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Abstract

We propose a generative model for text genera-
tion, which exhibits disentangled latent repre-
sentations of syntax and semantics. Contrary to
previous work, this model does not need syntac-
tic information such as constituency parses, or
semantic information such as paraphrase pairs.
Our model relies solely on the inductive bias
found in attention-based architectures such as
Transformers.

In the attention of Transformers, keys handle
information selection while values specify what
information is conveyed. Our model, dubbed
QKVAE, uses Attention in its decoder to read
latent variables where one latent variable infers
keys while another infers values.

We run experiments on latent representations
and experiments on syntax/semantics transfer
which show that QKVAE displays clear signs
of disentangled syntax and semantics. We also
show that our model displays competitive syn-
tax transfer capabilities when compared to su-
pervised models and that comparable super-
vised models need a fairly large amount of data
(more than 50K samples) to outperform it on
both syntactic and semantic transfer. The code
for our experiments is publicly available1.

1 Introduction

Disentanglement, a process aimed at obtaining neu-
ral representations with identified meaning, is a
crucial component of research on interpretability
(Rudin et al., 2022). A form of disentanglement
that received a lot of interest from the NLP commu-
nity is the separation between syntax and semantics
in neural representations (Chen et al., 2019; Bao
et al., 2019; Zhang et al., 2019; Chen et al., 2020;
Huang and Chang, 2021; Huang et al., 2021). Pre-
vious works perform disentanglement using para-
phrase pairs as information for semantics, and/or
constituency parses as information for syntax. The

1github.com/ghazi-f/QKVAE

dependence of models on labeled data is known to
entail high cost (see Seddah et al., 2020 on syntactic
annotation), and to often require new labels to han-
dle problems such as concept drift (Lu et al., 2019)
and domain adaptation (Farahani et al., 2021).

In light of the above, we propose an unsuper-
vised model which directs syntax and semantics
into different neural representations without se-
mantic or syntactic information. In the Trans-
former architecture (Vaswani et al., 2017), the
attention mechanism is built upon a query from
a set Q, which pools values V through keys K.
For each query, values are selected according to
their matching score computed by the similarity
between their corresponding keys and the query.
Building on an analogy between the (K,V ) cou-
ple and syntactic roles with their lexical realiza-
tions (explicited in §4.2) we present QKVAE2, a
Transformer-based Variational Autoencoder (VAE;
Kingma and Welling, 2014).

To build our model, we modify a previous
Transformer-based VAE, called the Attention-
Driven VAE (ADVAE; Felhi et al., 2021). Using
Cross-Attention, our model encodes sentences into
two latent variables: zsem to infer values for V , and
zsyn to assign keys in K for values in V . These
keys and values are then used in the Attention mech-
anism of a Transformer Decoder to generate sen-
tences. We show that zsyn tends to contain syn-
tactic information, while zsem tends to represent
semantic information. Additionally, comparisons
with a supervised model show that it needs a con-
siderable amount of data to outperform our model
on syntactic and semantic transfer metrics.

Our contributions can be summarized as follows:
• We describe QKVAE, a model designed to dis-

entangle syntactic information from semantic
information by using separate latent variables
for keys and values in Transformers Attention.

2A contraction of the (Q,K, V ) triplet with the VAE
acronym.
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• We run experiments on a dataset for English
which empirically show that the two types
of latent variables have strong preferences re-
spectively for syntax and semantic.

• We also show that our model is capable of
transferring syntactic and semantic informa-
tion between sentences by using their respec-
tive latent variables. Moreover, we show
that our model’s syntax transfer capabilities
are competitive with supervised models when
they use their full training set (more than 400k
sentences), and that a supervised model needs
a fairly large amount of labeled data (more
than 50k samples) to outperform it on both
semantic and syntactic transfer.

2 Related Work

We broadly divide works on explainability in NLP
into two research directions. The first seeks post
hoc explanations for black-box models, and led to
a rich literature of observations on the behavior of
Neural Models in NLP (Tenney et al., 2019; Jawa-
har et al., 2019; Hu et al., 2020; Kodner and Gupta,
2020; Marvin and Linzen, 2020; Kulmizev et al.,
2020; Rogers et al., 2020). Along with these ob-
servations, this line of works also led to numerous
advances in methodology concerning, for instance,
the use of attention as an explanation (Jain and
Wallace, 2019; Wiegreffe and Pinter, 2020), the
validity of probing (Pimentel et al., 2020), or con-
trastive evaluation with minimal pairs (Vamvas and
Sennrich, 2021). The second research direction on
explainability in NLP seeks to build models that
are explainable by design. This led to models with
explicit linguistically informed mechanisms such
as the induction of grammars (RNNG; Dyer et al.,
2016, URNNG; Kim et al., 2019) or constituency
trees (ON-LSTM; Shen et al., 2019, ONLSTM-
SYD; Du et al., 2020).

Disentangled representation learning is a sub-
field of this second research direction which aims
at separating neural representations into neurons
with known associated meanings. This separation
was performed on various characteristics in text
such as style (John et al., 2020; Cheng et al., 2020),
sentiment and topic (Xu et al., 2020), or word mor-
phology (Behjati and Henderson, 2021). In works
on disentanglement, consequent efforts have been
put in the separation between syntax and semantics,
whether merely to obtain an interpretable special-
ization in the embedding space (Chen et al., 2019;

Bao et al., 2019; Ravfogel et al., 2020; Huang et al.,
2021), or for controllable generation (Zhang et al.,
2019; Chen et al., 2020; Huang and Chang, 2021;
Li et al., 2021). However, all these works rely on
syntactic information (constituency parses and PoS
tags) or semantic information (paraphrase pairs).
To the best of our knowledge, our work is the first
to present a method that directs syntactic and se-
mantic information into assigned embeddings in
the challenging unsupervised setup.

From a broader machine learning perspective,
using knowledge of the underlying phenomena in
our data, we design our model QKVAE with an in-
ductive bias that induces understandable behavior
in an unsupervised fashion. Among the existing
line of applications of this principle (Rezende et al.,
2016; Hudson and Manning, 2018; Locatello et al.,
2020; Tjandra et al., 2021), ADVAE (Felhi et al.,
2021), the model on which QKVAE is based, is de-
signed to separate information from the realizations
of different syntactic roles without supervision on
a dataset of regularly structured sentences.

3 Background

In this section, we go over the components of our
model, namely VAEs, attention in Transformers,
and ADVAE, the model on which QKVAE is based.

3.1 VAEs as Language Models
Given a set of observations w, VAEs are a class of
deep learning models that train a generative model
pθ(w) =

∫
z p(z)pθ(w|z)dz, where p(z) is a prior

distribution on latent variables z that serve as a
seed for generation, and pθ(w|z) is called the de-
coder and generates an observation w from each
latent variable value z. Since directly maximizing
the likelihood pθ(w) to train a generative model is
intractable, an approximate inference distribution
qϕ(z|w), called the encoder, is used to formulate
a lower-bound to the exact log-likelihood of the
model, called the Evidence Lower-Bound (ELBo):

log pθ(w) ≥
E(z)∼qϕ(z|w) [log pθ(w|z)]−
KL[qϕ(z|w)||p(z)] = ELBo(w; z) (1)

Early works on VAEs as language models have
shown that, contrary to non-generative sequence-
to-sequence (Sutskever et al., 2014) models, they
learn a smooth latent space (Bowman et al., 2016).
In fact, this smoothness enables decoding an inter-
polation of latent codes (i.e. a homotopy) coming
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from two sentences to yield a well-formed third
sentence that clearly shares characteristics (syntac-
tic, semantic. . . ) with both source sentences. This
interpolation will be used as a control baseline in
our experiments.

3.2 Attention in Transformers.
The inductive bias responsible for the disentangle-
ment capabilities of our model is based on the de-
sign of Attention in Transformers (Vaswani et al.,
2017). In attention mechanisms, each element of
a series of query vectors Q = {q1, . . . , q|Q|} per-
forms a soft selection of values V = {v1, . . . , v|V |}
whose compatibility with the query is given by their
corresponding key vector in K = {k1, . . . , k|V |}
via dot product. For each qi ∈ Q, the series of dot
products is normalized and used as weights for a
convex interpolation of the values. Formally, the
result is compactly written as:

Attention(Q,K, V ) = Softmax(QKT )V (2)

Here, we stress that K is only capable of con-
trolling what information is selected from V , while
V is responsible for the value of this information.
Using the above operators and the embedding level
concatenation operator Cat, Multi-Head Attention
(MHA) in Transformers is defined as follows:

MHA(Q̃, K̃, Ṽ ) = Cat(head1, ...headH)WO

s.t : headi = Attention(Q̃WQ
i , K̃WK

i , Ṽ W V
i )

Where WO, WQ
i , WK

i , and W V
i are trainable pa-

rameter matrices. In turn, Self-Attention (SA) and
Cross-Attention (CA) are defined, for sets of ele-
ments called source S and target T , as follows:

SA(T ) = MHA(T, T, T )

CA(T, S) = MHA(T, S, S)

The above SA mechanism is used to exchange
information between elements of target T , while
in CA, targets T pull (or query for) information
from each element of the source S. Transformer
Encoders (Enc) are defined as the composition of
layers each consisting of an attention followed by
a Feed-Forward Network F:3

Enc(T ) = T̃Denc , s.t. T̃d =

{
T if d = 0, else:
F(SA(T̃d−1))

3We omit residual connections and layer normalizations
after each SA or CA for simplicity.

Transformer Decoders (Dec) are defined with
instances of SA, CA and F:

Dec(T, S) = T̃Ddec , s.t. :

T̃d =

{
T if d = 0, else:
F(CA(SA(T̃d−1), S))

where Denc and Ddec above are respectively the
number of layers of Enc and Dec. For autoregres-
sive decoding, Vaswani et al. (2017) define a ver-
sion of Dec we will call Dec. In this version, the
result of each QKT (Eq. 2) in Self-Attention is
masked so that each ti in T only queries for infor-
mation from tj with j ≤ i. Even though Dec yields
a sequence of length equal to that of target T , in the
following sections we will consider its output to be
only the last element of T̃Ddec in order to express
auto-regressive generation in a clear manner.

3.3 ADVAE

ADVAE is a Variational Autoencoder for unsuper-
vised disentanglement of sentence representations.
It mainly differs from previous LSTM-based (Bow-
man et al., 2016) and Transformer-based (Li et al.,
2020b) VAEs in that it uses Cross-Attention to en-
code and decode latent variables, which is the cor-
nerstone of our model. In ADVAE, Cross-Attention
is used to: i) encode information from sentences
into a fixed number of vectorial latent variables;
ii) decode these vectorial latent variables by using
them as sources for the target sentences generated
by a Transformer Decoder.

Formally, let us define Mµ, Mσ, and Mw to
be linear layers that will respectively be used to
obtain the latent variables’ means and standard
deviations, and the generated words’ probabili-
ties, L the number of vectorial latent variables
z = {z1, . . . , zL}, and finally E = {e1, . . . , eL}
and D = {d1, . . . , dL} two sets of L trainable em-
beddings. Embeddings ei and di serve as fixed
identifiers for the latent variable zi respectively in
the encoder and in the decoder.

Given input token sequence w, the encoder
qϕ(z|w) =

∏
l qϕ(zl|w) first yields parameters µl

and σl to be used by the diagonal Gaussian distri-
bution of each of the latent variables zl as follows4:

4To simplify equations, we omit word embedding look-up
tables and positional embeddings.
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v child to wear cloak winter
k1 nsubj root dobj ∅ −→ decoded (v, k1): A child wears a cloak.
k2 agent root nsubjpass pobj −→ decoded (v, k2): A cloak is worn, in winter, by a child

Table 1: Example of interpretable values for the v and k in our model with L = 4. We display a sentence transiting
from the active form to the passive form, to illustrate how different keys arranging the same values can lead to the
same minimal semantic units being rearranged according to a different syntactic structure. We also stress that a
different set of keys may omit or bring forth an element from the values vector (e.g. "winter" here above).

z̃ = Dec(e; Enc(w))

∀ l s.t. 1 ≤ l ≤L :

µl = Mµ(z̃l), σl = SoftPlus(Mσ(z̃l))

zl ∼ N (µl;σl) (3)

Cross-Attention is also used by the ADVAE
decoder to dispatch information from the source
latent variable samples to the target generated
sequence. Accordingly, using a beginning-of-
sentence token w0, pθ(w|z) =

∏
i pθ(wi|w<i, z)

yields probabilities for the categorical distribution
of the generated tokens w by decoding latent vari-
ables z concatenated with their embeddings d:

y = Cat(d; z)

∀ i s.t. 1 ≤ i ≤ |w| :
w̃i = Dec(w0, . . . , wi−1; Enc(y))

wi ∼ Categorical(Softmax(Mw(w̃i)))

4 QKVAE: Using separate latent
variables for Keys and Values

In this section, we describe the architecture of our
model, the behavior it entails, and how we deal
with the optimization challenges it poses.

4.1 QKVAE architecture

The modification we bring to ADVAE is aimed at
controlling how information is selected from the
latent space with the value of a newly introduced
latent variable. We call this latent variable zsyn,
and refer to the latent variables already formulated
in ADVAE as zsem = {zsem1 , . . . , zsemL }. zsyn is
obtained with the same process as each zseml (Eq.
3), i.e. by adding an additional identifier embed-
ding es, and matrices Mµs and Mσs to obtain its
mean and standard-deviation parameters.

For the QKVAE Decoder, we modify the Trans-
former Decoder Dec into QKVDec so as to use
Multi-Head Attention with separate inputs for keys
and values instead of Cross-Attention :

QKVDec(T ;SK ;SV ) = T̃DQKV , s.t. :

T̃d =

{
T if d = 0, else:
F(MHA(SA(T̃d−1), SK , SV )

where DQKV is the number of layers. Similar to
Dec, we define QKVDec to be the auto-regressive
version of QKVDec. The QKVAE decoder yields
probabilities for the generated tokens by using this
operator on values given by zsem concatenated with
embeddings d, and keys given by a linear transfor-
mation on zsyn:

v = Cat(d;zsem), k = M s(zsyn)

∀ i s.t. 1 ≤ i ≤ |w| :
w̃i =QKVDec(w0, . . . , wi−1; k; v)

wi ∼Categorical(Softmax(Mw(w̃i)))

where M s is a linear layer.5 While ADVAE
already uses Cross-Attention to encode and decode
latent variables, our model uses separate variables
to obtain keys and values for Multi-Head Attention
in its decoder.

4.2 QKVAE Behavior

In the Multi-Head Attention of our decoder, zsyn

controls keys, and zsem controls values. In other
words, the value of each zseml is called to be passed
to the target sequence according to its key which
is given by the variable zsyn. Therefore, given a
query, zsyn decides which content vector zseml par-
ticipates most to the value of the generated token
at each generation step. To better get a gist of the
kind of behavior intended by this construction, we
assume in Table 1 for explanatory purposes, that
our decoder has one layer and one attention head,
that the value of each kl in key matrices k1 and
k2 corresponds to syntactic roles, and that each vl

informs on the realization of the corresponding syn-
tactic role. Table 1 displays the resulting sentence
when each of k1 and k2 are coupled with v.

5The output of Ms is reshaped to obtain a matrix of keys.
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In the examples in Table 1, the generator uses
a query at each generation step to pick a word in
a manner that would comply with English syntax.
Therefore, the key of each value should inform
on its role in the target structure, which justifies
syntactic roles as an adequate meaning for keys.

Although our model may stray from this possi-
bility and formulate non-interpretable values and
keys, keys will still inform on the roles of values in
the target structure, and therefore influence the way
values are injected into the target sequence. And
given the fact that our model uses multiple layers
and attention heads and the continuous nature of
keys in Attention (as opposed to discrete syntac-
tic role labels), our model performs a multi-step
and continuous version of the behavior described
in Table 1.

Injecting values into the structure of a sentence
requires the decoder to model this structure. Previ-
ous works have shown that this is well within the
capabilities of Transformers. Specifically, Hewitt
and Manning (2019) showed that Transformers em-
bed syntactic trees in their inner representations,
Clark et al. (2019) showed that numerous atten-
tion heads attend to specific syntactic roles, and we
(Felhi et al., 2021) showed that Transformer-based
VAEs can capture the realizations of syntactic roles
in latent variables obtained with Cross-Attention.

4.3 Balancing the Learning of zsem and zsyn

Similar to ADVAE, we use a standard Normal
distribution as a prior p(z) = p(zsem)p(zsyn) and
train QKVAE with the β-VAE objective (Higgins
et al., 2017) which is simply ELBo (Eq. 1) with a
weight β on its Kullback-Leibler (KL) term. Hig-
gins et al. (2017) show that a higher β leads to
better unsupervised disentanglement. However, the
KL term is responsible for a phenomenon called
posterior collapse where the latent variables be-
come uninformative and are not used by the de-
coder (Bowman et al., 2016). Therefore, higher val-
ues for β cause poorer reconstruction performance
(Chen et al., 2018). To avoid posterior collapse, we
follow Li et al. (2020a): i) We pretrain our model
as an autoencoder by setting β to 0; ii) We linearly
increase β to its final value (KL annealing; Bow-
man et al., 2016) and we threshold each dimension
of the KL term with a factor λ (Free-Bits strategy;
Kingma et al., 2016).

In preliminary experiments with our model, we
observed that it tends to encode sentences using

only zsem. As we use conditionally independent
posteriors6 q(zsyn|w) and q(zsem|w) for our latent
variables, their KL terms (Eq. 1) can be written
seperately, and they can therefore be weighted sep-
arately with different values of β. Using a lower β
for zsyn as was done by (Chen et al., 2020) 7 did
not prove effective in making it informative for the
model. Alternatively, linearly annealing β for zsem

before zsyn did solve the issue. This intervention
on the learning process was inspired by the work of
Li et al. (2020c) which shows that latent variables
used at different parts of a generative model should
be learned at different paces.

5 Experiments

5.1 Setup
Data To compare our model to its supervised
counterparts, we train it with data from the En-
glish machine-generated paraphrase pairs dataset
ParaNMT (Wieting and Gimpel, 2018). More
specifically, we use the 493K samples used by
Chen et al. (2020)8 to train their model VGVAE.
Since our model is unsupervised, we only use the
reference sentences (half the training set) to train
our model. Using the development and test sets of
ParaNMT, Chen et al. (2020) also provide a curated
set of triplets formed by a target sentence (target),
a semantic source (sem_src),and a syntactic source
(syn_src). The semantic source is a paraphrase of
the target sentence, while the syntactic source is
selected by finding a sentence that is syntactically
close to the target (i.e. edit distance between the
sequence of PoS Tags of both sentences is low9)
and semantically different from the paraphrase (has
low BLEU score with it). Contrary to paraphrases
in the training set of ParaNMT, paraphrases from
this set were manually curated. These triplets are
divided into a development set of 500 samples and
a test set of 800 samples. We display results on the
test set in the main body of the paper. The results
on the development set, which lead to the same
conclusions, are reported in Appendix A.

Training details & hyper-parameters Encoders
and Decoders in QKVAE are initialized with pa-

6These posteriors are ADVAE encoders (Eq. 3).
7Although not explicitly mentioned in the paper, this is

performed in their companion source code.
8https://drive.google.com/open?id=1HHDlUT_-

WpedL6zNYpcN94cLwed_yyrP
9We follow Chen et al. (2020) by using this evaluation

data, although edit distance between PoS tags might not be a
good proxy for syntactic similarity.
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rameters from BART (Lewis et al., 2020). After
manual trial and error on the development set, we
set the sizes of zsyn and zsem to 768, and L to
4. Further Hyper-parameters are in Appendix B.
We train 5 instances of our model and report the
average scores throughout all experiments.

Baselines We compare our system to 4 previ-
ously published models, where 2 are supervised
and 2 are unsupervised: i) VGVAE (Chen et al.,
2020): a VAE-based paraphrase generation model
with an LSTM architecture. This model is trained
using paraphrase pairs and PoS Tags to separate
syntax and semantics into two latent variables. This
separation is used to separately specify semantics
and syntax to the decoder in order to produce para-
phrases; ii) SynPG (Huang and Chang, 2021): A
paraphrase generation Seq2Seq model based on
a Transformer architecture which also separately
encodes syntax and semantics for the same pur-
pose as VGVAE. This model is, however, trained
using only source sentences with their syntactic
parses, without paraphrases; iii) Optimus (Li et al.,
2020b): A large-scale VAE based on a fusion be-
tween BERT (Devlin et al., 2019) and GPT-2 (Rad-
ford et al., 2019) with competitive performance on
various NLP benchmarks; iv) ADVAE: This model
is QKVAE without its syntactic variable. The size
of its latent variable is set to 1536 to equal the total
size of latent variables in QKVAE.

Official open-source instances10 of the 4 mod-
els above are available, which ensures accurate
comparisons. The off-the-shelf instances of VG-
VAE and SynPG are trained on ParaNMT with
GloVe11(Pennington et al., 2014) embeddings. We
fine-tune a pre-trained Optimus on our training set
following instructions from the authors. Similar
to our model, we initialize ADVAE with param-
eters from BART(Lewis et al., 2020) and train 5
instances of it on ParaNMT with L = 4.

5.2 Syntax and Semantics Separation in the
Embedding Space

We first test whether zsyn and zsem respectively
specialize in syntax and semantics. A syntactic
(resp. semantic) embedding should place syntacti-
cally (resp. semantically) similar sentences close

10VGVAE: github.com/mingdachen/syntactic-template-
generation/; SynPG: github.com/uclanlp/synpg; Op-
timus: github.com/ChunyuanLI/Optimus; ADVAE:
github.com/ghazi-f/ADVAE

11Gains could be observed with better embeddings for su-
pervised models, but we stick to the original implementations.

zsem ↑ zsyn ↓
Supervised Models

VGVAE 99.9 14.8
SynPG 93.4 26.5

Unsupervised Models
Optimus 91.8 -
ADVAE 39.5 40.0
QKVAE 89.2 26.4

Table 2: The probability*100 that an embedding places
a target sentence closer to its semantic source than it is
to its syntactic source in the embedding space. Arrows
(↑/↓) indicate whether higher or lower scores are better.

to each other in the embedding space.

Using the (target, sem_src, syn_src) triplets, we
calculate for each embedding the probability that
target is closer to sem_src than it is to syn_src in the
embedding space. For simplicity, we refer to the
syntactic and semantic embeddings of all models
as zsyn and zsem. For Gaussian latent variables, we
use the mean parameter as a representation (respec-
tively the mean direction parameter from the von
Mises-Fisher distribution of the semantic variable
of VGVAE). We use an L2 distance for Gaussian
variables and a cosine distance for the others. Since
Optimus and ADVAE do not have separate embed-
dings for syntax and semantics i) We take the whole
embedding for Optimus; ii)For ADVAE, we mea-
sure the above probability on the development set
for each latent variable zl (Eq. 3). Then, we choose
the latent variable that places target sentences clos-
est to their sem_src (resp. syn_src) as a semantic
(resp. syntactic) variable. The results are presented
in Table 2.

Table 2 clearly shows for QKVAE, SynPG, and
VGVAE that the syntactic (resp. semantic) vari-
ables lean towards positioning sentences in the em-
bedding space according to their syntax (resp. se-
mantics). Surprisingly, the syntactic variable of
our model specializes in syntax (i.e. has low score)
as much as that of SynPG. The generalist latent
variable of Optimus seems to position sentences
in the latent space according to their semantics.
Accordingly, we place its score in the zsem col-
umn. Interestingly, the variables in ADVAE have
very close scores and score well below 50, which
shows that the entire ADVAE embedding leans
more towards syntax. This means that, without
the key/value distinction in the Attention-based de-
coder, the variables specialize more in structure
than in content.
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sem_src syn_src target
STED↑ TMA2↓ TMA3↓ STED↓ TMA2↑ TMA3↑ STED↓ TMA2↑ TMA3↑

Control and Reference baselines
sem_src 0.0 100 100 13.0 40.3 4.8 12.0 39.6 7.0
syn_src 13.0 40.3 4.8 0.0 100 100 5.9 84.3 45.8
Optimus 11.6 50.0 15.9 9.2 61.6 23.6 10.2 58.9 21.8

Supervised Models
VGVAE 13.1 39.9 5.4 3.3 86.4 64.1 6.7 80.4 44.6
SynPG 11.7 41.9 18.0 13.5 74.1 10.5 13.1 69.1 13.3

Unsupervised Models
ADVAE 11.9 47.3 14.0 10.3 54.3† 19.2† 11.1 52.3 17.0
QKVAE 12.7 40.2 7.8 7.2 68.2 39.5 8.9 63.9 28.1

Table 3: Syntactic transfer results. STED is the Syntactic Tree Edit Distance, and TMA2/3 is the exact matching
between constituency trees truncated at the 2nd/3rd level.

sem_src syn_src target
M↑ PB↑ M↓ PB↓ M↑ PB↑
Control and Reference baselines

sem_src 100 1.0 6.9 0.14 28.8 0.84
syn_src 6.9 0.14 100 1.0 12.1 0.16
Optimus 12.4 0.34 15.9 0.39 10.8 0.32

Supervised Models
VGVAE 17.6 0.58 15.3 0.18 24.9 0.58
SynPG 45.9 0.87 8.0 0.13 25.2 0.75

Unsupervised Models
ADVAE 8.0 0.19 8.3† 0.17 7.4 0.19
QKVAE 12.8 0.35 11.0 0.19 12.6 0.34

Table 4: Semantic transfer results. M is the Meteor
score, and PB is the ParaBart cosine similarity.

5.3 Syntactic and Semantic Transfer

Similar to (Chen et al., 2020), we aim to produce
sentences that take semantic content from sem_src
sentences and syntax from syn_src sentences. For
each of SynPG, VGVAE, and QKVAE we simply
use the syntactic embedding of syn_src, and the
semantic embedding of sem_src as inputs to the de-
coder to produce new sentences. Using the results
of the specialization test in the previous experiment,
we do the same for ADVAE by taking the 2 latent
variables that lean most to semantics (resp. syntax)
as semantic (resp. syntactic) variables. The out-
put sentences are then scored in terms of syntactic
and semantic similarity with sem_src, syn_src and
target.

Control and reference baselines Beside model
outputs, we also use our syntactic and semantic
comparison metrics, explicited below, to compare
syn_src and sem_src sentences to one another and
to target sentences. Additionally, using Optimus,
we embed sem_src and syn_src, take the dimension-
wise average of both embeddings, and decode it.
As VAEs are known to produce quality sentence in-
terpolations (Bowman et al., 2016; Li et al., 2020b),

the scores for this sentence help contrast a naïve
fusion of features in the embedding space with a
composition of well identified disentangled fea-
tures.

Transfer metrics We measure the syntactic and
semantic transfer from source sentences to output
sentences. i) Semantics: For semantics, previous
works (Chen et al., 2020; Huang and Chang, 2021)
rely on lexical overlap measures such as BLEU
(Papineni et al., 2001), ROUGE (Lin, 2004), and
Meteor (Denkowski and Lavie, 2014). As will
be shown in our results, the lexical overlap signal
does not capture semantic transfer between sen-
tences when this transfer is too weak to produce
paraphrases. Therefore, we use Meteor (M) in con-
junction with ParaBART (Huang et al., 2021) a
model where BART (Lewis et al., 2020) is fine-
tuned using syntactic information to produce neural
representations that represent maximally semantics
and minimally syntax. We measure the cosine sim-
ilarity between sentences according to ParaBART
embeddings (PB). ii) Syntax: We use the script of
(Chen et al., 2020) to produce a syntactic tree edit
distance (STED) between the constituency trees
of sentences, as was done to assess VGVAE. Ad-
ditionally, following the evaluation procedure de-
signed by Huang and Chang (2021) for SynPG, we
measure the Template Matching Accuracy between
sentences, where the template is the constituency
tree truncated at the second level (TMA2). TMA2
is the percentage of sentence pairs where such tem-
plates match exactly. We extend this measure by
also providing it at the third level (TMA3). Results
are presented in Tables 3 and 4. In both Tables, the
comparison scores between sentences and syn_src
that are not significantly12 different from the same

12We consider differences to be significant if their associ-
ated t-test yields a p-value<0.01.
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scores produced with regard to sem_src are marked
with †.

Sanity checks with metrics and baselines We
notice in Table 4 that using Meteor as a semantic
similarity measure results in various inconsisten-
cies. For instance, paraphrases target have a higher
Meteor score with the syntactic sources than with
interpolations from Optimus. It can also be seen
that the Meteor score between outputs from VG-
VAE and both syntactic and semantic sources are
rather close 13. In contrast, ParaBART score be-
haves as expected across comparisons in Table 4.
Consequently, we retain ParaBART score as a se-
mantic similarity measure. In the following, we
use the scores between sem_src, syn_src, and tar-
get (first two rows in Tables 4 and 3) as reference
scores for unrelated sentences, paraphrase pairs,
and syntactically similar sentences.

Comparing the supervised baselines VGVAE
and SynPG greatly differ in scores. It can be seen
that SynPG copies a lot of lexical items from its se-
mantic input (high Meteor score) which allows for
higher semantic similarity scores. However, Table
3 shows that SynPG transfers syntax from syn_src
at a high level (high TMA2, but low TMA3). In
contrast, VGVAE transfers syntax and semantics in
a balanced way and achieves the best syntax trans-
fer scores overall (lowest STED with syn_src and
target).

Analysing the scores of QKVAE The seman-
tic similarity scores PB of QKVAE outputs with
target and sem_src are close to those of Optimus
outputs. Although these scores are low compared
to supervised models, they are notably higher than
semantic similarity scores between unrelated sen-
tences (e.g. syn_src and sem_src). However, in
contrast to Optimus, QKVAE outputs display low
PB scores with syn_src, which show that they draw
very little semantic information from the syntactic
sources. Concerning syntactic transfer in Table 3,
QKVAE outputs share syntactic information with
syn_src on all levels (low STED, and high TMA2
and TMA3). Our model is even competitive with
SynPG on TMA2, and better on TMA3 and STED.
As expected, the scores comparing QKVAE outputs
to sem_src show that they share very little syntac-
tic information. On the other hand, ADVAE shows
poor transfer performance on syntax and semantics,

13This was not observed by Chen et al. (2020), as they only
compared outputs from VGVAE to the target paraphrases.

with only slight differences between scores w.r.t
syn_src and scores w.r.t sem_src.

5.4 Comparing our Model to a Supervised
Model with Less Data

Since VGVAE displays balanced syntactic and se-
mantic transfer capabilities, we use it for this ex-
periment where we train it on subsets of sizes in
{10K, 25K, 50K, 100K} from its original train-
ing data. Our goal is to find out how much labeled
data is needed for VGVAE to outperform our unsu-
pervised model on both transfer metrics.
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Figure 1: Plotting STED w.r.t syn_ref and the PB co-
sine similarity w.r.t sem_ref for VGVAE with different
amounts of labeled data and for QKVAE. Points are
scaled proportionally to the amount of training data.
The vertical and horizontal diameters of each ellipse are
equal to the standard deviation of the associated data
points and axes.

In Figure 1, we plot for QKVAE and instances of
VGVAE the STED of their outputs w.r.t syn_src and
the PB of these outputs w.r.t sem_src. All values
are averages over 5 runs, with standard deviations
plotted as ellipses. Figure 1 shows that to outper-
form QKVAE on syntactic and semantic transfer,
VGVAE needs more than 50K labeled samples.

6 Discussion and conclusion

In Table 5, we display example outputs of SynPG,
VGVAE, and QKVAE along with their syntactic
sources, semantic sources, and targets. We gen-
erally observed that the outputs of QKVAE range
from paraphrases (line 6) to broadly related sen-
tences (line 3). As was shown by our quantitative
results, outputs from VAE-based models (VGVAE
and QKVAE) share relatively few lexical items with
the semantic input. This can be seen in the qual-
itative examples where they often swap words in
the semantic source with closely related words (e.g.
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sem_src syn_src SynPG VGVAE QKVAE target
we have de-
stroyed the 49th
armored division.

concomitant
usage is not
recommended.

we have de-
stroyed the 49th
armored division.

armored division
hasn’t destroyed.

this military force
will be destroyed.

49th armored di-
vision has been
destroyed .

let the fire burn
and put a piece of
hot iron in it.

sing a song. sing
a song for boys.

don’t put the fire
in it burn a hot
piece of iron and
fire.

burn the fire. put
the iron on burns.

come on fire. get
a fire on it.

keep this fire go-
ing. keep a piece
of hot iron on it.

they took the
lunch boxes ?

have you given
me your hands ?

do they boxes
took the lunch ?

have they taken
them your snacks
?

have you heard of
some lunch ?

have they taken
the lunch boxes ?

does it have a
coach ?

that’s a phone
switcher, right ?

how does it have
a coach ?

that’s a coach
coach, right ?

that’s a warden,
huh?

it has a coach, no
?

an old lady in a
cemetery.

that is a bad time
for a war.

there’s a lady in
an old cemetery.

that’s an old lady
in the cemetery.

this is a strange
place for a
woman.

there is an old
lady in the ceme-
tery.

don’t be afraid. there are still
many places to
go.

you don’t be
afraid.

there aren’t be
afraid to be.

there will be no
need to worry.

there is no need to
be afraid .

isn’t there a door
open ?

the machines are
still good, right ?

a isn’t open door
there ?

the doors aren’t
open, right ?

the door will be
open, okay?

there is a door
open, right ?

Table 5: Syntactic sources (syn_src), semantic sources (sem_src), the sentences produced when using them with
different models, and the corresponding correct paraphrases (target).

"armored division" to "military force" in line 1, or
"lunch boxes" to "snacks" in line 2). We attribute
this quality to the smoothness of the latent space
of VAEs which places coherent alternative lexical
choices in the same vicinity. The examples above
also show that our model is capable of capturing
and transferring various syntactic characteristics
such as the passive form (line 1), the presence of
subject-verb inversion (lines 3, 4, and 7), or inter-
jections (lines 4 and 6).

We presented QKVAE, an unsupervised model
which disentangles syntax from semantics without
syntactic or semantic information. Our experiments
show that its latent variables effectively position
sentences in the latent space according to these
attributes. Additionally, we show that QKVAE
displays clear signs of disentanglement in trans-
fer experiments. Although the semantic transfer is
moderate, syntactic transfer with QKVAE is com-
petitive with SynPG, one of its supervised counter-
parts. Finally, we show that VGVAE, a supervised
model, needs more than 50K samples to outperform
QKVAE on both syntactic and semantic transfer.

We plan to extend this work in three directions: i)
Finding ways to bias representations of each zseml

towards understandable concepts; ii) Applying QK-
VAE to non-textual data since it is data agnostic
(e.g. to rearrange elements of a visual landscape.);
iii) Investigating the behavior of QKVAE on other
languages.
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A Results on the development set

We hereby display the scores on the development
set. The encoder scores concerning the specializa-
tion of latent variables are in Table 6, while the
transfer scores are in Table 7 for semantics, and
Table 8 for syntax. The values on the development
set concerning the comparison of QKVAE with
VGVAE trained on various amounts of data is in
Figure 2.

B Hyper-parameters

Hyper-parameter values The β weight on the
KL divergence is set to 0.6 for zc and to 0.3 for zs,
and the λ threshold for the Free-Bits strategy is set

zsem ↑ zsyn ↓
Supervised Models

VGVAE 99.0 16.4
SynPG 91.6 31.2

Unsupervised Models
Optimus 89.4 -
ADVAE 41.0 40.3
QKVAE 86.7 27.0

Table 6: The probability*100 that an embedding places
a target sentence closer to its semantic source than it is
to its syntactic source in the embedding space. (devel-
opment set results)

sem_src syn_src target
M↑ PB↑ M↓ PB↓ M↑ PB↑

Control and Reference baselines
sem_src 100 1.0 7.4 0.13 27.4 0.82
syn_src 7.4 0.13 100 1.0 12.0 0.16
Optimus 13.00 0.35 13.4 0.34† 10.5 0.32

Supervised Models
VGVAE 18.3 0.58 15.2 0.17 23.0 0.57
SynPG 47.6 0.86 7.8 0.11 24.4 0.73

Unsupervised Models
ADVAE 9.0 0.20 8.1 0.17 7.7 0.19
QKVAE 13.4 0.36 11.3 0.19 12.9 0.35

Table 7: Semantic transfer results (development set
results)
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Figure 2: Plotting STED w.r.t syn_ref and the PB co-
sine similarity w.r.t sem_ref for VGVAE with different
amounts of labeled data and for QKVAE. Points are
scaled proportionally to the amount of training data.
The vertical and horizontal diameters of each ellipse are
equal to the standard deviation of the associated data
points and axes.

to 0.05. KL annealing is performed between steps
3K and 6K for zsem, and between steps 7K and
20K for zsyn. The model is trained using Adafac-
tor (Shazeer and Stern, 2018), a memory-efficient
version of Adam (Kingma and Ba, 2015). Using
a batch size of 64, we train for 40 epochs, which
takes about 30 hours on a single Nvidia GEForce
RTX 2080 GPU. We use 4 layers for both Trans-
former encoders and decoders. The encoders (resp.
decoders) are initialized with parameters from the
4 first layers (resp. 4 last layers) of BART encoders
(resp. decoders). In total, our model uses 236M
parameters.

Manual Hyper-parameter search Given that
the architecture for Transformer layers is fixed by
BART, we mainly explored 3 parameters: number
of latent variables L, number of Transformer lay-
ers, values for β. Our first experiments have shown
that setting L to 8 or 16 does not yield good re-

sem_src syn_src target
STED↑ TMA2↓ TMA3↓ STED↓ TMA2↑ TMA3↑ STED↓ TMA2↑ TMA3↑

Control/Ceiling baselines
sem_src 0.0 100 100 11.9 46.4 6.8 10.9 47.0 7.3
syn_src 11.9 46.4 6.8 0.0 100 100 6.0 81.6 45.0
Optimus 9.7 58.2 20.6 9.2† 61.6† 22.6† 9.9 59.6 18.4

Supervised Models
VGVAE 11.9 45.4 6.8 3.2 84.2 58.2 6.7 77.6 39.0
SynPG 9.3 49.4 21.4 12.2 73.0 12.2 12.2 68.6 13.0

Unsupervised Models
ADVAE 10.1 53.4 18.6 9.8† 55.0† 17.4† 10.5 52.8 15.4
QKVAE 11.4 45.0 9.1 6.8 66.4 37.4 8.6 63.0 26.9

Table 8: Syntactic transfer results (development set results)
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sults, which is probably due to the fact that a high
L raises the search space for possible arrangements
of values with keys, and consequently makes con-
vergence harder. Concerning the number of layers,
we observed that results with the full BART model
(6 layers) have high variance over different runs.
Reducing the number of layers to 4 solved this is-
sue. In regards to β, we observed that it must be
0.6 or less for the model to produce adequate recon-
structions and that it is beneficial to set it slightly
lower for zsyn than for zsem so as to absorb more
syntactic information with zsyn.
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