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Abstract

Learning semantically meaningful sentence em-
beddings is an open problem in natural lan-
guage processing. In this work, we propose a
sentence embedding learning approach that ex-
ploits both visual and textual information via a
multimodal contrastive objective. Through ex-
periments on a variety of semantic textual simi-
larity tasks, we demonstrate that our approach
consistently improves the performance across
various datasets and pre-trained encoders. In
particular, combining a small amount of multi-
modal data with a large text-only corpus, we im-
prove the state-of-the-art average Spearman’s
correlation by 1.7%. By analyzing the proper-
ties of the textual embedding space, we show
that our model excels in aligning semantically
similar sentences, providing an explanation for
its improved performance.

1 Introduction

Sentence embedding learning, i.e., encoding sen-
tences into fixed-length vectors that faithfully re-
flect the semantic relatedness among sentences, is
a fundamental challenge in natural language pro-
cessing (NLP). Despite the tremendous success
of pre-trained language models (PLMs), such as
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019), it has been shown that the off-the-
shelf sentence embeddings of PLMs without fine-
tuning are even inferior to averaging Glove embed-
dings (Pennington et al., 2014) in terms of semantic
similarity measure (Reimers and Gurevych, 2019).
Hence, recent research (Li et al., 2020; Zhang et al.,
2020; Su et al., 2021) focuses on adjusting the orig-
inal sentence embeddings derived from PLMs in
an unsupervised manner. In particular, there has
been growing interest in adopting contrastive learn-
ing objectives to achieve this goal (Carlsson et al.,
2020; Kim et al., 2021; Gao et al., 2021).

Although purely text-based models have led to
impressive progress, it remains an open question to

what extent they capture the deeper notion of sen-
tence meaning beyond the statistical distribution of
texts, which lies outside of the text and is grounded
in the real-world (Bender and Koller, 2020; Bisk
et al., 2020). As a central part of the human per-
ceptual experience, vision has been shown to be
effective in grounding language models and im-
proving performance on various NLP tasks (Zhang
et al., 2019; Bordes et al., 2019; Zhao and Titov,
2020). We hypothesize that using vision as supple-
mentary semantic information can further promote
sentence representation learning.

In this work, we propose MCSE, an approach
for multimodal contrastive learning of sentence
embeddings. To exploit both visual and textual in-
formation, we adopt the state-of-the-art contrastive
sentence embedding framework SimCSE (Gao
et al., 2021) and extend it with a multimodal con-
trastive objective. In addition to the textual objec-
tive in SimCSE that maximizes agreement between
positive sentence pairs, the multimodal objective
maximizes agreement between sentences and cor-
responding images in a shared space. We conduct
extensive experiments on standard Semantic Tex-
tual Similarity (STS) benchmarks and show the
effectiveness of MCSE across various datasets and
pre-trained encoders. We find that, using a small
amount of multimodal data in addition to a text-
only corpus yields significant improvements on
STS tasks. By analyzing the alignment and unifor-
mity properties of the embedding space (Wang and
Isola, 2020), we show that MCSE better aligns the
semantically similar sentences while maintaining
uniformity, providing an explanation for its supe-
rior performance.1

2 Related Work

Sentence Representation Learning. Existing
works for learning sentence embeddings can be

1Our code and pre-trained models are publicly available at
https://github.com/uds-lsv/MCSE.
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Figure 1: The overall architecture of MCSE. Compared to SimCSE, a new multimodal objective is calculated in the
grounded space. For each input sentence, the positive instance is the paired image and the negative instances are all
other in-batch images.

categorized into supervised (Conneau et al., 2017;
Cer et al., 2018; Reimers and Gurevych, 2019; Wi-
eting et al., 2020) and unsupervised approaches (Li
et al., 2020; Carlsson et al., 2020; Su et al., 2021;
Kim et al., 2021; Gao et al., 2021; Liu et al., 2021;
Yan et al., 2021). Supervised approaches mostly
utilize supervision from annotated natural language
inference data or parallel data. Unsupervised ap-
proaches are able to make use of the intrinsic se-
mantic information embedded in the natural lan-
guage text corpus by adjusting the training objec-
tive to STS tasks, thereby eliminating the need
for a costly annotation process. In particular, con-
trastive learning objective (Carlsson et al., 2020;
Kim et al., 2021; Gao et al., 2021; Liu et al., 2021;
Yan et al., 2021) regularizes the embedding space
by pulling positive (i.e., semantically similar) sen-
tences closer and pushing apart negatives, showcas-
ing great effectiveness in capturing the semantic
similarity among sentences. Our approach adopts
the contrastive learning framework and is built on
top of the current state-of-the-art approach (Gao
et al., 2021), further pushing the frontier of STS by
leveraging multimodal semantic information.
Visually Grounded Representation Learning.
There are various works showing that grounding
NLP models to the visual world can improve tex-
tual representation learning. Lazaridou et al. (2015)
and Zablocki et al. (2018) learn word embeddings
by aligning words to the visual entity or visual
context. Kiela et al. (2018) ground sentence em-
beddings by predicting both images and alternative
captions related to the same image. Bordes et al.
(2019) enhance the Skip-Thought model (Kiros
et al., 2015) by learning a grounded space that pre-
serves the structure of visual and textual spaces.

Recently, Tan and Bansal (2020) and Tang et al.
(2021) train large scale language models with mul-
timodal supervision from scratch with the goal of
improving general language understanding. Differ-
ent from the aforementioned works, we focus on
learning visually grounded sentence embeddings
by fine-tuning pre-trained models in a contrastive
learning framework.

3 Method

To exploit both visual and textual information, we
adopt SimCSE (Gao et al., 2021) as the textual base-
line and extend it with a multimodal contrastive
learning objective.

3.1 Background: Unsupervised SimCSE
Data augmentation plays a critical role in
contrastive self-supervised representation learn-
ing (Chen et al., 2020). The idea of unsupervised
SimCSE is to use dropout noise as a simple yet ef-
fective data augmentation strategy. Given a collec-
tion of sentences {xi}mi=1, we construct a positive
pair for each input xi by encoding it twice using
different dropout masks: hz

i = gϕ(fθ(xi, z)) and
hz′
i = gϕ(fθ(xi, z

′)), where z and z′ denote differ-
ent dropout masks2, fθ(·) is a pre-trained language
encoder such as BERT, and gϕ(·) is a projection
head3 on top of the [CLS] token. The training
objective is:

ℓSi = − log
esim(h

zi
i ,h

z′i
i )/τ

∑N
j=1 e

sim(h
zi
i ,h

z′
j

j )/τ

, (1)

2The standard dropout masks in Transformers are used.
3There is a MLP pooler layer over [CLS] in BERT’s

implementation. Gao et al. (2021) use it with re-initialization.
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.↑

BERT (first-last avg.) 39.7 59.4 49.7 66.0 66.2 53.9 62.1 56.7
RoBERTa (first-last avg.) 40.9 58.7 49.1 65.6 61.5 58.6 61.6 56.6

w
ik

i

SimCSE-BERT♢ 68.4 82.4 74.4 80.9 78.6 76.9 72.2 76.3
SimCSE-RoBERTa♢ 70.2 81.8 73.2 81.4 80.7 80.2 68.6 76.6

SimCSE-BERT 67.8±1.6 80.0±2.1 72.5±1.7 80.1±0.8 77.6±0.8 76.5±0.8 70.1±0.9 74.9±1.1

SimCSE-RoBERTa 68.7±1.0 82.0±0.5 74.0±1.0 82.1±0.4 81.1±0.4 80.6±0.3 69.2±0.2 76.8±0.5

w
ik

i+
fli

ck
r SimCSE-BERT 69.9±1.7 79.8±1.5 72.9±0.9 81.9±0.8 77.8±0.9 76.6±1.1 68.4±0.8 75.3±0.9

MCSE-BERT 71.4±0.9 81.8∗±1.3 74.8∗±0.9 83.6±0.9 77.5±0.8 79.5∗±0.5 72.6∗±1.4 77.3∗±0.5

SimCSE-RoBERTa 69.5±0.9 81.6±0.5 74.1±0.6 82.4±0.3 80.9±0.5 79.9±0.3 67.3±0.5 76.5±0.4

MCSE-RoBERTa 71.7∗±0.2 82.7∗±0.4 75.9∗±0.3 84.0∗±0.4 81.3±0.3 82.3∗±0.5 70.3∗±1.3 78.3∗±0.1

w
ik

i+
co

co SimCSE-BERT 69.1±1.0 80.4±0.9 72.7±0.7 81.1±0.3 78.2±0.9 73.9±0.6 66.6±1.2 74.6±0.2

MCSE-BERT 71.2∗±1.3 79.7±0.9 73.8±0.9 83.0∗±0.4 77.8±0.9 78.5∗±0.4 72.1∗±1.4 76.6∗±0.5

SimCSE-RoBERTa 66.4±0.9 80.7±0.7 72.7±1.1 81.3±0.9 80.2±0.8 76.8±0.6 65.7±0.7 74.8±0.5

MCSE-RoBERTa 70.2∗±1.7 82.0∗±0.7 75.5∗±1.2 83.0∗±0.6 81.5∗±0.7 80.8∗±1.0 69.9∗±0.6 77.6∗±0.8

∗: difference between SimCSE and MCSE is significant at α = 0.05 according to an independent t-test.

Table 1: Performance comparison on STS tasks. STS-B: STS Benchmark, SICK-R: SICK-Relatedness, Avg.:
average across 7 tasks. ♢ : single seed results from Gao et al. (2021). All other results are from our implementation.
Models are trained with 5 random seeds and we report the means and standard deviations.

where N is the size of the mini-batch, τ is a tem-
perature parameter and sim(h1,h2) is the cosine

similarity hT
1 h2

∥h1∥·∥h2∥ . After training, the [CLS] to-
ken outputs of the language encoder are taken as
the sentence embeddings.

3.2 Multimodal Contrastive Learning

Beyond the textual objective in SimCSE, we intro-
duce a multimodal objective within the contrastive
learning framework. The overview of our MCSE
model is shown in Figure 1. Given a collection of
sentence-image pairs D = {xi, yi}mi=1, firstly we
map sentence xi and image yi into a shared space:

szi = gϕ1(fθ(xi, z)), vi = gϕ2(f
v(yi)) , (2)

where fv(·) is a pre-trained image encoder such
as ResNet (He et al., 2016), which is fixed during
training. gϕ1(·) and gϕ2(·) are distinct projection
heads for text and image modality respectively. To
pull semantically close image-sentence pairs to-
gether and push away non-related pairs, we define
the multimodal contrastive learning objective as:

ℓMi = −
∑

z∈{zi,z′i}
log

esim(szi ,vi)/τ
′

∑N
j=1 e

sim(szi ,vj)/τ ′
, (3)

where τ ′ is a temperature parameter. Let λ de-
note the trade-off hyperparameter between two ob-
jectives, we formulate the final loss as:

ℓi = ℓSi + λℓMi . (4)

Our method further regularizes the sentence rep-
resentation in a way that aligns with the image
representation in the grounded space.

4 Experiments

4.1 Setup

Dataset We use Flickr30k (Young et al., 2014) and
MS-COCO (Lin et al., 2014) as our multimodal
datasets. Flickr30k contains 29, 783 training im-
ages and MS-COCO contains 82, 783 training im-
ages. Each image is annotated with multiple cap-
tions and we randomly sample only one caption to
create image-sentence pairs. Following Gao et al.
(2021), we use Wiki1M as the text-only corpus,
which consists of 106 sentences randomly drawn
from English Wikipedia.
Implementation Details We use BERTbase (De-
vlin et al., 2019) and RoBERTabase (Liu et al.,
2019) as language encoders and ResNet-50 (He
et al., 2016) as the image encoder. Distinct single-
layer MLPs are applied as projection heads. More
details are provided in Appendix A.
Evaluation We evaluate the trained models on
seven Semantic Textual Similarity (STS) tasks:
STS 2012-2016 (Agirre et al., 2012, 2013, 2014,
2015, 2016), STS Benchmark (Cer et al., 2017) and
SICK-Relatedness (Marelli et al., 2014). Each of
these datasets consists of a collection of sentence
pairs and the goal is to predict a similarity score for
each sentence pair. Following Gao et al. (2021), we
report the Spearman’s correlation (×100) between
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gold annotations and predicted scores in the “all”
setting, i.e., for each task, we concatenate all the
subsets and report the overall Spearman’s correla-
tion.

4.2 Main Results

Augmenting text-only corpus with small scale
multimodal data yields significant improve-
ments. To fully utilize different types of data re-
sources, we conduct experiments with a text-only
corpus and multimodal data. SimCSE is trained on
sentences and captions only, while MCSE addition-
ally computes the multimodal objective for image-
caption pairs. As shown in Table 1, averaging the
off-the-shelf BERT and RoBERTa embeddings4

yields poor performance on STS tasks. SimCSE
models significantly outperform the average em-
beddings. MCSE models, which have access to
auxiliary visual information, further achieve notice-
able improvements even if the amount of multi-
modal data is relatively small. When MCSE is ap-
plied to the combination of Wiki1M and Flickr30k,
it improves the state-of-the-art result for BERT
(76.3 → 77.3) and RoBERTa (76.6 → 78.3) by
a decent margin. Looking at performance on the
individual tasks, we find that MCSE models us-
ing BERT encoder perform worse on STS16. This
can be attributed to the domain discrepancy, where
some subsets that are close to the training distri-
bution benefit more from visually grounding than
others (see Appendix B.1).

To further investigate the impact of different
datasets, we train models solely on multimodal data
and report results in Table 2. We observe that, with-
out the large text-only corpus, the performances
decrease considerably compared to results in Ta-
ble 1. Still, MCSE models consistently surpass
SimCSE models (0.9 – 3.8 points improvement).
Moreover, replacing the paired images with shuf-
fled images before training MCSE leads to 0.8 – 5.0
points reduction in terms of average Spearman’s
correlation, further validating the efficacy of visual
semantics. We also replace the ResNet encoder
with CLIP (Radford et al., 2021) and our results
show that different image encoders lead to similar
results. Details are shown in Appendix B.2.

Grounding to the visual world improves align-
ment and maintains uniformity. To dissect the
inner workings of MCSE, we use two quantifiable

4Following (Gao et al., 2021), we take the average of the
first and last layers, which is better than only using the last.

Model
Trained on

flickr coco

SimCSE-BERT 68.8±0.7 67.8±0.4

MCSE-BERT 70.6∗±0.5 71.6∗±0.2

w/ shuffling 67.9±0.6↓ 66.6±0.3↓
SimCSE-RoBERTa 72.9±0.3 72.8±0.3

MCSE-RoBERTa 73.8∗±0.2 74.3∗±0.3

w/ shuffling 73.0±0.4↓ 72.8±0.3↓
∗: difference between SimCSE and MCSE is significant.

Table 2: Comparison of the average Spearman’s corre-
lation on 7 STS tasks (Avg. column in Table 1). We
report the means and standard deviations over 5 seeds.

Avg. BERT
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Figure 2: The alignment-uniformity plot of models
when using BERT encoder. Colors of dots represent
the average Spearman’s correlation.

metrics proposed in Wang and Isola (2020): align-
ment and uniformity, as measurements of represen-
tation quality. Let ppos denote the positive pairs
distribution and pdata denote the data distribution.
The alignment loss prefers encoders that assign
similar features to semantically similar instances
(assuming features have been normalized):

Lalign ≜ E
(x,x+) ∼ ppos

∥∥f(x)− f(x+)
∥∥2
2
. (5)

And the uniformity loss prefers a uniform distribu-
tion in the hypersphere:

Luniform ≜ log E
x,y

i.i.d.∼ pdata

e−2∥f(x)−f(y)∥22 . (6)

Gao et al. (2021) empirically showed that sentence
embedding models with both lower alignment and
uniformity achieve better performance in general.
Similarly, we calculate the two losses on STS-B5

5We take STS-B pairs with a score higher than 4.0 as ppos
and the full STS-B as pdata. Since Gao et al. (2021) did not
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Figure 3: Performances of different data scales. The full set indicates 30K and 87K samples for Flickr30k and
MS-COCO respectively.

and results are presented in Figure 2. It shows
that MCSE models achieve better alignment scores
compared to SimCSE while maintaining unifor-
mity. This analysis provides further support that
visually grounding can enhance sentence represen-
tation learning by improving the alignment prop-
erty of the textual embedding space.

4.3 Analysis

For brevity, we take BERT-based models trained
merely on caption datasets and investigate the im-
pact of training data scales. More analysis re-
sults (sentence retrieval, cross-modal retrieval) are
provided in Appendix B.3. We limit the number
of training samples to 100, 500, 1000, 5000 and
10000, and compare their performance with the
full set performance. In all of these settings, we
optimize the models for same number of training
steps as the full set setting. The results are shown
in Figure 3. SimCSE achieves better performance
than MCSE with limited samples, while MCSE
starts to outperform SimCSE with the increasing
data scale. We conjecture that this phenomenon can
be ascribed to the progressive training of weights
in multimodal projection heads.

5 Limitations

Despite showing performance improvements on
STS benchmarks, MCSE has its limitations as well.
We take caption datasets as the source of multi-
modal information, while these datasets are col-
lected and curated with non-negligible human ef-
forts. It will have great practical value if we can
properly leverage noisy image-sentence pairs or
even get rid of the explicit alignments between im-

release the code for calculating these two losses, the absolute
values we obtained might be different from theirs. We make
sure our calculation across different models is consistent.

ages and sentences. Furthermore, we find that only
subsets from related domains can get significant
improvements while others suffer from distribution
shifts. It is critical to mitigate domain gaps for
learning general-purpose sentence embeddings. In
addition, the definition of “semantic similarity” is
highly task-dependent. Besides STS benchmarks,
it is worth exploring the performance gap between
text-only models and multimodal models on other
benchmarks that can also assess the quality of sen-
tence representations.

6 Conclusion

In this paper, we propose MCSE, a novel approach
for sentence embedding learning that applies a mul-
timodal contrastive objective to align sentences and
corresponding images in a grounded space. Experi-
ments show that MCSE consistently improves the
performance on STS tasks. We also highlight the
superiority of our method by analyzing the align-
ment and uniformity properties of the embedding
space. The multimodal objective is generic and
can be potentially incorporated into other sentence
embedding methods to boost their performance.
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A Implementation Details

Language Encoder Our implementation is based
on the Hugging Face Transformers library6 (Wolf
et al., 2020). We start from the checkpoints of
bert-base-uncased and roberta-base,
and fine-tune the pre-trained models using a con-
trastive objective function. We use the 768-
dimensional [CLS] token outputs before the MLP
pooler layer as sentence embeddings for evaluation.
Image Encoder We use ResNet-50 and extract
2048-dimensional feature vectors at the last layer.
The image encoder is not fine-tuned.7

Projection Heads We use distinct projection heads
for different modalities and objectives. All of them
are implemented by single-layer MLPs with Tanh
activation. We map sentence embeddings to a 768-
dimensional space before calculating the textual
objective. We map both sentence embeddings and
image feature vectors to a 256-dimensional shared
space, and normalize them before calculating the
multimodal objective.
Parameter Settings We explore 5 training settings
in the paper: {wiki, wiki+flickr, wiki+coco, flickr,
coco}. For wiki+flickr and wiki+coco, we sample
mini-batches from either Wiki1M or the caption
dataset in proportion to their data size. We adopt
most of the parameter settings suggested by Gao
et al. (2021). Moreover, temperature parameters τ
and τ ′ are set to 0.05, and other hyperparameters
are reported in Table 3. We use the dev set of STS-
B to tune the trade-off parameter λ and ablation
studies are shown in Table 4. We evaluate models
every 125 training steps on STS-B dev set and keep
the best checkpoint for final evaluation.

settings: wiki wiki+flickr wiki+coco flickr coco

BERT

learning rate 3e-5
batch size 64
λ – 0.01 0.01 0.05 0.05
epochs 3 3 3 6 3

RoBERTa

learning rate 1e-5
batch size 128
λ – 0.01 0.01 0.01 0.01
epochs 3 3 3 6 3

Table 3: The hyperparameters used for different training
settings and pre-trained encoders.

6https://github.com/huggingface/transformers
7In our preliminary results, fine-tuning the image encoder

does not have a significant impact on the STS performance.

λ 0.001 0.01 0.05 0.1 0.5

MCSE-BERT 78.38 79.95 80.41 80.35 80.01
MCSE-RoBERTa 80.60 81.48 81.08 80.73 79.85

Table 4: STS-B performance of MCSE models trained
on Flickr30k with different trade-off parameters.

B More Results

B.1 Improvements on Different Subsets
To delve into the performance gap between
MCSE-BERT and SimCSE-BERT, we calculate
the Spearman’s correlation for different subsets
of each year’s STS challenge separately. The im-
provements of MCSE over SimCSE are shown in
Figure 4. In STS12, "MSRvid" subset achieves the
largest improvement, which is a corpus of video
descriptions. "Image" subsets in STS14 and STS15
also get considerable improvements. Meanwhile,
the performance of "answers-students" subset in
STS15 drops extensively, and none of the subsets
in STS16 get noticeable improvement by MCSE.
The results indicate that the subsets benefit to dif-
ferent degrees from the visually grounding because
of domain discrepancy.

B.2 Ablation Study
CLIP as Image Encoder We use CLIP (Radford
et al., 2021) as an alternative image encoder. The
implementation is based on the Sentence Trans-
former library8 (Reimers and Gurevych, 2019) and
we use the checkpoint clip-ViT-B-32 to ex-
tract 512-dimensional feature vectors. As shown
in Table 7, different image encoders lead to very
similar results, thus we use ResNet as the default
image encoder.

Combining Wiki1M, Flickr30k and MS-COCO
We adopt the same parameter setting as wiki+flickr
and wiki+coco, and train models on the combina-
tion of Wiki1M, Flickr30k, and MS-COCO. As
shown in Table 5, MCSE models achieve 1.9 point
and 2.6 point improvements when using BERT and
RoBERTa, respectively.

B.3 Analysis
Sentence Retrieval We take BERT-based mod-
els trained on the Flickr30k train set (same seed)
and conduct a sentence retrieval experiment on
Flickr30k test set. Given an input sentence, the
nearest neighbor will be retrieved based on cosine

8https://github.com/UKPLab/sentence-transformers
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Figure 4: The Spearman’s correlation improvements over different subsets.

Model
Trained on

wiki+flickr+coco

SimCSE-BERT 74.3±1.0

MCSE-BERT 76.2±0.3

SimCSE-RoBERTa 75.3±0.7

MCSE-RoBERTa 77.9±0.6

Table 5: Comparison of the average Spearman’s correla-
tion of 7 STS tasks. We report the means and standard
deviations over 5 random seeds.

similarity. Some retrieval examples are shown in
Table 8. We observe that (1) SimCSE is prone
to retrieving sentences with similar syntax, while
MCSE can retrieve sentences that vary in syntax
and share semantics. Examples: Q1, Q3, Q6. (2)
MCSE is better at recognizing similar event scenes
and capturing the number of entities. Examples:
Q2, Q4, Q5.

Cross-Modal Retrieval We take BERT-based
models (same seed) and conduct cross-modal re-
trieval experiments. We use the metric Recall@K,
which is calculated based on if the ground truth of

Model
image → text text → image

R@1 R@5 R@1 R@5

MCSE-BERTwiki+flickr 16.7 43.5 22.5 50.4
MCSE-BERTflickr 20.4 50.2 23.8 52.5

MCSE-BERTwiki+coco 8.8 26.6 10.9 31.2
MCSE-BERTcoco 8.2 25.2 9.0 27.1

Table 6: Multimodal retrieval results on Flickr30k test
set (1k) and MS-COCO minival set (5k).

the query image or caption appears in the top-K
retrieved captions or images. As results in Table
6 show, MCSE models also achieve a decent level
of retrieval performance as a by-product of multi-
modal contrastive learning.
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.↑

fli
ck

r

SimCSE-BERT 62.1±0.5 73.8±0.9 64.2±0.6 74.2±0.8 74.8∗±0.6 67.1±1.1 65.4±1.1 68.8±0.7

MCSE-ResNet-BERT 63.6∗±0.7 74.0±0.9 65.5±1.1 75.5±0.2 71.6±0.4 74.0±0.4 69.8±0.3 70.6±0.5

MCSE-CLIP-BERT 63.1±0.7 73.9±1.0 65.8∗±0.9 76.0∗±0.7 70.7±0.3 74.9∗±0.5 70.7∗±0.3 70.7∗±0.2

SimCSE-RoBERTa 66.6±0.5 78.3±0.5 69.7±0.6 77.7±0.5 76.3∗±0.5 75.8±0.3 66.2±0.4 72.9±0.3

MCSE-ResNet-RoBERTa 67.6∗±0.5 78.8±0.4 70.1±0.3 78.5±0.2 75.4±0.5 77.4∗±0.3 68.6±0.3 73.8∗±0.2

MCSE-CLIP-RoBERTa 67.0±0.5 78.6±0.4 69.8±0.5 78.7∗±0.8 74.9±0.5 77.4∗±0.4 69.5∗±0.5 73.7±0.2

co
co

SimCSE-BERT 59.3±0.9 73.0±1.2 62.7±0.6 74.7±0.7 74.4∗±0.4 65.3±0.7 65.4±0.5 67.8±0.4

MCSE-ResNet-BERT 64.9∗±0.5 74.8∗±0.9 68.1∗±0.6 76.8∗±0.6 72.7±0.8 74.5∗±0.4 69.7±0.4 71.6∗±0.2

MCSE-CLIP-BERT 64.8±0.6 74.1±0.6 68.0±0.2 76.2±0.5 71.6±0.4 74.5∗±0.3 70.3∗±0.6 71.4±0.1

SimCSE-RoBERTa 64.7±0.6 79.2±0.4 70.2±0.4 79.0±0.6 78.2±0.5 73.8±0.5 64.6±0.3 72.8±0.3

MCSE-ResNet-RoBERTa 67.0∗±0.8 79.4±0.4 70.9∗±0.4 80.0∗±0.4 77.8±0.5 76.9∗±0.4 67.9±0.7 74.3∗±0.3

MCSE-CLIP-RoBERTa 66.0±1.0 79.0±0.7 70.6±0.6 80.0∗±0.8 77.6±0.5 76.5±0.4 68.4∗±0.8 74.0±0.2

∗: difference between SimCSE and MCSE (ResNet/CLIP) is significant at α = 0.05 according to an independent t-test.

Table 7: Performance comparison on STS tasks. STS-B: STS Benchmark, SICK-R: SICK-Relatedness, Avg.:
average across 7 tasks. Models are trained with 5 random seeds and we report means and standard deviations.

Model Result

Query 1: A young girl is washing her teddy bear in the kitchen sink.

SimCSE: A middle-aged woman is vacuuming her kitchen floor with a canister vac.
MCSE: A young girl, blond and wearing a polka-dot shirt, washes a stuffed animal in a vanity sink.

Query 2: Three chefs , wearing white hats and black aprons , are preparing food in a crowded kitchen.

SimCSE: Numerous workers with blue shirts and white aprons are preparing fish for sale.
MCSE: Three men are preparing food in a kitchen setting.

Query 3: A couple kisses in a shady walkway.

SimCSE: A couple strolls down a path near benches and water.
MCSE: Couple kissing outside on street.

Query 4: A man is standing on the streets taking photographs.

SimCSE: People run a marathon on a city street with a crowd watching.
MCSE: A guy wearing a white shirt is taking a picture.

Query 5: Two boys are playing in pool filled with sparkling blue water.

SimCSE: A little girl is swimming under the crystal blue water.
MCSE: Two children are swimming in a pool.

Query 6: An old man sitting on a bench staring at the ocean.
SimCSE: A man sitting on a bench by the ocean.
MCSE: An old man sits on a bench overlooking the water.

Table 8: Retrieved examples from Flickr30k test set.
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