Cross-domain
(Yu et al., 2018) COM TC Cross-domain
(Tan et al., 2019) COM TC Cross-domain
(Geng et al., 2019) COM TC Cross-domain
(Sun et al., 2019b) COM TC The tasks are seperated by class labels.
(Geng et al., 2020) COM TC The tasks are seperated by class labels.
(Li et al., 2020c) COM TC Domain Generalization
(Wu et al., 2019) OPT TC Monolithic
(Pasunuru and Bansal, 2020) NAS TC Monolithic
(Pasunuru and Bansal, 2019) NAS TC Monolithic
(Xu et al., 2021c) OPT TC Domain Generalization
(Zheng et al., 2021) SEL TC Monolithic
(Wu et al., 2020) INIT TAG Cross-lingual
(Xia et al., 2021) INIT TC, TAG Cross-lingual
(Hou et al., 2020) COM TAG Cross-domain
(Oguz and Vu, 2021) COM TAG The tasks are seperated by class labels.
(Li et al., 2020b) NAS DG Monolithic
(Jiang et al., 2019) NAS TAG Monolithic
(Obamuyide and Vlachos, 2019b) INIT IE Each task includes the examples for a relation.
(Bose et al., 2020) INIT IE Each task is a graph.
(Lv et al., 2019) INIT IE Each task includes the examples for a relation.
(Chen et al., 2019a) COM IE Each task includes the examples for a relation.
(Gao et al., 2019a) COM IE Each task includes the examples for a relation.
(Ren et al., 2020) COM IE Each task includes the examples for a relation.
(Xiong et al., 2018) COM IE Each task includes the examples for a relation.
(Wang et al., 2019b) INIT IE Each task includes the examples for a relation.
(Zhang et al., 2020) COM IE Each task includes the examples for a relation.
(Sheng et al., 2020) COM IE Each task includes the examples for a relation.
(Hu et al., 2019) INIT WE Each task includes the context of a word.
(Sun et al., 2018) COM WE Each task includes the context of a word.
(M’hamdi et al., 2021) INIT QA, TAG Cross-lingual, Domain Generalization
(Nooralahzadeh et al., 2020) INIT QA, TC Cross-lingual
(Yan et al., 2020) INIT QA Cross-domain
(Gu et al., 2018) INIT MT Cross-lingual
(Indurthi et al., 2020) INIT MT Cross-problem
(Li et al., 2020a) INIT MT Cross-domain
(Park et al., 2021) INIT MT Cross-domain
(Wang et al., 2020b) SEL MT Monolithic
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Table 3: Continue of Table 2. Pham et al. (2021) learns a backtranslation model for data augmentation, so it is
considered as SEL.

Work Method Application Task construction

(Pham et al., 2021) SEL MT Monolithic
(Guo et al., 2019) INIT PAR Monolithic
(Huang et al., 2018) INIT PAR Monolithic
(Langedijk et al., 2021) INIT PAR Cross-lingual
(Chen et al., 2020b) INIT PAR Cross-domain
(Wang et al., 2021a) INIT PAR Domain Generalization
(Qian and Yu, 2019) INIT DG Cross-domain
(Madotto et al., 2019) INIT DG Cross-domain (each domain is one type of persona)
(Mi et al., 2019) INIT DG Cross-domain
(Huang et al., 2020a) INIT DST Cross-domain
(Dingliwal et al., 2021) INIT DST Cross-domain
(Huang et al., 2020b) INIT DST Cross-domain
(Dai et al., 2020) INIT DG Cross-domain
(Qian et al., 2021) INIT DG Cross-domain
(Chien and Lieow, 2019) OPT DG Monolithic
(Hsu et al., 2020) INIT ASR Cross-lingual
(Klejch et al., 2019) INIT ASR Cross-domain (each domain refers to a speaker)
(Winata et al., 2020a) INIT ASR Cross-lingual
(Winata et al., 2020b) INIT ASR Cross-domain (each domain refers to a accent)
(Xiao et al., 2021) INIT ASR Cross-lingual
(Klejch et al., 2018) OPT ASR Cross-domain (each domain refers to a speaker)
(Chen et al., 2020d) NAS ASR Cross-lingual
(Baruwa et al., 2019) NAS ASR Monolithic
(Wu et al., 2021b) INIT SS Cross-domain (each domain refers to a speaker)
(Huang et al., 2021) INIT SS Cross-domain(each domain refers to a accent)
(Chen et al., 2020c) INIT KS The tasks are separated by keyword sets.
(Parnami and Lee, 2020) COM KS The tasks are separated by keyword sets.
(Huh et al., 2021) COM KS The tasks are separated by keyword sets.
(Mazzawi et al., 2019) NAS KS Monolithic
(Lux and Vu, 2021) COM KS The tasks are separated by keyword sets.
(Serrà et al., 2019) ALG VC Cross-domain (each domain refers to a speaker)
(Chen et al., 2019b) ALG VC Cross-domain (each domain refers to a speaker)
(Huang et al., 2022) INIT VC Cross-domain (each domain refers to a speaker)
(Tarunesh et al., 2021) INIT, SEL QA, TC, TAG Cross-lingual, Cross-problem
(Eloff et al., 2019) COM MG Monolithic
(Surı́s et al., 2019) ALG MG Each task contains multiple examples of text-image pairs.
(Xu et al., 2021a) COM MG Each task contains an image and a word set.
(De Cao et al., 2021) OPT TC, QA Life-long learning
(Sinitsin et al., 2020) INIT MT Life-long learning
(Wang et al., 2020c) INIT TC, QA Life-long learning
(Wu et al., 2021a) INIT IE Life-long learning
(Obamuyide and Vlachos, 2019a) INIT IE Life-long learning
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Table 4: Summary of learn-to-init variants. This table contains the following information. (1) Method: There
are many variants in the learn-to-init family. The most representative one is MAML. Typical MAML (Finn et al.,
2017) has large computation intensity, so the first-order approximations like FOMAML (Finn et al., 2017) and
Reptile (Nichol et al., 2018) are widely used. DG-MAML (Li et al., 2018) is for domain generalization. Typical
learn-to-init assumes that all the tasks use the same network architecture, but LEOPARD (Bansal et al., 2020a) and
Proto(FO)MAML (Triantafillou et al., 2020) are proposed to overcome the limitation. (2) How to Initialize the
Initialization: Learn-to-init approaches aim at learning the initial parameters. But where does the initialization
of MAML come from? We found that using self-supervised pre-training as initialization is common. The table
specifies the pre-trained models used to initialize the learn-to-init methods. ’-’ means the initial parameters are
learned from random initialization or cannot tell based on the descriptions in the papers.

Work Method How to Initailize the Initailization

(Bansal et al., 2020a) LEOPARD BERT
(Li et al., 2020a) MAML Word Embedding
(Park et al., 2021) MAML XLM
(Gu et al., 2018) FOMAML Word Embedding
(Langedijk et al., 2021) FOMAML mBERT
(Chen et al., 2020b) Reptile BART
(Huang et al., 2020a) MAML BERT
(Wang et al., 2021b) Propose a new method based on Reptile Word Embedding
(Dingliwal et al., 2021) Reptile RoBERTa
(Qian and Yu, 2019) MAML Word Embedding
(Qian et al., 2021) MAML Word Embedding
(Madotto et al., 2019) MAML Word Embedding
(Dai et al., 2020) MAML -
(Hsu et al., 2020) FOMAML Multilingual ASR
(Xiao et al., 2021) MAML/FOMAML/Reptile -
(Winata et al., 2020b) MAML Pretrain by Supervised Learning
(Klejch et al., 2019) FOMAML -
(Huang et al., 2021) MAML/FOMAML -
(Indurthi et al., 2020) FOMAML -
(Winata et al., 2020a) FOMAML -
(Wu et al., 2021b) MAML Pretrain by Multi-task Learning
(Ke et al., 2021) MAML BERT
(Xia et al., 2021) MetaXL mBERT/XLM-R
(Dou et al., 2019) MAML/FOMAML/Reptile BERT
(Obamuyide and Vlachos, 2019b) FOMAML Word Embedding
(Lv et al., 2019) MAML -
(Holla et al., 2020) FOMAML/Proto(FO)MAML Word Embedding/ELMo/BERT
(Huang et al., 2020b) MAML Word Embedding
(Mi et al., 2019) MAML -
(Wang et al., 2021a) DG-MAML BERT
(Conklin et al., 2021) DG-MAML -
(M’hamdi et al., 2021) MAML mBERT
(Nooralahzadeh et al., 2020) MAML BERT/mBERT/XLM-R
(Garcia et al., 2021) MAML mBERT
(van der Heijden et al., 2021) FOMAML/Reptile/Proto(FO)MAML XLM-R
(Bansal et al., 2020b) LEOPARD BERT
(Murty et al., 2021) FOMAML BERT
(Hua et al., 2020) Reptile -
(Yan et al., 2020) MAML BERT/RoBERTa
(Wang et al., 2019b) Reptile -
(Bose et al., 2020) Meta-Graph -

Table 5: Performance of selected NAS approaches on the test set of GLUE benchmark.

Model #Params Latency MNLI QQP QNLI SST-2 MRPC RTE Avg
BERTBASE (Google) 108.9M 362ms 84.6 71.2 90.5 93.5 88.9 66.4 82.5
MobileBERTTINY (Sun et al., 2020) 15.1M 96ms 81.5 68.9 89.5 91.7 87.9 65.1 80.8
AdaBERT (Chen et al., 2020a) 6.4-9.5M 12.4-28.5ms 81.6 70.7 86.8 91.8 85.1 64.4 80.1
EfficientBERT (Dong et al., 2021) 16M 103ms 83.0 71.2 90.6 92.3 88.9 67.8 82.3
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