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Abstract

Recent studies on the lottery ticket hypothesis
(LTH) show that pre-trained language models
(PLMs) like BERT contain matching subnet-
works that have similar transfer learning per-
formance as the original PLM. These subnet-
works are found using magnitude-based prun-
ing. In this paper, we find that the BERT sub-
networks have even more potential than these
studies have shown. Firstly, we discover that
the success of magnitude pruning can be at-
tributed to the preserved pre-training perfor-
mance, which correlates with the downstream
transferability. Inspired by this, we propose
to directly optimize the subnetwork structure
towards the pre-training objectives, which can
better preserve the pre-training performance.
Specifically, we train binary masks over model
weights on the pre-training tasks, with the aim
of preserving the universal transferability of
the subnetwork, which is agnostic to any spe-
cific downstream tasks. We then fine-tune the
subnetworks on the GLUE benchmark and the
SQuAD dataset. The results show that, com-
pared with magnitude pruning, mask training
can effectively find BERT subnetworks with
improved overall performance on downstream
tasks. Moreover, our method is also more ef-
ficient in searching subnetworks and more ad-
vantageous when fine-tuning within a certain
range of data scarcity. Our code is available at
https://github.com/llyx97/TAMT.

1 Introduction

The NLP community has witnessed a remarkable
success of pre-trained language models (PLMs).
After being pre-trained on unlabelled corpus in
a self-supervised manner, PLMs like BERT (De-
vlin et al., 2019) can be fine-tuned as a universal
text encoder on a wide range of downstream tasks.
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Tencent Inc, China.∗Zheng Lin and Peng Fu are the corre-
sponding authors.
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Figure 1: Average downstream performance (left) and
pre-training performance (right) of OMP and random
subnetworks of BERTBASE. See Appendix A.1 for the
downstream results of each task.

However, the growing performance of BERT is
driven, to a large extent, by scaling up the model
size, which hinders the fine-tuning and deployment
of BERT in resource-constrained scenarios.

At the same time, the lottery ticket hypothesis
(LTH) (Frankle and Carbin, 2019) emerges as an
active sub-field of model compression. The LTH
states that randomly initialized dense networks con-
tain sparse matching subnetworks, i.e., winning
tickets (WTs), that can be trained in isolation to
similar test accuracy as the full model. The original
work of LTH and subsequent studies have demon-
strated that such WTs do exist at random initial-
ization or an early point of training (Frankle et al.,
2019, 2020). This implicates that it is possible to
reduce training and inference cost via LTH.

Recently, Chen et al. (2020) extend the original
LTH to the pre-training and fine-tuning paradigm,
exploring the existence of matching subnetworks
in pre-trained BERT. Such subnetworks are smaller
in size, while they can preserve the universal trans-
ferability of the full model. Encouragingly, Chen
et al. (2020) demonstrate that BERT indeed con-
tains matching subnetworks that are transferable to
multiple downstream tasks without compromising
accuracy. These subnetworks are found using itera-
tive magnitude pruning (IMP) (Han et al., 2015) on
the pre-training task of masked language modeling
(MLM), or by directly compressing BERT with
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oneshot magnitude pruning (OMP), both of which
are agnostic to any specific task.

In this paper, we follow Chen et al. (2020) to
study the question of LTH in BERT transfer learn-
ing. We find that there is a correlation, to cer-
tain extent, between the performance of a BERT
subnetwork on the pre-training task (right after
pruning), and its downstream performance (after
fine-tuning). As shown by Fig. 1, the OMP sub-
networks significantly outperform random subnet-
works at 50% sparsity in terms of both MLM loss
and downstream score. However, with the increase
of model sparsity, the downstream performance and
pre-training performance degrade simultaneously.
This phenomenon suggests that we might be able
to further improve the transferability of BERT sub-
networks by discovering the structures that better
preserve the pre-training performance.

To this end, we propose to search transfer-
able BERT subnetworks via Task-Agnostic Mask
Training (TAMT), which learns selective binary
masks over the model weights on pre-training
tasks. In this way, the structure of a subnetwork
is directly optimized towards the pre-training ob-
jectives, which can preserve the pre-training per-
formance better than heuristically retaining the
weights with large magnitudes. The training ob-
jective of the masks is a free choice, which can
be designed as any loss functions that are agnostic
to the downstream tasks. In particular, we inves-
tigate the use of MLM loss and a loss based on
knowledge distillation (KD) (Hinton et al., 2015).

To examine the effectiveness of the proposal, we
train the masks on the WikiText dataset (Merity
et al., 2017) for language modeling and then fine-
tune the searched subnetworks on a wide variety of
downstream tasks, including the GLUE benchmark
(Wang et al., 2019) for natural language understand-
ing (NLU) and the SQuAD dataset (Rajpurkar et al.,
2016) for question answering (QA). The empirical
results show that, through mask training, we can in-
deed find subnetworks with lower pre-training loss
and better downstream transferability than OMP
and IMP. Compared with IMP, which also involves
training (the weights) on the pre-training task, mask
training requires much fewer training iterations to
reach the same performance. Moreover, the subnet-
works found by mask training are generally more
robust when being fine-tuned with reduced data, as
long as the training data is not extremely scarce.

In summary, our contributions are:

• We find that the pre-training performance of
a BERT subnetwork correlates with its down-
stream transferability, which provides a useful
insight for the design of methods to search
transferable BERT subnetworks.

• Based on the above finding, we propose to
search subnetworks by learning binary masks
over the weights of BERT, which can directly
optimize the subnetwork structure towards the
given pre-training objective.

• Experiments on a variety of NLP tasks show
that subnetworks found by mask training have
better downstream performance than magni-
tude pruning. This suggests that BERT subnet-
works have more potential, in terms of univer-
sal downstream transferability, than existing
work has shown, which can facilitate our un-
derstanding and application of LTH on BERT.

2 Related Work

2.1 The Lottery Ticket Hypothesis
The lottery ticket hypothesis (Frankle and Carbin,
2019) suggests the existence of matching subnet-
works, at random initialization, that can be trained
in isolation to reach the performance of the original
network. However, the matching subnetworks are
found using IMP, which typically requires more
training cost than the full network. There are two
remedies to overcome this problem: Morcos et al.
(2019) proposed to transfer the WT structure from
source tasks to related target tasks, so that no fur-
ther searching is required for the target tasks. You
et al. (2020) draw early-bird tickets (prune the orig-
inal network) at an early stage of training, and only
train the subnetwork from then on.

Some recent works extend the LTH from random
initialization to pre-trained initialization (Prasanna
et al., 2020; Chen et al., 2020; Liang et al., 2021;
Chen et al., 2021b). Particularly, Chen et al. (2020)
find that WTs, i.e., subnetworks of the pre-trained
BERT, derived from the pre-training task of MLM
using IMP are universally transferable to the down-
stream tasks. The same question of transferring
WTs found in pre-training tasks is also explored
in the CV field by Chen et al. (2021a); Caron et al.
(2020). EarlyBERT (Chen et al., 2021b) investi-
gates drawing early-bird tickets of BERT. In this
work, we follow the question of transferring WTs
and seek to further improve the transferability of
BERT subnetworks.
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2.2 BERT Compression

In the literature of BERT compression, pruning
(LeCun et al., 1989; Han et al., 2015) and KD
(Hinton et al., 2015) are two widely-studied tech-
niques. BERT can be pruned in either unstruc-
tured (Gordon et al., 2020; Sanh et al., 2020; Mao
et al., 2020) or structured (Michel et al., 2019; Hou
et al., 2020) ways. Although unstructured pruning
is not hardware-friendly for speedup purpose, it is
a common setup in LTH, and some recent efforts
have been made in sparse tensor acceleration (Elsen
et al., 2020; Tambe et al., 2020). In BERT KD, var-
ious knowledge are explored, which includes the
soft-labels (Sanh et al., 2019), the hidden states
(Sun et al., 2019; Hou et al., 2020; Liu et al., 2021)
and the attention relations (Jiao et al., 2020), among
others. Usually, pruning and KD are combined to
compress the fine-tuned BERT. By contrast, the
LTH compresses BERT before fine-tuning.

Another way to obtain more efficient BERT with
the same transferability as the original one is to pre-
train a compact model from scratch. This model
can be trained either with the MLM objective (Turc
et al., 2019) or using pre-trained BERT as the
teacher to perform KD (Wang et al., 2020a; Sun
et al., 2020; Jiao et al., 2020). By contrast, the LTH
extracts subnetworks from BERT, which is about
exposing the knowledge already learned by BERT,
rather than learning new knowledge from scratch.
Compared with training a new PLM, the LTH in
BERT is still underexplored in the literature.

2.3 Learning Subnetwork Structure via
Binary Mask Training

To make the subnetwork structure trainable, we
need to back-propagate gradients through the bi-
nary masks. This can be achieved through the
straight-through estimator (Bengio et al., 2013) or
drawing the mask variables from a hard-concrete
distribution (Louizos et al., 2018) and then using
the re-parameterization trick. Mask training has
been utilized in model compression (Wang et al.,
2020b; Sanh et al., 2020), and parameter-efficient
training (Mallya et al., 2018; Zhao et al., 2020;
Radiya-Dixit and Wang, 2020). However, unlike
these works that learn the mask for each task sep-
arately (task-specific), we learn the subnetwork
structure on pre-training task and transfer it to mul-
tiple downstream tasks (task-agnostic).

3 Methodology

3.1 BERT Architecture

BERT consists of an embedding layer and L Trans-
former layers (Vaswani et al., 2017). Each Trans-
former layer has two sub-layers: the self-attention
layer and the feed-forward network (FFN).

The self-attention layer contains Nh parallel at-
tention heads and each head can be formulated as:

Self-Atth(H) = softmax

(
(HWQh

)(HWKh
)⊤√

dh

)
HWVh

(1)
where H ∈ R|x|×dH is the input; dH and |x| are
the hidden size and the length of input x, respec-
tively. WQh,Kh,Vh

∈ RdH×dh are the query, key
and value matrices, and dh = dH

Nh
. In practice, the

matrices for different heads will be combined into
three large matrices WQ,K,V ∈ RdH×dH . The out-
puts of the Nh heads are then concatenated and
linearly projected by WAO ∈ RdH×dH to obtain
the final output of the self-attention layer.

The FFN consists of two weight matrices
WFI ∈ RdH×dI , WFO ∈ RdI×dH with a GELU
activation (Hendrycks and Gimpel, 2016) in be-
tween, where dI is the hidden dimension of FFN.
Dropout (Srivastava et al., 2014), residual connec-
tion (He et al., 2016) and layer normalization (Ba
et al., 2016) are also applied following each sub-
layer. Eventually, for each downstream task, a
classifier is used to give the final prediction based
on the output of the Transformer module.

3.2 Subnetwork and Magnitude Pruning

Consider a model f(·;θ) with weights θ, we can
obtain its subnetwork f(·;M ⊙ θ) by applying
a binary mask M ∈ {0, 1}|θ| to θ, where ⊙ de-
notes element-wise multiplication. In terms of
BERT, we extract the subnetwork from the pre-
trained weights θ0. Specifically, we consider the
matrices of the Transformer sub-layers and the
word embedding matrix, i.e., θ0 = {WEmb} ∪{
Wl

Q,W
l
K ,Wl

V ,W
l
AO,W

l
F I ,W

l
FO

}L

l=1
.

Magnitude pruning (Han et al., 2015) is initially
used to compress a trained neural network by set-
ting the low-magnitude weights to zero. It can be
conducted in two different ways: 1) Oneshot mag-
nitude pruning (OMP) directly prunes the trained
weights to target sparsity while 2) iterative mag-
nitude pruning (IMP) performs pruning and re-
training iteratively until reaching the target spar-
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Figure 2: Illustration of the BERT subnetwork transfer problem and the proposed TAMT. We search the subnetworks
by training binary masks on the pre-training dataset, using either the MLM loss or the KD loss (left). The identified
subnetwork is then fine-tuned on a range of downstream tasks (right). The colored weights/masks are trainable and
the black ones are frozen. The residual connection and layer normalization are omitted for simplicity.

sity. OMP and IMP are also widely studied in the
literature of LTH as the method to find the match-
ing subnetworks, with an additional operation of
resetting the weights to initialization.

3.3 Problem Formulation: Transfer BERT
Subnetwork

As depicted in Fig. 2, given NT downstream tasks
T = {Ti}NT

i=1, the subnetwork f
(
·;M⊙ θ0, CTi0

)

is fine-tuned on each task, together with the ran-
domly initialized task-specific linear classifier CTi0 .
We formulate the training algorithm for task Ti as a
functionATi

t

(
f
(
·;M⊙ θ0, CTi0

))
(e.g., Adam or

SGD), which trains the model for t steps and pro-
duces f

(
·;M⊙ θt, CTit

)
. After fine-tuning, the

model is evaluated against the metric ETi(f(·;M⊙
θt, CTit )) (e.g., Accuracy or F1) for task Ti.

In this work, we focus on finding a BERT subnet-
work, that maximally preserves the overall down-
stream performance given a particular sparsity S,
especially at the sparsity that magnitude pruning
performs poorly. This can be formalized as:

max
M

(
1

NT

NT∑

i=1

ETi
(
ATi

t

(
f
(
·,M · θ0, CTi0

))))

s.t.
∥M∥0
|θ0|

= (1− S)
(2)

where ∥M∥0 and |θ0| are the L0 norm of the mask
and the total number of model weights respectively.

3.4 Task-agnostic Mask Training
3.4.1 Mask Training with Binarization and

Gradient Estimation
In order to learn the binary masks, we adopt the
technique for training binarized neural networks
(Hubara et al., 2016), following Zhao et al. (2020);
Mallya et al. (2018). This technique involves mask
binarization in the forward pass and gradient esti-
mation in the backward pass.

As shown in Fig. 2, each weight matrix W ∈
Rdin×dout is associated with a binary mask M ∈
{0, 1}din×dout , which is derived from a real-valued
matrix M ∈ Rdin×dout via binarization:

Mi,j =

{
1 if Mi,j ≥ ϕ

0 otherwise
(3)

where ϕ is the threshold that controls the sparsity.
In the forward pass of a subnetwork, W ⊙M is
used in replacement of the original weights W.

Since Mi,j are discrete variables, the gradient
signals cannot be back-propagated through the bi-
nary mask. We therefore use the straight-through
estimator (Bengio et al., 2013) to approximate the
gradients and update the real-valued mask:

M←M− η
∂L
∂M

(4)

where L is the loss function and η is the learning
rate. In other words, the gradients of M is esti-
mated using the gradients of M. In the process of
mask training, all the original weights are frozen.
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3.4.2 Mask Initialization and Sparsity Control
The real-valued masks can be initialized in various
forms, e.g., random initialization. Considering that
magnitude pruning can preserve the pre-training
knowledge to some extent, and OMP is easy to
implement with almost zero computation cost, we
directly initialize M using OMP:

Mi,j =

{
α× ϕ if MOMP

i,j = 1

0 otherwise
(5)

where MOMP is the binary mask derived from
OMP and α ≥ 1 is a hyper-parameter. In this way,
the weights with large magnitudes will be retained
at initialization according to Eq. 3, because the
corresponding Mi,j = α× ϕ ≥ ϕ. In practice, we
perform OMP over the weights locally based on
the given sparsity, which means the magnitudes are
ranked inside each weight matrix.

As M being updated, some of its entries with
zero initialization will gradually surpass the thresh-
old, and vice versa. If the threshold ϕ is fixed
throughout training, there is no guarantee that the
binary mask will always satisfy the given sparsity.
Therefore, we rank Mij according to their absolute
values during mask training, and dynamically ad-
just the threshold to satisfy the sparsity constraint.

3.4.3 Mask Training Objectives
We explore the use of two objectives for mask train-
ing, namely the MLM loss and the KD loss.

The MLM is the original task used in BERT pre-
training. It randomly replaces a portion of the input
tokens with the [MASK] token, and requires the
model to reconstruct the original tokens based on
the entire masked sequence. Concretely, the MLM
objective is computed as cross-entropy loss on the
predicted masked tokens. During MLM learning,
we allow the token classifier (i.e., the Cmlm in Fig.
2) to be trainable, in addition to the masks.

In KD, the compressed model (student) is trained
with supervision from the original model (teacher).
Under our framework of mask training, the train-
ing signal can also be derived from the unpruned
BERT. To this end, we design the KD objective by
encouraging the subnetwork to mimic the represen-
tations of the original BERT, which is shown to be
a useful source of knowledge in BERT KD (Sun
et al., 2019; Hou et al., 2020). Specifically, the dis-
tillation loss is formulated as the cosine similarity
between the teacher’s and student’s representations:

Ldistill =
1

L|x|
L∑

l=1

|x|∑

i=1

(1−cos
(
HT

l,i,H
S
l,i

)
) (6)

where Hl,i is the hidden state of the ith token at the
lth layer; T and S denote the teacher and student
respectively; cos(·, ·) is the cosine similarity.

4 Experiments

4.1 Experimental Setups

4.1.1 Models
We examine two PLMs from the BERT fam-
ily, i.e., BERTBASE (Devlin et al., 2019) and
RoBERTaBASE (Liu et al., 2019). They have basi-
cally the same structure, while differ in the vocabu-
lary size, which results in approximately 110M and
125M parameters respectively. The main results
of Section 4.2.1 study both two models. For the
analytical studies, we only use BERTBASE.

4.1.2 Baselines, Datasets and Evaluation
We compare our mask training method with IMP,
OMP as well as subnetworks with random struc-
tures. Following Chen et al. (2020), we use the
MLM loss during IMP training. For TAMT, we con-
sider three variants, namely TAMT-MLM that uses
MLM as training objective, TAMT-KD that uses
the KD objective (Eq. 6), and TAMT-MLM+KD
that equally combines MLM and KD.

We build our pre-training set using the WikiText-
103 dataset (Merity et al., 2017) for language mod-
eling. For downstream fine-tuning, we use six
datasets, i.e., CoLA, SST-2, RTE, MNLI, MRPC
and STS-B from the GLUE benchmark for NLU
and the SQuAD v1.1 dataset for QA.

Evaluations are conducted on the dev sets. For
the downstream tasks, we follow the standard eval-
uation metrics (Wang et al., 2019). For the pre-
training tasks, we calculate the MLM and KD loss
on the dev set of WikiText-103. More information
about the datasets and evaluation metrics can be
found in Appendix B.1.

4.1.3 Implementation Details
Both TAMT and IMP are conducted on the pre-
training dataset. For mask training, we initialize
the mask using OMP as described in Section 3.4.2.
We also provide a comparison between OMP and
random initialization in Section 4.2.4. The initial
threshold ϕ and α are set to 0.01 and 2 respectively,
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Figure 3: Downstream performance of BERT subnetworks. Shadowed areas denote standard deviations.

0.2 0.4 0.6 0.8

0

10

20

30

40

50

60

Co
LA

 M
cc

OMP
IMP
TAMT-MLM
TAMT-KD
TAMT-MLM+KD
Rand
full RoBERTa
90% full RoBERTa

0.2 0.4 0.6 0.8

50

55

60

65

70

RT
E 

Ac
c

0.2 0.4 0.6 0.8

20

40

60

80

ST
S-

B 
Pe

ar
so

n

0.2 0.4 0.6 0.8

75

80

85

90

95

SS
T-

2 
Ac

c
0.2 0.4 0.6 0.8

Sparsity

70

75

80

85

90

M
RP

C 
Ac

c

0.2 0.4 0.6 0.8
Sparsity

50

60

70

80

90

M
NL

I A
cc

0.2 0.4 0.6 0.8
Sparsity

20

40

60

80

SQ
uA

D 
F1

0.2 0.4 0.6 0.8
Sparsity

40

50

60

70

80

Av
g 

Sc
or

e

Figure 4: Downstream performance of RoBERTa subnetworks. Shadowed areas denote standard deviations.

which work well in our experiments. For IMP, we
increase the sparsity by 10% every 1/10 of total
training iterations, until reaching the target spar-
sity, following Chen et al. (2020). Every pruning
operation in IMP is followed by resetting the re-
maining weights to θ0. In the fine-tuning stage,
all the subnetworks and the full PLMs are trained
using the same set of hyper-parameters unless oth-
erwise specified.

For TAMT, IMP and random pruning, we gener-
ate three subnetworks with different seeds, and the
result of each subnetwork is also averaged across
three runs, i.e., the result of every method is the
average of nine runs in total. For OMP, we can
only generate one subnetwork, which is fine-tuned
across three runs. More implementation details and
computing budgets can be found in Appendix B.2.

4.2 Results and Analysis

4.2.1 Main Results

Fig. 3 and Fig. 4 present the downstream per-
formance of BERT and RoBERTa subnetworks,

respectively. We can derive the following observa-
tions:

There is a clear gap between random subnet-
works and the other ones found with certain in-
ductive bias. At 50% sparsity for BERT and 30%
for RoBERTa, all the methods, except for “Rand”,
maintain 90% of the full model’s overall perfor-
mance. As sparsity grows, the OMP subnetworks
degrade significantly. IMP, which is also based on
magnitude, exhibits relatively mild declines.

TAMT further outperforms IMP with perceiv-
able margin. For BERT subnetworks, the per-
formance of TAMT variants are close to each
other, which have advantage over IMP across
60% ∼ 90% sparsity. When it comes to RoBERTa,
the performance of TAMT-KD is undesirable at
70% ∼ 90% sparsity, which only slightly outper-
forms IMP. In comparison, TAMT-MLM consis-
tently surpasses IMP and TAMT-KD on RoBERTa.

Combining MLM and KD leads to comparable
average performance as TAMT-MLM for BERT,
while slightly improves over TAMT-MLM for
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Figure 5: MLM/KD dev loss and downstream results. The results of TAMT are from the masks along the training
process, and the results of IMP and Rand are from different seeds. Appendix A.3 shows the results on each task.

RoBERTa. This suggests that the two training ob-
jectives could potentially benefit, or at least will not
negatively impact each other. In Section 4.2.2, we
will show that the MLM and KD objectives indeed
exhibit certain consistency.

At 90% sparsity, all the methods perform poorly,
with average scores approximately half of the
full model. On certain tasks like CoLA, RTE
and MRPC, drastic performance drop of all meth-
ods can even be observed at lower sparsity (e.g.,
60% ∼ 80%). This is probably because the num-
ber of training data is too scarce in these tasks for
sparse PLMs to perform well. However, we find
that the advantage of TAMT is more significant
within a range of data scarsity, which will be dis-
cussed in Section 4.2.6.

We also note that RoBERTa, although outper-
forms BERT as a full model, is more sensitive to
task-agnostic pruning. A direct comparison be-
tween the two PLMs is provided in Appendix A.2.

4.2.2 The Effect of Pre-training Performance

As we discussed in Section 1, our motivation of
mask training is to improve downstream transfer-
ability by preserving the pre-training performance.
To examine whether the effectiveness of TAMT
is indeed derived from the improvement on pre-
training tasks, we calculate the MLM/KD dev loss
for the subnetworks obtained from the mask train-
ing process, and associate it with the downstream
performance. The results are shown in Fig. 5,
where the "Avg Score" includes CoLA, SST-2,
MNLI, STS-B and SQuAD. In the following sec-
tions, we also mainly focus on these five tasks. We
can see from Fig. 5 that:

There is a positive correlation between the pre-
training and downstream performance, and this
trend can be observed for subnetworks across differ-
ent sparsities. Compared with random pruning, the
magnitude pruning subnetworks and TAMT sub-
networks reside in an area with lower MLM/KD
loss and higher downstream score at 50% sparsity.
As sparsity increases, OMP subnetworks gradually
move from the upper-left to the lower-right area of
the plots. In comparison, IMP is better at preserv-
ing the pre-training performance, even though it
is not deliberately designed for this purpose. For
this reason, hypothetically, the downstream perfor-
mance of IMP is also better than OMP.

TAMT-MLM and TAMT-KD have the lowest
MLM and KD loss respectively, which demon-
strates that the masks are successfully optimized
towards the given objectives. As a result, the down-
stream performance is also elevated from the OMP
initialization, which justifies our motivation. More-
over, training the mask with KD loss can also op-
timize the performance on MLM, and vice versa,
suggesting that there exists some consistency be-
tween the objectives of MLM and KD.

It is also worth noting that the correlation be-
tween pre-training and fine-tuning performance
is not ubiquitous. For example, among the sub-
networks of OMP, IMP and TAMT at 50% spar-
sity, the decrease in KD/MLM loss produces little
or no downstream improvement; at 60% ∼ 80%
sparsity, OMP underperforms random pruning in
MLM, while its downstream performance is better.
These phenomenons suggest that some properties
about the BERT winning tickets are still not well-
understood by us.
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Figure 6: The downstream performance of masks at
70% sparsity with increased pre-training cost. The train-
ing time is computed excluding evaluation. Shadowed
areas denote standard deviations. Results for each task
and more sparsities are shown in Appendix A.4.
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4.2.3 The Effect of Pre-training Cost

We have shown that mask training is more effec-
tive than magnitude pruning. Now let us take a
closer look at the results of TAMT and IMP with
different iterations of pre-training, to evaluate their
efficiency in subnetwork searching. For TAMT, we
directly obtain the subnetworks from varied pre-
training iterations. For IMP, we change the pruning
frequency to control the number of training itera-
tions before reaching the target sparsity.

Fig. 6 presents the downstream results with in-
creased pre-training iterations and time. We can
see that for all the methods, the fine-tuning perfor-
mance steadily improves as pre-training proceeds.
Along this process, TAMT advances at a faster
pace, reaching the best score achieved by IMP with
8.4× fewer iterations and 8.7× fewer time. This
indicates that directly optimizing the pre-training
objectives is more efficient than the iterative pro-
cess of weight pruning and re-training.
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Figure 8: Left: The downstream results of masks with
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denote standard deviations. Right: The similarity be-
tween the masks used to report the main results at 70%
sparsity. The suffix numbers indicate different seeds.
Results of more sparsities are shown in Appendix A.5.

4.2.4 The Effect of Mask Initialization
In the main results, we use OMP as the default
initialization, in order to provide a better start point
for TAMT. To validate the efficacy of this setting,
we compare OMP initialization with random ini-
tialization. Concretely, we randomly sample some
entries of the real-valued masks to be zero, accord-
ing to the given sparsity, and use the same α and ϕ
for the non-zero entries as in Eq. 5.

The results are shown in Fig. 7. We can see
that, for random initialization, TAMT can still
steadily improve the downstream performance as
pre-training proceeds. However, the final results
of TAMT-MLM/KD (Rand_init) are significantly
worse than TAMT-MLM/KD, which demonstrates
the necessity of using OMP as initialization.

4.2.5 Similarity between Subnetworks
The above results show that the subnetworks found
by different methods perform differently. We are
therefore interested to see how they differ in the
mask structure. To this end, we compute the simi-
larity between OMP mask and the masks derived
during the training of TAMT and IMP. Follow-
ing Chen et al. (2020), we measure the Jaccard
similarity between two binary masks Mi and Mj

as |Mi∩Mj |
|Mi∪Mj | , and the mask distance is defined as

1− |Mi∩Mj |
|Mi∪Mj | .

From the results of Fig. 8, we can find that:
1) With different objectives, TAMT produces dif-
ferent mask structures. The KD loss results in
masks in the close proximity of OMP initialization,
while the MLM masks deviate away from OMP. 2)
Among the four methods, IMP and TAMT-MLM
have the highest degree of dissimilarity, despite
the fact that they both involve MLM training. 3)
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Figure 9: The downstream results of full BERT and
70% sparse subnetworks with varying numbers of fine-
tuning data. The results are averaged over five runs for
each subnetwork. Shadowed areas and error bars denote
standard deviations.

Although IMP, TAMT-KD and TAMT-MLM are
different from each other in terms of subnetwork
structure, all of them clearly improves over the
OMP baseline. Therefore, we hyphothesize that
the high-dimensional binary space {0, 1}|θ| might
contain multiple regions of winning tickets that are
disjoint with each other. Searching methods with
different inductive biases (e.g., mask training ver-
sus pruning and KD loss versus MLM loss) are
inclined to find different regions of interest.

4.2.6 Results of Reducing Fine-tuning Data

To test the fine-tuning results with reduced data,
we select four tasks (CoLA, SST-2, MNLI and
SQuAD) with the largest data sizes and shrink them
from the entire training set to 1,000 samples.

Fig. 9 summarizes the results of subnetworks
found using different methods, as well as results of
full BERT as a reference. We can see that the four
datasets present different patterns. For MNLI and
SQuAD, the advantage of TAMT first increases
and then decreases with the reduction of data size.
The turning point appears at around 10,000 sam-
ples, after which the performance of all methods,
including the full BERT, degrade drastically (note
that the horizontal axis is in log scale). For SST-2,
the performance gap is enlarged continuously until
we have only 1,000 data. With regard to CoLA, the
gap between TAMT and IMP shrinks as we reduce
the data size, which is not desirable. However, a
decrease in the gap between full BERT and IMP is
also witnessed when the data size is reduced under

5,000 samples. This is in part because the Mcc
of IMP is already quite low even with the entire
training set, and thus the performance decrease of
IMP is limited compared with TAMT. However, the
results on CoLA, as well as the results on MNLI
and SQuAD with less than 10,000 samples, also
suggest an inherent difficulty of learning with lim-
ited data for subnetworks at high sparsity, which is
also discussed in the main results.

5 Conclusions

In this paper, we address the problem of searching
transferable BERT subnetworks. We first show that
there exist correlations between the pre-training
performance and downstream transferablility of a
subnetwork. Motivated by this, we devise a sub-
network searching method based on task-agnostic
mask training (TAMT). We empirically show that
TAMT with MLM loss or KD loss achieve better
pre-training and downstream performance than the
magnitude pruning, which is recently shown to be
successful in finding universal BERT subnetworks.
TAMT is also more efficient in mask searching
and produces more robust subnetworks when being
fine-tuned within a certain range of data scarsity.

6 Limitations and Future Work

Under the framework of TAMT, there are still
some unsolved challenges and interesting questions
worth studying in the future work: First, we fo-
cus on unstructured sparsity in this work, which is
hardware-unfriendly for speedup purpose. In fu-
ture work, we are interested in investigating TAMT
with structured pruning or applying unstructured
BERT subnetworks on hardware platforms that sup-
port sparse tensor acceleration (Elsen et al., 2020;
Tambe et al., 2020). Second, despite the overall
improvement achieved by TAMT, it fails at extreme
sparsity or when the labeled data for a task is too
scarce. Therefore, another future direction is to
further promote the performance of universal PLM
subnetworks on these challenging circumstances.
To achieve this goal, thirdly, a feasible way is to
explore other task-agnostic training objectives for
TAMT beyond MLM and hidden state KD, e.g.,
self-attention KD (Jiao et al., 2020) and contrastive
learning (Gao et al., 2021). An in-depth study on
the selection of TAMT training objective might fur-
ther advance our understanding of TAMT and the
LTH of BERT.
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Figure 10: Downstream performance of OMP subnetworks and random subnetworks of BERTBASE. The error
bars denote standard deviations. The dashed red line is the performance gap between “OMP" and “Rand".

A More Results and Analysis

A.1 Single Task Downstream Performance of
OMP and Random Pruning

In Fig. 1 of the main body of paper, we show
that the pre-training and overall downstream perfor-
mance of OMP, as well as the gap between “OMP"
and “Rand", degrade simultaneously as sparsity in-
creases. The detailed results of each downstream
task are presented in Fig. 10. As we can see,
the general pattern for every task is similar, with
the exception that the gap between “OMP" and
“Rand" slightly increases before high sparsity on
tasks RTE, MNLI and SQuAD.

A.2 Comparison Between BERT and
RoBERTa Subnetworks

In the main results of Fig. 3 and Fig. 4, we com-
pare the fine-tuning performance of subnetworks
of the same PLM but found using different meth-
ods. In this section, we give a comparison between
subnetwords of BERTBASE and RoBERTaBASE.
As shown in Fig. 11, RoBERTa consistently outper-
forms BERT as a full model. However, as we prune
the pre-trained weights accroding to the magni-
tudes, the performance of RoBERTa declines more
sharply than BERT, leading to worse results of
RoBERTa subnetworks when crossing a certain
sparsity threshold. This phenomenon suggests that,
compared with BERT, RoBERTa is less robust to
task-agnostic magnitude pruning. More empirical
and theoretical analysis are required to understand
the underlying reasons.

A.3 Pre-training Performance and Single
Task Downstream Performance

The relation between pre-training performance and
overall downstream performance is illustrated in
Fig. 5. Here in this appendix, we provide the
detailed results about each single downstream task,
as shown in Fig. 12 and Fig. 13. As we can see,
the pattern in each single task is general the same
as we discussed in Section 4.2.2. When the model
sparsity is higher than 50%, TAMT promotes the
performance of OMP in terms of both pre-training
tasks and downstream tasks, and improves over
IMP with perceivable margin. As shown in Fig.
3 and Fig. 4 of the main paper, both IMP and
TAMT display no obvious improvement over OMP
on MRPC and RTE (but no degradation as well).
Therefore, we do not report the comparison on
these two datasets.

A.4 Pre-training Iteration and Single Task
Downstream Performance

In Fig. 6, we show the overall downstream perfor-
mance at 70% sparsity with the increase of mask
training iterations. Here, we report the results of
each single downstream task from 60% ∼ 80%
sparsities, which are shown in Fig. 14, Fig. 15
and Fig. 16. We can see that: 1) The single task
performance of both TAMT-MLM and TAMT-KD
grows faster than IMP at 60% and 70% sparsity,
with the only exception of STS-B, where TAMT-
MLM and IMP are comparable in the early stage of
pre-training. 2) The MLM and KD objectives are
good at different sparsity levels and different tasks.
TAMT-KD performs the best at 60% sparsity, sur-
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Pre-training Fine-tuning

IMP-MLM TAMT-MLM TAMT-KD TAMT-MLM+KD MNLI SST-2 CoLA STS-B MRPC RTE SQuAD

# Train Samples 103M 103M 103M 103M 392K 67K 8.5K 5.7K 3.6K 2.4K 88K
# Eval Samples 217K 217K 217K 217K 9.8K 0.8K 1K 1.5K 0.4K 0.2K 10K
Max Epochs 2 - - - 3 3 3 3 3 3 2
Eval Iter - - - - 500 50 50 50 50 50 1K
Batch Size 16 16 16 16 32 32 32 32 32 32 16
Max Length 512 512 512 512 128 128 128 128 128 128 384
Lr (linear decay) 5e-5 5e-5 2e-5 5e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 3e-5
Eval Metric Dev Loss Dev Loss Dev Loss - Matched Acc Acc Matthew’s Corr Pearson Corr Acc Acc F1
Optimizer AdamW (Loshchilov and Hutter, 2019)

Table 1: Experimental details about IMP, task-agnostic mask training (TAMT) and fine-tuning. For pre-training, we
report the number of tokens as “# of Train/Eval Samples”. “Dev Loss” denotes the loss of MLM or KD on the dev
set. During fine-tuning, evaluation is performed every “Eval Iter” training iterations.

20% 30% 40% 50% 60% 70% 80% 90%

IMP 2.79K 5.58K 8.38K 11.17K 13.96K 16.75K 19.54K 22.34K
TAMT 3K 6K 8K 11K 14K 17K 20K 22K

Table 2: Pre-training iterations for IMP and TAMT subnetworks at 20% ∼ 90% sparsity.

passing TAMT-MLM on all the five tasks. In con-
trast, TAMT-MLM is better at higher sparsities. 3)
At 80% sparsity, the searching efficiency of the KD
objective is not desirable, which requires more pre-
training steps to outperform IMP on CoLA, STS-B,
SQuAD and the overall performance. However, the
advantage of TAMT-MLM is still obvious at 80%
sparsity.

A.5 Subnetwork Similarity at Different
Sparsities

In Section 4.2.5, we analyse the similarity between
subnetworks at 70% sparsity. In Fig. 17, we
present additional results of subnetworks at differ-
ent sparsities. We can see that the general pattern,
as discussed in Section 4.2.5, is the same across
60%, 70% and 80% sparsities. However, as spar-
sity grows, different searching methods becomes
more distinct from each other. For instance, the
similarity between TAMT-MLM and IMP subnet-
works decreases from 0.75 at 60% sparsity to less
than 0.6 at 80% sparsity. This is understandable
because the higher the sparsity, the lower the prob-
ability that two subnetworks will share the same
weight.

B More Information about Experimental
Setups

B.1 Datasets and Evaluation
For pre-training, we adopt the WikiText-103
dataset 1 for language modeling. WikiText-103

1WikiText-103 is available under the Creative Com-
mons Attribution-ShareAlike License (https://en.

is a collection of articles on Wikipedia and has
over 100M tokens. Such data scale is relatively
small for PLM pre-training. However, we find that
it is sufficient for mask training and IMP to dis-
cover subnetworks with perceivable downstream
improvement.

For the downstream tasks, we use six datasets
from the GLUE benchmark and the SQuAD v1.1
dataset 2. The GLUE benchmark is intended to
train, evaluate, and analyze NLU systems. Our ex-
periments include the tasks of CoLA for linguistic
acceptability, SST-2 for sentiment analysis, RTE
and MNLI for natural language inference, MRPC
and STS-B for semantic matching/similarity. The
SQuAD dataset is for the task of question answer-
ing. It consists of questions posed by crowdworkers
on a set of Wikipedia articles. Tab. 1 summarizes
the dataset statistics and evaluation metrics. All the
datasets are in English language.

B.2 Implementation Details
The hyper-parameters for pre-training and fine-
tuning are shown in Tab. 1. The pre-training setups
of IMP basically follow (Chen et al., 2020), ex-
cept for the number of training epochs, because we
use different pre-training datasets. Since we aim
at finding universal PLM subnetworks that are ag-
nostic to the downstream tasks, we do not perform
hyper-parameter search for TAMT based on the
downstream performance. The pre-training hyper-

wikipedia.org/wiki/Wikipedia:Text_of_
Creative_Commons_Attribution-ShareAlike_
3.0_Unported_License)

2SQuAD is available under the CC BY-SA 4.0 license.
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IMP TAMT-MLM TAMT-KD

BERTBASE 4h6m26s 3h54m58s 4h46m46s
RoBERTaBASE 4h33m9s 4h17m15s 4h51m55s

Table 3: Pre-training time (w/o evaluation during training) of IMP and TAMT on a single on a single 32GB Nvidia
V100 GPU. “h”, “m” and “s” denote hour, minute and second, respectively. The pre-training iterations are 22.34K
and 22K for IMP and TAMT respectively, which correspond to the 90% sparsity in Tab. 2.

parameters in Tab. 1 are determined as they can
guarantee stable convergence on the pre-training
tasks.

For fair comparison between TAMT and IMP,
we control the number of pre-training iterations
(i.e., the number of gradient descent steps) to be
the same. Considering that the IMP subnetworks
of different sparsities are obtained from different
pre-training iterations, we adjust the pre-training
iterations of TAMT accordingly. Specifically, we
set the maximum number of pre-training epochs to
2 for IMP, which equals to 27.92K training itera-
tions. Thus, the sparsity is increased by 10% every
2.792K iterations. Tab. 2 shows the number of pre-
training iterations for IMP and TAMT subnetworks
at 20% ∼ 90% sparsity. Note that the final training
iteration does not equal to 27.92K at 100% sparsity
according to Tab. 2. This is because we prune to
10% sparsity at the 0th iteration, which follows the
implementation of Chen et al. (2020).

The hyper-parameters for downstream fine-
tuning follow the standard setups of (Wolf et al.,
2020; Chen et al., 2020). We use the same set of
hyper-parameters for all the subnetworks, as well
as the full models. We perform evaluations dur-
ing the fine-tuning process, and the best result is
reported as the downstream performance.

Training and evaluation are implemented on
Nvidia V100 GPU. The codes are based on the
Pytorch framework3 and the huggingface Trans-
formers library4 (Wolf et al., 2020). Tab. 3 shows
the pre-training time of IMP and TAMT.

3https://pytorch.org/
4https://github.com/huggingface/transformers
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Figure 11: Downstream performance of BERT and RoBERTa subnetworks found using OMP. Shadowed areas
denote standard deviations.
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Figure 12: MLM dev loss and single task downstream performance of BERTBASE subnetworks. The results of
TAMT are obtained from the masks along the training process, and the results of IMP and Rand are from different
seeds.
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Figure 13: KD dev loss and single task downstream performance of BERTBASE subnetworks. The results of TAMT
are obtained from the masks along the training process, and the results of IMP and Rand are from different seeds.
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Figure 14: The downstream performance of 60% sparse BERTBASE subnetworks on each single task, with increased
pre-training iterations.
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Figure 15: The downstream performance of 70% sparse BERTBASE subnetworks on each single task, with increased
pre-training iterations.
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Figure 16: The downstream performance of 80% sparse BERTBASE subnetworks on each single task, with increased
pre-training iterations.
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Figure 17: Upper: The downstream performance of masks with varying distances from the OMP mask. Shadowed
areas denote standard deviations. Lower: The similarity between masks searched using different methods. The
masks are the same as those used to report the main results. The suffix numbers indicate different seeds. The masks
are from BERTBASE.
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