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Abstract

When an NLP model is trained on text data
from one time period and tested or deployed
on data from another, the resulting tempo-
ral misalignment can degrade end-task perfor-
mance. In this work, we establish a suite of
eight diverse tasks across different domains
(social media, science papers, news, and re-
views) and periods of time (spanning five years
or more) to quantify the effects of temporal
misalignment. Our study is focused on the
ubiquitous setting where a pretrained model is
optionally adapted through continued domain-
specific pretraining, followed by task-specific
finetuning. We establish a suite of tasks
across multiple domains to study temporal mis-
alignment in modern NLP systems. We find
stronger effects of temporal misalignment on
task performance than have been previously re-
ported. We also find that, while temporal adap-
tation through continued pretraining can help,
these gains are small compared to task-specific
finetuning on data from the target time period.
Our findings motivate continued research to
improve temporal robustness of NLP models.1

1 Introduction

Changes in the ways a language is used over time
are widely attested (Labov, 2011; Altmann et al.,
2009; Eisenstein et al., 2014); how these changes
will affect NLP systems built from text corpora,
and in particular their long-term performance, is
not as well understood.

This paper focuses on temporal misalignment,
i.e., where training and evaluation datasets are
drawn from different periods of time. In today’s
pretraining-finetuning paradigm, this misalignment
can affect a pretrained language model—a situa-
tion that has received recent attention (Jaidka et al.,
2018; Lazaridou et al., 2021; Peters et al., 2018;
Raffel et al., 2020; Röttger and Pierrehumbert,
2021)—or the finetuned task model, or both. We

1Data and code are available here.

suspect that the effects of temporal misalignment
will vary depending on the genre or domain of the
task’s text, the nature of that task or application,
and the specific time periods.

We focus primarily on measuring the extent of
temporal misalignment on task performance. We
consider eight tasks, each with datasets that span at
least five years (§2.4), ranging from summarization
to entity typing, a subproblem of entity recognition
(Borthwick, 1999). Notably, these task datasets
span four different domains: social media, scien-
tific articles, news, and reviews. We introduce an
easily interpretable metric that summarizes the rate
at which task performance degrades as function of
time.

Our research questions are:

(Q1) how does temporal misalignment affect
downstream tasks over time?

(Q2) how does sensitivity to temporal misalign-
ment vary with text domain and task?

(Q3) how does temporal misalignment affect lan-
guage models across domains and spans of
time?

(Q4) how effective is temporal adaptation, or ad-
ditional pretraining on a target year, in miti-
gating temporal misalignment?

We find that temporal misalignment affects both
language model generalization and task perfor-
mance. We find considerable variation in degra-
dation across text domains (§3.2) and tasks (§3.1).
Over five years, classifiers’ F1 score can deterio-
rate as much as 40 points (political affiliation in
Twitter) or as little as 1 point (Yelp review ratings).
Two distinct tasks defined on the same domain can
show different levels of degradation over time.

We explore domain adaptation of a language
model, using temporally selected (unannotated)
data, as a way to curtail temporal misalignment
(Röttger and Pierrehumbert, 2021). We find that
this does not offer much benefit, especially relative
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to performance that can be achieved by finetuning
on temporally suitable data (i.e., from the same
time period as the test data). We conclude that tem-
poral adaptation should not be seen as a substitute
for finding temporally aligned labeled data.

The evidence and benchmarks we offer motivate
careful attention to temporal misalignment in many
applications of NLP models, and further research
on solutions to this problem.

Contributions. To facilitate the study of tempo-
ral misalignment phenomenon on downstream ap-
plications, we compile a suite of eight diverse tasks
across four important language domains. We de-
fine an interpretable metric that summarizes tempo-
ral misalignment of a model on a task with times-
tamped data. Our experiments reveal key factors
in how temporal misalignment affects NLP model
performance.

2 Methodology Overview

We begin by defining the scope of our study.

2.1 Learning Pipeline
We consider a process for building an NLP model
that is in widespread use by the research commu-
nity, illustrated in Fig. 1. First, a (neural network)
language model (LM) is pretrained on a large text
collection that is not necessarily selected for topical
or temporal proximity to the text of the target appli-
cation (our focus is on GPT-2; Brown et al., 2020).
Second, the LM is optionally adapted by continued
training on a collection strategically curated for
closer proximity to the target (Beltagy et al., 2019);
this stage is often referred to as domain-adaptive
pretraining (DAPT; Gururangan et al., 2020). Fi-
nally, the model is finetuned to minimize a task-
specific loss, using labeled data representative of
what the model is expected to be exposed to in
testing or deployment.

pretraining (PT) 
from scratch

domain/temporal 
adaptation (DAPT) 

finetuning on 
task-specific 

dataset

Figure 1: A typical modeling pipeline in NLP.

We study two ways in which temporal misalign-
ment might affect the pipeline’s performance as
well as straightforward ways to mitigate them.

Task Shift and Temporal Finetuning The rela-
tionship between text inputs and target outputs may

change over time. To the extent that this occurs,
annotated datasets used to train NLP systems in
the finetuning stage will become stale over time.
Due to this temporal misalignment, performance
will degrade after deployment, or any in evalua-
tions that use test data temporally distant from the
training data. We seek to quantify this degradation
across a range of text domains and tasks.

Language Shift and Temporal Domain Adapta-
tion Changes in language use can cause a pre-
trained LM, which commonly serves as the back-
bone for most modern NLP models, to become
stale over time (Lazaridou et al., 2021), regardless
of the end task. Lazaridou et al. (2021) explored
temporal adaptation, continuing LM training on
new text data. This is essentially the same proce-
dure as DAPT, where the data is selected by time
period. Their work focused on the LM alone, not
downstream tasks; we consider both here.

Röttger and Pierrehumbert (2021), the closest
to our work, studied temporal adaptation in con-
junction to finetuning for a classification task over
Reddit data. They conclude that temporal adapta-
tion does not help any more than normal DAPT.
We corroborate this work and extend it by studying
a wider variety of tasks over a longer span of time
periods and thus are better able to draw generaliza-
tions from our results.

We believe that the two kinds of shift—task shift
and language shift—are difficult to disentangle, and
we do not attempt to do so in this work. Instead, we
aim to quantify the effect of temporal misalignment
on a range of NLP tasks, as well as the benefits of
these two strategies.

2.2 Evaluation Methodology

Our experiments are designed to measure the effect
of temporal misalignment on task performance. To
do so, for each task, we fix a test set within a given
time period, Ttest . We vary the time period of the
training data, allowing us to interpret differences
in performance as a kind of “regret” relative to
the performance of a model trained on data tem-
porally aligned with Ttest .2 We consider multiple
different test periods for each task. We also seek
to control the effect of training dataset size. We
partition training data into time periods of roughly

2This setup avoids a confound of varying test set difficulty
that we would encounter if we fixed the model and compared
its performance across test datasets from different time peri-
ods.
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the same size and always train on a single partition,
keeping the training set size of each time period
constant within each task. We expect that perfor-
mance could be improved by accumulating training
data across multiple time periods, but that would
make it more difficult to achieve our research goal
of quantifying the effect of temporal misalignment
on performance.

2.3 Quantifying Temporal Degradation

Understanding temporal misalignment requires
evaluating a model’s performance across data with
a range of different timestamps, which makes it dif-
ficult to compare various models in terms of their
misalignment. We define a metric for temporal
degradation (TD) which summarizes the expected
speed of model degradation due to temporal mis-
alignment on a task as a single value. In high-level
terms, the TD score measures the average rate of
performance deterioration (of perplexity, F1, or
Rouge-L) for each timestep of difference between
that the train and evaluation sets. Higher TD scores
imply greater levels of performance deterioration
due to misalignment.

Let St′�t indicate the performance a model
trained on timestep t′ data and evaluated on
timestep t. We define D(t′ � t) as:

D(t′ � t) = − (St′�t − St�t)× sign(t′ − t).

D(t′ � t) is a modified difference in performance
between two models.3 Fig. 2 illustrates D as a
function of consecutive training time periods.

We find a line of best fit for D(t′ � t) for all t′

using least-squares regression. The slope of this
line is TD(t), the TD score for evaluation time
period t. The final TD score is the average of the
TD(t) across all evaluation time periods t. Further
details can be found in Appendix A.

2.4 Domains, Tasks, and Datasets

We describe the eight tasks and four domains used
for this study. Three (out of eight) of the tasks are
newly defined in this work, and all tasks required
nontrivial postprocessing. We provide examples
and detailed statistics in Table 1.

3Without the modification, a task with degradation would
have have positive performance gaps both t′ > t and t′ > t;
the function would not be monotone and the rate of change
would be harder to approximate. The modification yields a
simpler visual understanding of the deviations over time.

Figure 2: An example calculation of the TD score for
a particular timestep t (discussed in Section 2.3). The
plotted markers represent D(t′ → t) (y-axis) as a func-
tion of train time period t′ (x-axis). The annotated
numbers on each blue dot are the raw evaluation scores
St′→t, not to be confused with the y values. The red
line is the line of best fit and its slope is the TD score
for evaluation timestep t. In this example, we would
expect to see, on average, 9.09 points of deterioration
for each year of misalignment. The final TD score is
averaged across all evaluation timesteps.

Domain 1: Twitter Social media platforms like
Twitter have been mined to study aspects of lan-
guage change over time, such as the introduction
or diffusion of new words (Eisenstein et al., 2014;
Tamburrini et al., 2015; Wang and Goutte, 2017).
We collect unlabeled data for domain adaptation
by extracting a random selection of 12M tweets,
spread semi-uniformly from 2015 till 2020.4 We
experiment with two tasks on Twitter data:

Political affiliation classification (POLIAFF) We
collect English tweets dated between 2015 and
2020 from U.S. politicians with a political affil-
iation (Republican or Democrat). We omit any
politician who changed parties over this time pe-
riod or identified as independent. We consider the
downstream task of detecting political affiliations,
i.e., given a text of a single tweet we predict the
political alignment of its author at the time of the
tweet. This task can be useful for studies that in-
volve an understanding of ideologies conveyed in
text (Lin et al., 2008; Iyyer et al., 2014).

Named entity type classification (TWIERC) We
use the Twitter NER dataset from Rijhwani and
Preoţiuc-Pietro (2020). The dataset contains tweets
dated from 2014 to 2019, each annotated with the
mentions of named entities and their types (Person,
Organization, or Location). We consider the task
of typing a given mention, which is a subproblem
of named entity recognition.

4Collected via the Twitter API.
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Domain Task Time Range Size Example

Twitter

political
affiliation

classification
2015-2019 120k

Input: History will note that Trump didn’t merely fiddle while the planet burned
but tried to throw the Arctic National W... Output: Democrat (vs Republican)

entity type
classification 2014-2019 8k

Input: entity: Finola, tweet: Two 64-year olds enjoying their first birthday
together in 40+ years. My twin sister, Finola, and I. Output: Person

Science

mention
type

classification
1980-2016 8k

Input: mention: deep Long Short-Term Memory (LSTM) subnetwork, abstract:
In this paper, we study the problem of online action detection from the streaming
skeleton data .... by leveraging the merits of the deep Long Short-Term Memory
(LSTM) subnetwork, the proposed model ... Output: Method

venue
classification 2009-2020 16k

Input: Rank K Binary Matrix Factorization (BMF) approximates a binary matrix
by the product of two binary matrices of lower rank, K... Output: AAAI (vs
ICML)

News

media
frame

classification
2009-2016 20k

Input: You think you have heard the worst horror a gun in the wrong hands can
do, and then this.You think there could not have been anywhere more tragic for
it to happen... Output: Gun Control (15 possible frames)

publisher
classification 2009-2016 67k

Input: A Muslim woman said Sunday that her viral article explaining why she
voted for Donald Trump has angered her liberal pals as well as other Muslims.
Output: FoxNews (vs NYTimes or WaPost)

summarization 2009-2016 330k
Input: The Consumer Financial Protection Bureau is demanding PayPal return
$15 million to consumers and pay a $10 million fine for ... Output: The CFPB
alleges many customers unwittingly signed up for PayPal Credit

Food Reviews review rating
classification 2013-2019 126k

Input: What a beautiful store and amazing experience! Not only the atmosphere,
but the people... Output: 4 (out of 5)

Table 1: The tasks from four domains studied in this paper, with examples. See Section 2.4 for more details.

Domain 2: Scientific Articles Scientific re-
search produces vast amounts of text with great
potential for language technologies (Wadden et al.,
2020; Lo et al., 2020); it is expected to show a great
deal of variation over time as ideas and terminology
evolve. For adaptation to this domain, we collect
unlabeled data from science documents available
in Semantic Scholar’s corpus,5 which yields 650k
documents, spread over a 30-year period (Ammar
et al., 2018). For this domain, we study two tasks:
Mention type classification (SCIERC) We use the
SciERC dataset from Luan et al. (2018) which con-
tains entity-relation annotations for computer sci-
ence paper abstracts for a relatively wide range of
years (1980s to 2019). We subdivide the annotated
data into time periods with roughly equal-sized
numbers of papers (1980–1999, 2000–2004, 2005–
2009, 2010–2016). The task is to map a mention of
a scientific concept to a type (Task, Method, Metric,
Material, Other-Scientific-Term, or Generic).
AI venue classification (AIC) We also examine
temporal misalignment on the task of identifying
whether a paper was published in AAAI or ICML.
We group the data into roughly equal-sized time
periods (2009–2011, 2012–2014, 2015–2017, and
2018–2020). This task is, loosely, a proxy for topic
classification and author disambiguation applica-
tions (Subramanian et al., 2021).

Domain 3: News Articles News articles make
up a significant part of the data commonly used

5https://api.semanticscholar.org/corpus/

to train LMs (Dodge et al., 2021). News articles
convey current events, suggesting strong temporal
effects on topic. For adaptation, we use 9M articles
from the Newsroom dataset (Grusky et al., 2018),
ranging from 2009–2016.6 We experiment with
three tasks on news articles:

Newsroom summarization (NEWSUM) The
Newsroom dataset provides a large quantity of
high-quality summaries of news articles (Grusky
et al., 2018). We group articles by years for
this task (2009–2010, 2011–2012, 2013–2014,
2015–2016). Note that this task, unlike the
other tasks considered here, is not a document
classification task.

Publisher classification (PUBCLS) The News-
room dataset also provides metadata, such as publi-
cation source. We take the documents published by
the 3 most prolific publishers (Fox News, New York
Times, and Washington Post) and train models to
classify documents among them. We bin the years
(2009–2010, 2011–2012, 2013–2014, 2015–2016).
This task is a proxy for applications that seek to
infer fact provenance (Zhang et al., 2020). We note
that, unlike in our other tasks, we downsample to
ensure that the labels are equally balanced.

Media frames classification (MFC) “Framing” of-
ten refers to the emphasis or deemphasis of dif-
ferent social or cultural issues in the media’s pre-
sentation of the news (Entman, 1983). Card et al.
(2015) provide a dataset of news articles annotated

6https:// lil.nlp.cornell.edu/newsroom
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with framing dimensions. We predict the primary
frame of a document, treating the problem as a
15-way classification task. We bin by timestamp
(2009–2010, 2011–2012, 2013–2014, 2015–2016).

Domain 4: Food Reviews Food and restaurant
reviews have been widely studied in NLP research.
We considered this domain as a possible contrast to
those above, expecting less temporal change. Using
data from the Yelp Open Dataset,7 we consider one
task:
Review rating classification (YELPCLS) This is a
conventional sentiment analysis task, mapping the
text of a review to the numerical rating given by its
author (Pang et al., 2002; Dave et al., 2003). We
partition the data by year (2013 to 2019) and ensure
that each timestep has a roughly equal amount of
reviews.

3 Empirical Results and Analysis

In this section, we summarize our experimental
analysis, resulting from more than 500 experiments.
In our experiments, we primarily explore the effect
of temporal misalignment on GPT2 (Brown et al.,
2020), a LM often used for generation.8 We re-
port the macro F1 score for classification tasks and
Rouge-L (Lin, 2004) for NEWSUM.

We first focus on quantifying temporal misalign-
ment in end tasks. As a preliminary analysis, we in-
vestigate how the marginal distribution over labels
changes over time. We then study how temporal
misalignment affects performance of GPT2 mod-
els in downstream tasks with temporal finetuning
(Q1,Q2). We find that the amount of performance
degradation can vary by task; in some cases the
degradation can be severe.

We then study how temporal misalignment af-
fects LMs. As a first step, we analyze how vo-
cabularies change over time in our datasets. We
then experiment with (Q3) how temporal misalign-
ment affects upstream language modeling and (Q4)
how effective temporal adaptation, or additional
pretraining on a target year, is in mitigating mis-
alignment. We find that while LMs are affected by
misalignment, temporal domain adaptation is not
enough to mitigate temporal misalignment.

Details on temporal domain adaptation and fine-
tuning, and an extended version of our results, can
be found in Appendices B and D, respectively.

7https://www.yelp.com/dataset
8In our preliminary results, we found that BERT,

RoBERTa, and GPT2 models showed similar patterns.

Figure 3: KL divergence between label distributions
over time for a subset of tasks. See Appendix D for full
results. For each cell, we compare the distribution of
labels to that of the first time period; e.g., the 2017 PO-
LIAFF cell contains the KL-divergence between the la-
bel distributions of POLIAFF in 2017 and 2015. While
most tasks see little change over time, POLIAFF and
MFC see a large shift.

3.1 Temporal Misalignment in Tasks

How much does misalignment affect task perfor-
mance? We find that it depends on the task.

Label Distribution Drift We first investigate
how task datasets undergo changes in the marginal
distribution over labels due to time. For each task
and each test period, we calculate the KL diver-
gence between the label distributions in that period
and the first test period. Full results are reported
in Fig. 3. In three cases, we detected notable label
distribution drift: POLIAFF, AIC, and MFC.9 In
POLIAFF, Republican tweets outnumbered Demo-
cratic ones by over a 2:1 ratio in 2015, but the
reverse held by 2020. This observation shows that,
regardless of the properties of NLP models, the
nature of many tasks changes over time, if only
because the output distribution changes.

Finetuning As described in §2.4, for each task,
we create training and evaluation sets associated
with different time periods. We finetune GPT2 on
each of the task’s training sets and evaluate each on
two evaluation sets. Note that there is no domain
adaptation here.

Fig. 4 shows our results on downstream tasks
(with no domain adaptation). To get more reliable
estimates, each number in this heatmap is an aver-
age of five independent experiments with different
random seeds. A summary of the fine-tuning re-

9For other tasks, it is possible that the data collection/an-
notation procedures suppressed label distribution changes that
would be visible in data “from the wild.”
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Figure 4: Temporal misalignment in finetuning affects task performance (§3.1). In all cases, higher scores are
better. The heatmap is shaded per column, i.e., the darkest shade of orange in a cell means the cell has the highest
score in that column. Mismatch between the the training and evaluation data can result in massive performance
drop; the degree varies by task. For example, YELPCLS shows minimal degradation. In contrast, POLIAFF shows
major deterioration over time. Additional tables for remaining tasks can be found in Appendix D.

Domain Task (metric) TD r

Twitter POLIAFF (F1) 7.72 0.98
TWIERC (F1) 0.96 0.74

Science SCIERC (F1) 0.67 0.93
AIC (F1) 1.79 0.93

News
PUBCLS (F1) 5.46 0.85
NEWSUM (Rouge-L) 1.38 0.91
MFC (F1) 0.98 0.86

Reviews YELPCLS (F1) 0.26 0.30

Table 2: Finetuned models’ temporal degradation sum-
mary scores (TD; §2.3; details in Figure 4). These
scores estimate how fast a model degrades as the time
period of training and evaluation data diverge (higher
scores imply faster degradation). We note that since
we normalize by the overall time range of a task, the
temporal partitions we used do have an effect on the
TD scores. For example, AIC spans ten years, even
though there are only four partitions. We also show
the correlation coefficient, r, that measures the strength
of a linear relationship (0 meaning no correlation, 1
being perfectly correlated). In all cases but Yelp, the
degree of degradation has a moderate correlation with
the distance between the training and evaluation years
(r > 0.5, p < 0.05). We use the Wald test with the null
hypothesis that the slope is 0.

sults, in terms of TD scores (§2.3) is in Table 2
which indicates the speed of temporal degradation,
for every year that the training and evaluation data
diverges. Recall that this score (applied to task
performance measures) summarizes the strength of
the effect of temporal misalignment on the score,
using evidence from across experiments.

(Q1) Temporal misalignment degrades task per-
formance substantially. Fig. 4, similar to earlier
work (Röttger and Pierrehumbert, 2021), shows
that models trained on data from the same time

period as the test data perform far better than those
from the past. The performance drop is most severe
for POLIAFF (TD=7.72) and PUBCLS (TD=5.45).

(Q1) Temporal misalignment has a measurable
effect on most tasks. Half of our tasks see an
average loss of at least 1 point for each time period
that the training data diverges from the test data.
For datasets like SCIERC that make use of data
from three decades or more, this effect could add
up.

Moreover, 1 point of difference can be meaning-
ful, especially for the summarization task where we
measure Rouge-L. According to the leaderboard,10

the best three performing models are within a point
of each other in Rouge-L (Shi et al., 2019, 2021;
Mendes et al., 2019). The task has a TD score of
1.38. On average, a time period of temporal mis-
alignment results has a larger effect on performance
than changing between the three best models.

(Q1) Performance loss from temporal misalign-
ment occurs in both directions. Another obser-
vation in Table 4 is that degradation happens in both
directions (past and future). While most of the em-
phasis on temporal misalignment is on how to adapt
our stale models/data to the present time (Dhin-
gra et al., 2021; Lazaridou et al., 2021; Röttger
and Pierrehumbert, 2021), our experiments also
show that models trained on newer data can be mis-
aligned from the past, as well. Weak performance
in older texts has been noted in NLP for historical
documents (Yang and Eisenstein, 2016; Han and
Eisenstein, 2019). However, our findings indicate
deterioration can occur sooner—just a few years
rather than decades or centuries.

10https:// lil.nlp.cornell.edu/newsroom/ index.html
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(Q2) Tasks, even in the same domain, are af-
fected differently. Consider the two tasks of PO-
LIAFF and TWIERC (both in the Twitter domain),
with TD scores of 7.72 and 0.96, respectively. Of
our 8 tasks, TWIERC, MFC, and YELPCLS are the
most robust to temporal misalignment (TD scores
of 0.96, 0.98 and 0.26, respectively). The high lev-
els of variation show that temporal misalignment
affects performance through labeled datasets, not
just unlabeled pretraining data.

3.2 Temporal Misalignment in LMs
As LMs are widely used in modern NLP systems,
it is important to inspect how robust they are to
temporal misalignment. We seek to understand
how temporal misalignment affects the language
modeling task in our four domains and if temporal
domain adaptation helps in downstream tasks.

Vocabulary Shift We first consider an extremely
simple measurement of language shift: how do vo-
cabularies change across time periods?11 We use
a similar procedure to the one Gururangan et al.
(2020) used for analyzing domain similarity. Fix-
ing a domain, we compare the (unigram) vocabular-
ies of each pair of training sets. The vocabularies
are built using the 10K most frequent terms from
each time period. We note that vocabulary over-
lap is higher between two time periods the closer
they are. Most domains see a sizeable amount of
shift; however, Yelp is relatively stagnant. Fig. 5
visualizes the overlap measurement. Table 6 in
Appendix D shows the correlation between model
performance and the word overlap.

Temporal Domain Adaptation Researchers
have studied the broader problem of distributional
shift (Shimodaira, 2000; Zhang et al., 2013). The
NLP community has historically tackled these prob-
lems via domain adaptation (Jiang and Zhai, 2007;
Daumé III, 2007; Gururangan et al., 2020). Taking
inspiration from these approaches, we next apply
DAPT to GPT2, treating each time period as a do-
main: for each time period, we continue pretraining
and then evaluate perplexity. We consider how the
perplexity varies with the (mis)alignment between
the DAPT training data and the evaluation data.
We measure the TD score, which summarizes how
much performance is affected by temporal mis-
alignment (now applied to perplexity). The results
of temporal domain adaptation are in Fig. 6.

11This can be understood as a model-free way to measure
covariate shift for NLP tasks that take text as input.

(Q3) Domains are a major driver of temporal
misalignment in LMs. Consistent with Lazari-
dou et al. (2021), Fig. 6 shows degradation of LM
due to temporal misalignment; it further shows
considerable variation by text domain. Twitter
changes most rapidly, and food reviews are much
slower. This observation is consistent with past
work on language change in social media (Stew-
art and Eisenstein, 2018; Eisenstein et al., 2014).
To the extent that a LM’s practical usefulness is
associated with its fit to new data, researchers and
practitioners should understand the temporal dy-
namics of their target text domains and plan LM
updates accordingly.

Joint Effects of Temporal Adaptation and Fine-
tuning As discussed in §2, continued pretraining
of an LM on in-domain text has been shown to
improve task performance. Our prior results show
that both downstream tasks and language modeling
are affected by temporal misalignment. Can tem-
poral domain adaptation help mitigate the effects
of misalignment in downstream tasks?

Here we consider how the time period of the
data selected for continued pretraining affects task
performance. For each task’s evaluation set, we
apply DAPT twice: once with the earliest available
time period’s unannotated data and once with the
latest’s. We then finetune and evaluate on data from
the same time periods as in the earlier experiment.

(Q4) Temporal adaptation does not overcome
degradation from temporally misaligned la-
beled data. In Table 3, we see small performance
gains from temporal domain adaptation on LMs,
and in some cases it is harmful. These observations
underscore the importance of the labeled data; ad-
justments to the LM alone do not yet appear suffi-
cient to mitigate the effects of temporal misalign-
ment. In contrast to temporal domain adaptation,
which does not mitigate temporal misalignment’s
effects, finetuning on temporally-updated labeled
data is more effective.

This can be observed in each task-specific sub-
table of in Table 3: the top-left and bottom-right
quadrants (fine-tuning on time-stamp that is used
for evaluation) generally lead to higher scores.

4 Limitations and Future Work

We provided a well-controlled suite of experiments
to study the effects of temporal misalignment on
model performance. However, the setup has some
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Figure 5: Vocabulary overlap between time periods, over a subset of our tasks’ datasets. Each cell shows the %
overlap between the vocabularies of two time periods.

Domain 
  (Task) ↓

Finetune 
Year ↓

Evaluation → 
Pretrain ↓  2015 2020 Domain 

  (Task) ↓
Finetune 

Year ↓
Evaluation →

Pretrain ↓ 1980-1999 2010-2016

Twitter
 (PoliAff)

F1

2015
Default 91.4 48.4

Scientific 
(SciERC)

F1

1980-1999
Default 67.9 57.2

Default → 2015 92.2 47.5 Default → 1980-1999 73.2 66.4
Default → 2020 90.9 50.8 Default → 2010-2016 73.7 66.8

2020
Default 45.8 78.0

2010-2016
Default 60.3 72.5

Default → 2015 47.2 76.9 Default → 1980-1999 63.4 75.0
Default → 2020 44.2 78.3 Default → 2010-2016 64.8 76.0

Domain 
  (Task) ↓

Finetune 
Year ↓

Evaluation → 
Pretrain ↓  2009-2010 2015-2016 Domain 

  (Task) ↓
Finetune 

Year ↓
Evaluation →

Pretrain ↓ 2014 2019

News
(NewsSum)
Rouge-L

2009-2010
Default 36.4 29.0

Food
Reviews
(Yelp)
F1

2009-2010
Default 58.6 58.3

Default →  2009-2010 36.4 29.1 Default →  2014 63.3 60.1
Default → 2015-2016 36.1 28.9 Default → 2019 60.2 62.3

2015-2016
Default 27.8 31.8

2015-2016
Default 58.3 58.3

Default →  2009-2010 28.2 31.8 Default →  2014 60.2 62.3
Default → 2015-2016 27.8 31.6 Default → 2019 60.8 62.3

Table 3: Combination of temporal adaptation and finetuning (§3.2) on our tasks. The row labeled “Default” cor-
responds to a model that has not been adapted (uses the default pretraining). The models with temporal domain
adaptation are shown in rows labeled “Default→ y” and each is comparable to the “Default” row above it. The
color coding is proportional to the magnitude of the performances of each task (darker shade of orange indicates
higher scores). It can be observed that temporal finetuning has a greater impact than temporal pretraining. Each
quadrant of 3 for each task, indicating the same finetune and evaluation years, but different pretraining conditions,
are mostly uniform. In contrast, we notice a sharper difference in performance when varying the finetuning year
(comparing the quadrants vertically).

drawbacks. For example, we expect that models
trained on data accumulated across multiple time
periods would perform well (Lazaridou et al., 2021;
Röttger and Pierrehumbert, 2021; Jin et al., 2021).

We chose the time periods in our study so that
they would each have sufficient and consistent train-
ing data sizes. However, amounts of data in a
particular domain or task will fluctuate over time.
Moreover, the rate of language use change may not
be uniform. Time periods should be selected with
these two considerations in mind.

Our findings indicate that temporal misalign-
ment’s effects depend heavily on the task. Though
not studied here, the same issues may arise in
annotation efforts; consider, for example, recent

work on controversy (Zhang et al., 2018) and so-
cial norms (Xu et al., 2021; Zhou et al., 2021) likely
hinges on constructs that may be time sensitive. An-
notations that are temporally misaligned with the
original data being annotated may be anachronistic.

An opportunity for future exploration is in the
context of real-world events with sudden changes
such as COVID-19 pandemic (Cao et al., 2021) or
political changes, which influence tasks such as
question answering (Dhingra et al., 2021; Zhang
and Choi, 2021).

Extensive work has been done on modeling and
detecting lexical semantic change, or how words
evolve in meaning (Hamilton et al., 2016; Rudolph
and Blei, 2018; Gonen et al., 2020). Techniques
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Figure 6: Perplexity of GPT2 after adaptive pretrain-
ing on temporally-selected data in different domains
(lower is better). The TD score (in parentheses) es-
timates the expected perplexity rise (i.e., degradation)
for every time period of misalignment between evalu-
ation and training times. Degradation follows the ex-
pected pattern, but the magnitude varies by domain.

and intuition from this body of work may be useful
in finding solutions to mitigate degradation due to
misalignment. We believe that this phenomenon
is an important aspect of temporal misalignment,
but leave disentangling semantic shifts from other,
perhaps task-related factors, for future work.

Continual learning, which allows models to learn
from a continuous stream of data, could also be one
way to mitigate temporal misalignment. Most prior
work in this space has focused on continual learn-
ing in LMs (Jin et al., 2021) or learning disparate
tasks (de Masson d'Autume et al., 2019; Huang
et al., 2021). Future work may investigate contin-
ual learning algorithms for tasks that change over
time.

Our results showed that straightforward domain
adaptation was unable to mitigate the effects of
temporal misalignment. Recent work in language
modeling has elevated the importance of domains
by using a mixture of domains (Gururangan et al.,
2021) or giving domains a hierarchical structure
(Chronopoulou et al., 2021). More sophisticated ap-
proach to domains, in line with these works, could
lead to temporally robust models.

While we found that task-specific finetuning is
more effective than temporal adaptation, new la-
beled data can be expensive. Ways to characterize
or detect changes in a task could be helpful in ef-
ficiently updating datasets (Lu et al., 2019; Webb

et al., 2018). Future work can also treat dataset
maintenance as an optimization problem between
the cost and gains of annotating new data (Bai et al.,
2021).

5 Conclusion

Changes in language use over time, and how lan-
guage relates to other quantities of interest in NLP
applications, has clear effects on the performance
of those applications. We have explored how tem-
poral misalignment between training data—both
data used to train LMs and annotated data used to
finetune them—affects performance across a range
of NLP tasks and domains, taking advantage of
datasets where timestamps are available. We com-
pile these datasets as a benchmark for future re-
search as well. We also introduced a summary
metric, TD score, that makes it easier to compare
models in terms of their temporal misalignment.

Our experiments revealed considerable variation
in temporal degradation accross tasks, more so than
found in previous studies (Röttger and Pierrehum-
bert, 2021). These findings motivate continued
study of temporal misalignment across applica-
tions of NLP, its consideration in benchmark evalu-
ations,12 and vigilance on the part of practitioners
able to monitor live system performance over time.

Notably, we observed that continued training
of LMs on temporally aligned data does not have
much effect, motivating further research to find
effective temporal adaptation methods that are less
costly than ongoing collection of annotated/labeled
datasets over time.
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Supplementary Material

A A Metric for Temporal Degradation

Let t be the time period of the training data and
t′ the time period of the evaluation data.13 We
aim to summarize the general effect of temporal
misalignment (the difference between t and t′) on
task performance, in an interpretable way that is
comparable across tasks.

Let St′�t indicate the performance a model
trained on timestamp t′ data and evaluated on the
timestamp t. Let

D(t′ � t) = − (St′�t − St�t)× sign(t′ − t),

In other words, D(t′ � t) is a modified differ-
ence in performance between a aligned and mis-
aligned models. The modification ensures that, as
performance deteriorates, D increases, regardless
of the direction of time between t and t′.

Our temporal degradation (TD) score for a fixed
evaluation timestamp t for models trained on a set
of timestamps T is defined as:

TD(T � t′) =

∣∣∣∣∣

∑
t∈T

(
D(t′ � t)− D̄

)
(t− t̄)∑

t∈T (t− t̄)2

∣∣∣∣∣ ,

where t̄ = avgt∈T t
′ and D̄ = avgt∈T D(t′ � t).

This metric is the slope of a line fitting the the per-
formance change of models trained on a variety
of timestamps, when evaluated on a fixed times-
tamp. It can be interpreted as the average rate of
performance deterioration per time period.

Fig. 7 shows three examples of TD scores from
POLIAFF (the first) and YELPCLS (the latter two).
These illustrate cases with and without temporal
sensitivity. In practice, most examples with dete-
rioration showed a linear trend and thus the rate
of degradation was suitible to be approximated by
a line. The final TD score is averaged over all
evaluation years T ′.

TD =

∑
t∈T ′ TD(T � t)

|T ′|

B Details of Model Development

Training Details for Temporal Adaptation We
train GPT2 over each domain and timestamp for
k steps using Huggingface’s implementation of
GPT2. Hyperparameter details can be seen in Ta-
ble 4.

13See examples in Fig. 4.

Hyperparameter DAPT Assignment

Number of steps 10k

Batch size 32

Maximum learning rate 5e-05

Adam Epsilon 1e-08

Adam Beta 0.9. 0.999

Block size 1024

Table 4: Hyperparameters for temporal adaptation ac-
cross the four domains.

Hyperparameter Cls. Assign Summ. Assign

Number of Epochs 50 10

Batch size 32 8

Max learning rate 2e-05 2e-05

Adam Epsilon 1e-08 1e-08

Adam Beta 0.9. 0.999 0.9. 0.999

top p (sampling) - 0.05

top k - 20

temperature - 1

max length - 512

Table 5: Hyperparameters for temporal finetuning ac-
cross the eight tasks.

Training Details for Temporal Finetuning We
use Huggingface’s implementation of GPT2 for
finetuning for both the classification and summa-
rization tasks. We train on Quadro RTX 800 GPUs.
See Table 5 for details.

C Data Collection

We describe the postprocessing and data collection
in greater detail. All data released is intended for
non-commercial use.

POLIAFF We acquire a list of U.S. politician
names and Twitter handles.14 One of the authors
manually annotated whether each politician was a
Republican or Democrat. In addition, one volunteer
double checked to ensure correctness. We discard
any politician who changed parties between 2015
and 2020, any independents, and anyone suspended
by Twitter (e.g., RealDonaldTrump).

14https://files.pushshift.io/ twitter/US_PoliticalTweets.tar.
gz
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Figure 7: Three example calculations of the TD score (left from POLIAFF and the center and right from YELP-
CLS). The annotated numbers are the raw evaluation scores St′→t and the plotted markers represent the modified
differences D(t′ → t) discussed in Section 2.3. For a particular plot, the red line is the line of best fit and its slope
is the TD(t) score for evaluation timestep t. The final TD score is averaged between all evaluation timesteps for
the particular task.

AIC We randomly sample science documents in
Semantic Scholar’s corpus.15 Of those, we only
keep documents that (1) are published in ICML
or AAAI, (2) are classified as ‘computer science’
documents, and (3) have an abstract of at least 50
tokens.

Newsroom The following applies to the postpro-
cessing and data selection for both supervised tem-
poral finetuning and unsupervised temporal adapta-
tion of PUBCLS and NEWSUM. We use the News-
room dataset.16. We only keep articles where (1)
the year in the metadata also appears in the main
text and (2) no future year is mentioned in the main
text.

PUBCLS We carry out additional postprocess-
ing and ensure that each of the three labels (Fox
News, New York Times, and Washington Post)
have an equal distribution across years. We do so
by uniform-random downsampling.

D Extended Results

We provide further results from our experiments
described in Section 3.

15https://api.semanticscholar.org/corpus/ ; licensed under
an ODC-BY

16https:// lil.nlp.cornell.edu/newsroom/

Domain Task (metric) Pearson’s r

Twitter POLIAFF (F1) 0.84
TWIERC (F1) 0.51

Science SCIERC (F1) 0.72
AIC (F1) 0.79

News
PUBCLS (F1) 0.65
NEWSUM (Rouge-L) 0.72
MFC (F1) 0.80

Reviews YELPCLS (F1) 0.14

Table 6: Pearson r correlation coeffecients between
the word overlap and performance of each task.

Word Overlap Correlation with Performance
In addition to measuring vocabularies’ change over
time in Section 3.2, we find correlations between
the word overlap and model performance of each
task in Table 6.

Finetuning Results We provide the full results
from our fientuning experiments in Section 3.1 in
Fig. 8. These results are for downstream tasks with
no domain adaptation.

Finetuning with Temporal Domain Adaptation
We provide the full results from our finetuning with
temporal domain adaptation in Section 3.2 in Fig. 7.
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Figure 8: Temporal misalignment in finetuning affects task performance (§3.1). In all cases, higher scores are
better. The heatmap is shaded per column, i.e., the darkest shade of orange in a cell means the cell has the highest
score in that column. Mismatch between the the training and evaluation data can result in massive performance
drop; degree varies by task. For example, YELPCLS, MFC, and TWIERC show minimal degradation. In contrast,
POLIAFF and NEWSUM major deterioration over time.

Domain 
(Task) Finetune Year Evaluation → 

Pretrain ↓  2015 2020 Domain 
(Task) Finetune Year Evaluation → 

Pretrain ↓  2014 2019

Twitter
 (PoliAff)

F1

2015
Default 91.4 48.4

Twitter
 (TwiERC)

F1

2014
Default 74.3 68.9

Default → 2015 92.2 47.5 Default → 2014 76.1 69.6
Default → 2020 90.9 50.8 Default → 2019 74.1 68.9

2020
Default 45.8 78.0

2019
Default 71.0 74.6

Default → 2015 47.2 76.9 Default → 2014 73.1 75.2
Default → 2020 44.2 78.3 Default → 2019 73.7 75.8

Domain 
(Task) Finetune Year Evaluation → 

Pretrain ↓  2009-11 2018-20 Domain 
(Task) Finetune Year Evaluation → 

Pretrain ↓  1980-1999 2010-2016

Scienctific
(AIC)
F1

2009-2011
Default 79.0 72.0

Scientific 
(SciERC)

F1

1980-1999
Default 67.9 57.2

Default → 2009-2011 94.5 68.8 Default → 1980-1999 73.2 66.4
Default → 2018-2020 88.4 86.0 Default → 2010-2016 73.7 66.8

2018-2020
Default 72.0 85.0

2010-2016
Default 60.3 72.5

Default → 2009-2011 87.2 65.2 Default → 1980-1999 63.4 75.0
Default → 2018-2020 86.8 79.4 Default → 2010-2016 64.8 76.0

Domain 
(Task) Finetune Year Evaluation → 

Pretrain ↓  2009-2010 2015-2016 Domain 
(Task) Finetune Year Evaluation → 

Pretrain ↓  2009-2010 2015-2016

News
(MFC)
F1

2009-2010
Default 27.0 26.0

News
(PubCls)
F1

2009-2010
Default 94.1 52.4

Default →  2009-2010 30.6 31.8 Default →  2009-2010 95.4 54.0
Default → 2015-2016 29.8 30.0 Default → 2015-2016 95.4 53.5

2015-2016
Default 23.8 33.4

2015-2016
Default 71.3 88.2

Default →  2009-2010 29.7 41.6 Default →  2009-2010 80.4 90.7
Default → 2015-2016 32.7 41.9 Default → 2015-2016 78.7 91.1

Domain 
(Task) Finetune Year Evaluation → 

Pretrain ↓  2009-2010 2015-2016 Domain 
  (Task) ↓

Finetune 
Year ↓

Evaluation →
Pretrain ↓ 2014 2019

News
(NewsSum)
Rouge-L

2009-2010
Default 36.4 29.0

Food
Reviews
(Yelp)
F1

2013
Default 58.6 58.3

Default →  2009-2010 36.4 29.1 Default →  2013 63.3 60.1
Default → 2015-2016 36.1 28.9 Default → 2019 60.2 62.3

2015-2016
Default 27.8 31.8

2019
Default 58.3 58.3

Default →  2009-2010 28.2 31.8 Default →  2013 60.2 62.3
Default → 2015-2016 27.8 31.6 Default → 2019 60.8 62.3

Table 7: Combination of temporal adaptation and finetuning (§3.2) on our tasks. The row labeled “Default” corre-
sponds to a model that has not been adapted (uses the default pretraining). The color coding is proportional to the
magnitude of the performances of each task (darker shade of orange indicates higher scores). We see that models
that were finetuned on similar time periods performed similarly, no matter how their DAPT conditions differed.
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