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Abstract

Keyphrase extraction is a fundamental task in
natural language processing that aims to ex-
tract a set of phrases with important informa-
tion from a source document. Identifying im-
portant keyphrases is the central component of
keyphrase extraction, and its main challenge is
learning to represent information comprehen-
sively and discriminate importance accurately.
In this paper, to address the above issues, we
design a new hyperbolic matching model (Hy-
perMatch) to explore keyphrase extraction in
hyperbolic space. Concretely, to represent in-
formation comprehensively, HyperMatch first
takes advantage of the hidden representations
in the middle layers of RoBERTa and integrates
them as the word embeddings via an adaptive
mixing layer to capture the hierarchical syntac-
tic and semantic structures. Then, considering
the latent structure information hidden in natu-
ral languages, HyperMatch embeds candidate
phrases and documents in the same hyperbolic
space via a hyperbolic phrase encoder and a
hyperbolic document encoder. To discriminate
importance accurately, HyperMatch estimates
the importance of each candidate phrase by
explicitly modeling the phrase-document rele-
vance via the Poincaré distance and optimizes
the whole model by minimizing the hyperbolic
margin-based triplet loss. Extensive experi-
ments are conducted on six benchmark datasets
and demonstrate that HyperMatch outperforms
the recent state-of-the-art baselines.

1 Introduction

Keyphrase Extraction (KE) aims to extract a set
of phrases related to the main points discussed in
the source document, a fundamental task in Natu-
ral Language Processing (NLP). Because of their
succinct and accurate expression, keyphrase extrac-
tion is helpful for a variety of applications such as
information retrieval (Kim et al., 2013) and text
summarization (Liu et al., 2009a).
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The Great Plateau is a large region of land that is secluded from …

Figure 1: Sample partial of the document in OpenKP
dataset. For ease of presentation, we assume “a large
region of land” is a 5-gram candidate phrase as an ex-
ample in the document.

Typically, most existing keyphrase extraction
models mainly include two procedures: candidate
keyphrase extraction and keyphrase importance es-
timation. Specifically, the former extracts candi-
date phrases from the document via some heuristics
(Nguyen and Phan, 2009; Liu et al., 2009b; Grineva
et al., 2009; Wan and Xiao, 2008; Liu et al., 2009c),
and the latter determines which candidate phrases
are keyphrases via unsupervised or supervised mod-
els (Mihalcea and Tarau, 2004; Xiong et al., 2019;
Sun et al., 2020; Song et al., 2021). The keyphrase
importance estimation procedure usually plays a
more critical role than the candidate keyphrase ex-
traction procedure in the supervised setting.

In the supervised neural keyphrase extraction
models, the keyphrase importance estimation pro-
cedure can be subdivided into information represen-
tation and importance discrimination. Specifically,
the information representation part focuses on mod-
eling the encoding procedure, and the importance
discrimination part focuses on measuring the im-
portant scores of candidate phrases. To represent
information comprehensively, recent keyphrase ex-
traction studies have been proposed to build better
representations via Bi-LSTM (Meng et al., 2017),
GCNs (Sun et al., 2019; Zhang et al., 2020), and the
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pre-trained language models (e.g., ELMo (Xiong
et al., 2019), BERT, and RoBERTa (Liu et al., 2020;
Sun et al., 2020)). To discriminate the importance
of candidate phrases precisely, most existing su-
pervised keyphrase extraction models (Sun et al.,
2020; Mu et al., 2020; Song et al., 2021) estimate
and rank the importance of candidate phrases to
extract keyphrases by using different approaches,
such as classification and ranking models.

Although the existing keyphrase extraction mod-
els mentioned above have achieved significant per-
formance, the keyphrase extraction task still needs
improvement. Among them, there are the following
two main issues. The first issue lies in the informa-
tion representation. Typically, candidate phrases
often exhibit the inherent hierarchical structures
ingrained with complex syntactic and semantic in-
formation (Dai et al., 2021; Zhou et al., 2020). In
general, the longer phrases contain more complex
structures. (as shown in Figure 1, the phrase "a
large region of land" has more complex inherent
structures than "region" or "a large region". Simi-
larly, the phrase "a large region" is more complex
than "region"). Besides the phrases, since linguis-
tic ontologies are intrinsic hierarchies (Dai et al.,
2021), the conceptual relations between phrases
and their corresponding document can also form
the hierarchical structures. Therefore, the hierar-
chical structures need to be considered when repre-
senting both phrases and documents and estimating
the phrase-document relevance. However, it is dif-
ficult to capture such structural information even
with infinite dimensions in the Euclidean space
(Linial et al., 1995). The second issue lies in dis-
tinguishing the importance of phrases. Keyphrases
are typically used to retrieve and index their cor-
responding document, so they should be highly
related to the main points of the source document
(Hasan and Ng, 2014). However, most existing
supervised keyphrase extraction methods ignore
explicitly modeling the relevance between candi-
date keyphrases and their corresponding document,
resulting in biased keyphrase extraction.

Motivated by the above issues, in this paper, we
explore the potential of hyperbolic space for the
keyphrase extraction task and propose a new hyper-
bolic relevance matching model (HyperMatch) for
supervised neural keyphrase extraction. Firstly, to
capture hierarchical syntactic and semantic struc-
ture information, HyperMatch integrates the hid-
den representations in all the intermediate layers of

RoBERTa to collect the adaptive contextualized
word embeddings via an adaptive mixing layer
based on the self-attention mechanism. And then,
considering the hierarchical structure hidden in the
natural language content, HyperMatch represents
both phrases and documents in the same hyperbolic
space via a hyperbolic phrase encoder and a hyper-
bolic document encoder. Meanwhile, we adopt the
Poincaré distance to calculate the phrase-document
relevance by considering the latent hierarchical
structures between candidate keyphrases and the
document. In this setting, the keyphrase extraction
task can be regarded as a matching problem and ef-
fectively implemented by minimizing a hyperbolic
margin-based triplet loss. To the best of our knowl-
edge, we are the first work to explore the super-
vised keyphrase extraction in hyperbolic space. Ex-
periments on six benchmark datasets demonstrate
that HyperMatch outperforms the state-of-the-art
keyphrase extraction baselines.

2 Preliminaries

Hyperbolic space is an important concept in hyper-
bolic geometry, which is considered as a special
case in the Riemannian geometry (Hopper and An-
drews, 2011). Before presenting our model, this
section briefly introduces the basic information of
hyperbolic space.

In a traditional sense, hyperbolic spaces are not
vector spaces; one cannot use standard operations
such as summation, multiplication, etc. To rem-
edy this problem, one can utilize the formalism of
Möbius gyrovector spaces allowing the generaliza-
tion of many standard operations to the hyperbolic
spaces (Khrulkov et al., 2020). Similarly to the pre-
vious work (Nickel and Kiela, 2017; Ganea et al.,
2018; Tifrea et al., 2019), we adopt the Poincaré
ball and use an additional hyper-parameter c which
modifies the curvature of Poincaré ball; it is then de-
fined as Dn

c = {x ∈ Rn : c‖x‖2 < 1, c ≥ 0}. The
corresponding conformal factor now takes the form
λcx := 2

1−c‖x‖2 . In practice, the choice of c allows
one to balance the hyperbolic and the euclidean
geometries, which is made precise by noting that
when c→ 0, all the formulas discussed below take
their usual Euclidean form.

In the following, we restate the definitions of
fundamental mathematical operations for the gen-
eralized Poincaré ball model (Ganea et al., 2018).
Next, we give the details of the closed-form formu-
las of several Möbius operations.
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Figure 2: Framework of the hyperbolic relevance matching model (HyperMatch).

Möbius Addition. For a pair x,y ∈ Dn
c , the

Möbius addition is defined as,

x⊕cy =
(1 + 2c〈x,y〉+ c‖y‖2)x+ (1− c‖x‖2)y

1 + 2c〈x,y〉+ c2‖x‖2‖y‖2 . (1)

Möbius Matrix-vector Multiplication. For a lin-
ear map M : Rn → Rm and ∀x ∈ Dn

c , if Mx 6= 0,
then the Möbius matrix-vector multiplication is de-
fined as,

M⊗c x = (
1√
c
)tanh(

‖Mx‖
‖x‖ tanh−1(‖√cx‖)) Mx

‖Mx‖ ,
(2)

where M⊗c x = 0 if Mx = 0.
Poincaré Distance. The induced distance function
is defined as,

dc(x,y) =
2√
c

arctanh(
√
c‖ − x⊕c y‖). (3)

Note that with c = 1 one recovers the geodesic
distance, while with c→ 0 we obtain the Euclidean
distance limc→0dc(x,y) = 2‖x− y‖.
Exponential and Logarithmic Maps. To perform
operations in hyperbolic space, one first needs to
define a mapping function from Rn to Dn

c to map
the euclidean vectors to the hyperbolic space. Let
TxDn

c denote the tangent space of Dn
c at x. The

exponential map expcx(·) : TxDn
c → Dn

c for v 6= 0
is defined as:

expc
x(v) = x⊕c (tanh(

√
c
λc
x‖v‖
2

)
v√
c‖v‖ ). (4)

As the inverse of expcx(·), the logarithmic map
logcx(·) : Dn

c → TxDn
c for y 6= x is defined as:

logc
x(y) =

2√
cλc

x
tanh−1(

√
c‖−x⊕cy‖) −x⊕c y

‖ − x⊕c y‖
(5)

Hyperbolic Averaging Pooling. The average pool-
ing, as an important operation common in natural
language processing, is averaging of feature vec-
tors. In the euclidean setting, this operation takes
the following form:

AP(x1, ...,xi, ...,xM ) =
1

M

M∑

i=1

xi. (6)

Extension of this operation to hyperbolic spaces
is called the Einstein Midpoint and takes the most
simple form in Klein coordinates:

HyperAP(x1, ...,xi, ...,xM ) =
M∑

i=1

γixi/
M∑

i=1

γi, (7)

where γi = 1√
1−c‖xi‖2

is the Lorentz factor. Re-

cent work (Khrulkov et al., 2020) demonstrates that
the Klein model is supported on the same space as
the Poincaré ball; however, the same point has dif-
ferent coordinate representations in these models.
Let xD and xK denote the coordinates of the same
point in the Poincaré and Klein models correspond-
ingly. Then the following transition formulas hold.

xD =
xK

1 +
√

1− c‖xK‖2
, (8)

xK =
2xD

1 + c‖xD‖2
. (9)

Therefore, given points in the Poincaré ball, we
can first map them to the Klein model via Eq.(9),
compute the average using Eq.(7), and then move
it back to the Poincaré model via Eq.(8).
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3 HyperMatch

Given a document D = {w1, ..., wi, ..., wM}, the
candidate phrases are first extracted from the source
document by the n-gram rules, where M indicates
the max length of the input document. Then, to
determine which candidate phrases are keyphrases,
we design a new hyperbolic relevance matching
model (HyperMatch), which mainly consists of
two components: information representation and
importance discrimination. Figure 2 illustrates the
overall framework of HyperMatch.

3.1 Information Representation

Information representation is one of the essential
parts of keyphrase importance estimation, which
needs to represent information comprehensively.
To capture rich syntactic and semantic information,
HyperMatch first embeds words by the pre-trained
language model RoBERTa with the adaptive mix-
ing layer. Then, phrases and documents are embed-
ded in the same hyperbolic space by a hyperbolic
phrase encoder and a hyperbolic document encoder.
In the following subsections, the information repre-
sentation procedure will be described in detail.

3.1.1 Contextualized Word Encoder
Pre-trained language models (Peters et al., 2018;
Devlin et al., 2019; Liu et al., 2019) have emerged
as a critical technology for achieving impressive
gains in natural language tasks. These models ex-
tend the idea of word embeddings by learning con-
textualized text representations from large-scale
corpora using a language modeling objective. Thus,
recent keyphrase extraction methods (Xiong et al.,
2019; Sun et al., 2020; Wang et al., 2020; Mu et al.,
2020) represent words / documents by the last in-
termediate layer of pre-trained language models.

However, various probing tasks (Jawahar et al.,
2019; de Vries et al., 2020) are proposed to discover
linguistic properties learned in contextualized word
embeddings, which demonstrates that different in-
termediate layers in pre-trained language models
contain different linguistic properties or informa-
tion. Specifically, each layer has specific specializa-
tions, so combining features from different layers
may be more beneficial than selecting the last one
based on the best overall performance.

Motivated by the phenomenon above, we pro-
pose a new adaptive mixing layer to combine all
intermediate layers of RoBERTa (Liu et al., 2019)
to obtain word representations. Firstly, each word

in the source document D is represented by all the
intermediate layers in RoBERTa, which is encoded
to a sequence of vector H = {h1, ...,hi, ...,hM}
as follows,

H = RoBERTa{w1, ...,wi, ...,wM}. (10)

Specially, hi ∈ RL∗dr indicates the i-th contextual-
ized word embedding of wi, where L and dr are set
to 12 and 768. Then, the self-attention mechanism
is adopted to aggregate the multi-layer representa-
tions of each word from RoBERTa as follows:

αi = softmax(Vahi), (11)

ĥi = Waαihi, (12)

where Va ∈ Rdr and Wa ∈ Rdr∗dr denote the
learnable weights. Here, αi ∈ RL represents the
adaptive mixing weights of the proposed adaptive
mixing layer in HyperMatch. In this case, each
word in the source document D is transferred to a
sequence of vector Ĥ = {ĥ1, ..., ĥi, ..., ĥM}. The
adaptive mixing layer allows our model to obtain
more comprehensive word embeddings, capturing
more meaningful features (e.g., surface, syntactic,
and semantic).

3.1.2 Hyperbolic Phrase Encoder
Phrases often exhibit inherent hierarchies ingrained
with complex syntactic and semantic information
(Zhu et al., 2020). Therefore, representing infor-
mation requires sufficiently encoding semantic and
syntactic information, especially for the latent hier-
archical structures hidden in the natural languages.
Recent studies (Sun et al., 2020; Xiong et al., 2019)
typically obtain phrase representations in Euclidean
space, which makes it difficult to learn representa-
tions with such latent structural information even
with infinite dimensions in Euclidean space (Linial
et al., 1995). On the contrary, hyperbolic spaces are
non-Euclidean geometric spaces that can naturally
capture the latent hierarchical structures (Sarkar,
2011; Sa et al., 2018).

Lately, the use of hyperbolic space in NLP (Dhin-
gra et al., 2018; Tifrea et al., 2019; Nickel and
Kiela, 2017) is motivated by the ubiquity of hier-
archies (e.g., the latent hierarchical structures in
phrases, sentences, and documents) in NLP tasks.
Therefore, in this paper, we propose to embed
phrases in hyperbolic space. Concretely, the phrase
representation of the i-th n-gram cni is computed
as follows,

ĥn
i = CNNn(ĥi:i+n), (13)
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where ĥn
i ∈ Rdh represents the i-th n-gram rep-

resentation, n ∈ [1, N ] indicates the length of n-
grams, and N is the maximum length of n-grams.
Each n-gram has its own set of convolution filters
CNNn with window size n and stride 1.

To capture the latent hierarchies of phrases, we
map phrases representation to the Poincaré ball
using the exponential map,

h̃n
i = expc0(ĥ

n
i ), (14)

where h̃n
i is the i-th n-gram candidate phrase repre-

sentation in the hyperbolic space. By mapping the
representations of candidate phrases into the hyper-
bolic space, it is possible to implicitly capture the
latent hierarchical structure of candidate phrases
during the training procedure.

3.1.3 Hyperbolic Document Encoder
When using the source document as the query to
match keyphrases, the representation of the docu-
ment should cover its main points (important infor-
mation). Meanwhile, documents are usually long
text sequences with richer semantic and syntactic
information than candidate phrases. Many current
BERT-based methods (Mu et al., 2020; Zhong et al.,
2020) in NLP obtain documents representation by
using the first output token (the [CLS] token) of the
pre-trained language models. However, recent stud-
ies (Reimers and Gurevych, 2019; Li et al., 2020)
demonstrate that in many NLP tasks, documents
representation obtained by the average pooling of
words representation is better than the [CLS] token.

Motivated by the above issues, we use the aver-
age pooling, a simple and effective operation, to
encode documents. To further consider the latent
hierarchical structures of documents, we map word
representations and transfer the average pooling
operation to the hyperbolic space. In this case, we
first map word representations to the hyperbolic
space via the exponential map as follows:

H̃ = {h̃1, ..., h̃i, ..., h̃M} = expc0(ĤWh), (15)

where Wh ∈ Rdr∗dh maps the original BERT em-
bedding space to the tangent space of the origin of
the Poincaré ball. Then exp0(·) maps the tangent
space inside the Poincaré ball. Next, we use the
hyperbolic averaging pooling to encode the source
document as follows:

h̃ = HyperAP({h̃1, ..., h̃i, ..., h̃M}), (16)

where h̃ ∈ Rdh indicates the hyperbolic document
representation (called Einstein Midpoint pooling

vectors in the Poincaré ball (Gulcehre et al., 2019)).
The hyperbolic average pooling emphasizes seman-
tically specific words that usually contain more
information but occur less frequently than general
ones. It should be noted that points near the bound-
ary of the Poincaré ball get larger weights in the
Einstein Midpoint formula, which may be more rep-
resentative content in the source document (Dhin-
gra et al., 2018; Zhu et al., 2020).

3.2 Importance Discrimination

Importance discrimination is one of the primary
parts of the keyphrase importance estimation proce-
dure, which estimates the important scores of can-
didate phrases accurately to extract keyphrases. To
reach this goal, we first calculate the scaled phrase-
document relevance between candidate keyphrases
and their corresponding document via the Poincaré
distance as the important score of each candidate
keyphrase. Then, the whole model is optimized by
the hyperbolic margin-based triplet loss to extract
keyphrases accurately.

3.2.1 Scaled Phrase-Document Relevance
Besides the intrinsic hierarchies of linguistic on-
tologies, the conceptual relations between candi-
date phrases and their corresponding document can
also form hierarchical structures. Once the docu-
ment representation h̃ and phrase representations
h̃n
i are obtained, it is expected that the phrases

and their corresponding document embedded close
to each other based on their geodesic distance1 if
they are highly relevant. Specifically, the scaled
phrase-document relevance of the i-th n-gram rep-
resentation cni can be computed as follows:

S(cni ,D) = −
λ(dc(h̃

n
i , h̃))

2

√
dh

+ (1− λ)fc(h̃n
i ),

(17)
where S(·) indicates the scaled phrase-document
relevance. Here, dc indicates the Poincaré dis-
tance, which is introduced in Eq.(3). Here, fc
indicates the linear transformation in hyperbolic
space. Specifically, for Eq. 17, the first term mod-
els the phrase-document relevance explicitly, and
the second term models the phrase-document rele-
vance implicitly. Estimating the phrase-document
relevance via the Poincaré distance in hyperbolic

1Note that cosine similarity (Wang et al., 2017) is not
appropriate to be the metric since there does not exist a clear
hyperbolic inner-product for the Poincaré ball (Tifrea et al.,
2019), so the Poincaré distance is more suitable.
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space allows HyperMatch to model the latent hier-
archical structures between candidate phrases and
their document, accurately estimating the impor-
tance of candidate keyphrases. In addition, we find
that increasing the dimension dh of representations
will increase the value of the phrase-document rele-
vance, causing the optimization collapse of our
model. To counteract this effect, we scale the
phrase-document relevance by 1√

dh
.

3.2.2 Margin-based Triplet Loss
To select phrases with higher importances, we
adopt the margin-based triplet loss in our model
and optimize for margin separation in hyperbolic
space. Therefore, we first treat the candidate
keyphrases in the document that are labelled as
keyphrases, in the positive set P+, and the others to
the negative set P−, to obtain the matching labels.
Then, the loss function is calculated as follows:

L = max(0,
δ√
dh
− S(p+,D)+ S(p−,D)), (18)

where δ indicates the margin. It enforces Hyper-
Match to sort the candidate keyphrases p+ ahead of
p− within their corresponding document. Through
this training objective, our model will tend to ex-
tract the keyphrases, which are more relevant to the
source document.

4 Experimental Settings

4.1 Benchmark Datasets
Six benchmark keyphrase datasets are used in our
experiments, which contain OpenKP (Xiong et al.,
2019), KP20k (Meng et al., 2017), Inspec (Hulth,
2003), Krapivin (Krapivin and Marchese, 2009),
Nus (Nguyen and Kan, 2007), and SemEval (Kim
et al., 2010)). We follow the previous work (Sun
et al., 2020) to preprocess each dataset with the
same procedure.

4.2 Implementation Details
Implementation details of HyperMatch are summa-
rized in Table 1. The maximum document length is
512 tokens due to RoBERTa limitations (Liu et al.,
2019) and documents are zero-padded or truncated
to this length. Our model was implemented in
Pytorch 1.82 (Paszke et al., 2019) using the hug-
ging face reimplementation of RoBERTa3 (Wolf
et al., 2019) and was trained on eight NVIDIA RTX
A4000 GPUs to achieve the best performance.

2https://pytorch.org/
3https://huggingface.co/transformers/index.html

Hyperparameter Dimension or Value
RoBERTa Embedding (Rdc) 768

Hyperbolic Rank (Rdh) 768
Max Sequence Length 512

Maximum Phrase Length (N) 5
c 1

λ 0.5

δ 1.0
Optimizer AdamW
Batch Size 72

Learning Rate 5× 10−5

Warm-Up Proportion 10%

Table 1: Parameters used for training HyperMatch.

4.3 Evaluation Metrics

For the keyphrase extraction task, the performance
of the existing models is typically evaluated by
comparing the top-K predicted keyphrases with
the target keyphrases (the ground-truth labels). The
evaluation cutoff K can be a fixed number (e.g.,
F1@5 compares the top-5 keyphrases predicted
by the model with the ground-truth to compute an
F1 score). Following the previous work (Meng
et al., 2017; Sun et al., 2020; Song et al., 2021), we
adopt macro-averaged recall and F-measure (F1) as
evaluation metrics, andK is set to be 1, 3, 5, and 10.
In the evaluation, we apply Porter Stemmer4 to both
the target keyphrases and the extracted keyphrases
when determining the exact match of keyphrases.

4.4 Baselines

We compare two kinds of solid baselines to give
a comprehensive evaluation of the performance
of HyperMatch: unsupervised keyphrase extrac-
tion models (e.g., TextRank (Mihalcea and Tarau,
2004) and TFIDF (Jones, 2004)) and supervised
keyphrase extraction models (e.g., classification
and ranking models based variants of BERT (Sun
et al., 2020)). Noticeably, HyperMatch extracts
keyphrases without using additional features on the
OpenKP dataset. Therefore, for the sake of fair-
ness, we do not compare with the methods (Xiong
et al., 2019; Wang et al., 2020) which use additional
features to extract keyphrases.

In addition, this paper mainly focuses on ex-
ploring keyphrase extraction in hyperbolic space
via a matching framework (similar to the ranking
model). Hence, the compared baselines we mainly
choose are keyphrase extraction methods based on

4https://tartarus.org/martin/PorterStemmer/
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Model
OpenKP

P@1 P@3 P@5 R@1 R@3 R@5 F1@1 F1@3 F1@5

Unsupervised Keyphrase Extraction Models

TFIDF 28.3 18.4 13.7 15.0 28.4 34.7 19.6† 22.3† 19.6†

TextRank 7.7 6.2 5.5 4.1 9.8 14.2 5.4† 7.6† 7.9†

Supervised Keyphrase Extraction via Classification Models

BERT-Chunking-KPE 51.1 30.6 22.5 27.1 46.4 55.8 34.0 35.6 31.1

SpanBERT-Chunking-KPE 52.3 32.1 23.5 27.8 48.6 58.1 34.8 37.2 32.4

RoBERTa-Chunking-KPE 53.3 32.2 23.5 28.3 48.6 58.1 35.5 37.3 32.4

Supervised Keyphrase Extraction via Ranking Models

BERT-Ranking-KPE 51.3 32.3 23.5 27.3 48.9 58.2 34.2 37.4 32.5

SpanBERT-Ranking-KPE 53.0 32.7 24.0 28.4 49.7 59.3 35.5 38.0 33.1

RoBERTa-Ranking-KPE 53.8 33.7 24.4 29.0 50.9 60.4 36.1 39.0 33.7

HyperMatch 54.7 33.9 24.7 29.5 51.5 61.2 36.4 39.4 33.8

Table 2: Model performance on the OpenKP dataset. The best results of our model are highlighted in bold. F1@3 is
the main evaluation metric (marked in bold) for this dataset (Xiong et al., 2019; Wang et al., 2020). † denotes these
results are not included in the original paper and are estimated with Precision and Recall score. The results of the
baselines are reported in their corresponding papers.

the classification and ranking models rather than
some existing studies based on integration models
(Ahmad et al., 2021; Wu et al., 2021) or multi-task
learning (Song et al., 2021).

5 Results and Analysis

In this section, we test the performance of Hyper-
Match on six widely-used benchmark keyphrase
extraction datasets (OpenKP, KP20k, Inspec,
Krapivin, Nus, and Semeval) from three facets. The
first one demonstrates its superiority by comparing
HyperMatch with the recent baselines in terms of
several metrics. The second one is to verify the
effect of each component via ablation tests. The
last one is to test the sensitivity of the hyperbolic
margin-based triplet loss with different margins.

5.1 Performance Comparison
The experimental results are given in Table 2 and
Table 3. Overall, HyperMatch outperforms the
recent BERT-based keyphrase extraction models
(the results are reported in their own articles) in
most cases. Concretely, on the OpenKP and KP20k
datasets, HyperMatch achieves better results than
the best ranking models RoBERTa-Ranking-KPE.
The main reason for this result may be that learn-
ing representation in hyperbolic space can cap-
ture more latent hierarchical structures than the
euclidean space. Meanwhile, compared with the
results on the other four zero-shot datasets (Inspec,

Krapivin, Nus, and Semeval) in Table 3, it can be
seen that HyperMatch outperforms both unsuper-
vised and supervised baselines. We consider that
the main reason is the scaled phrase-document rel-
evance explicitly models a strong connection be-
tween phrases and their corresponding document
via the Poincaré distance, obtaining more robust
performance even in different datasets.

5.2 Ablation Study

In this section, we report on several ablation experi-
ments to analyze the effect of different components.
The ablation experiment on the OpenKP dataset is
shown in Table 4.

To measure the effectiveness of hyperbolic space
for the keyphrase extraction task, we compare it
with the same model in the euclidean space and
use the euclidean distance to explicitly model the
phrase-document relevance. As shown in Table 4,
HyperMatch outperforms EuclideanMatch, which
shows that using the hyperbolic space can capture
the latent hierarchical structures more effectively
than the euclidean space.

To verify the effectiveness of the adaptive mix-
ing layer, we propose a model HyperMatch w/o
AML, which indicates HyperMatch without using
the adaptive mixing layer module and only uses
the last intermediate layer of RoBERTa to embed
phrases and documents. As shown in Table 4, the
performance of our model HyperMatch without us-
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Model
Inspec Krapivin Nus SemEval KP20k

F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10

TFIDF 22.3 30.4 11.3 14.3 13.9 18.1 12.0 18.4 10.5 13.0

TextRank 22.9 27.5 17.2 14.7 19.5 19.0 17.2 18.1 18.0 15.0

RoBERTa-Ranking-KPE† 28.1 29.1 29.9 23.7 44.6 37.7 35.4 32.6 41.4 34.2

HyperMatch 30.4 32.2 32.8 26.3 45.8 41.3 35.7 36.8 41.6 34.3

Table 3: Results of keyphrase extraction on five benchmark keyphrase datasets. F1 scores on the top 5 and
10 keyphrases are reported. † indicates that these results are evaluated via the code which is provided by its
corresponding paper. The best results are highlighted in bold.

Model
OpenKP

F1@1 F1@3 F1@5

HyperMatch 36.4 39.4 33.7

EuclideanMatch 36.1 38.5 33.4

HyperMatch w/o Relevance 36.1 38.9 33.6

HyperMatch w/o AML 36.3 38.7 33.5

Table 4: Ablation tests on the OpenKP dataset. The
best results are highlighted in bold. F1@3 is the main
evaluation metric (marked in bold) for this dataset.

ing the adaptive mixing layer drops in all evaluation
metrics. These results demonstrate that combining
all the intermediate layers of RoBERTa may cap-
ture more helpful information (e.g., surface, syntac-
tic, and semantic) for obtaining candidate phrases
and documents representations.

Unlike our model, most recent keyphrase extrac-
tion methods (e.g., RoBERTa-Ranking-KPE) im-
plicitly model relevance between candidate phrases
and their corresponding document by a linear trans-
formation layer as the phrase-document relevance.
Therefore, to verify the effectiveness of explicitly
modeling the phrase-document relevance, we built
the HyperMatch w/o Relevance, which only implic-
itly computes the phrase-document relevance by
the hyperbolic linear transformation layer (Ganea
et al., 2018). The results of HyperMatch w/o Rel-
evance show a drop in all evaluation metrics, in-
dicating that explicitly considering the relevance
between phrases and the document is essential for
estimating the importance of candidate phrases in
the keyphrase extraction task.

5.3 Sensitivity of Hyperparameters

In this section, we verify the sensitivity of Hyper-
Match with different margins (δ) of the hyperbolic
margin-based triplet loss. For keyphrase extraction
methods equipped with the margin-based triplet

0.1 0.5 1.0 2.0 3.0 4.0 5.0
Margin ( )

38.4

38.6

38.8

39.0

39.2

39.4

F1
@

3

HyperMatch

Figure 3: Performance of HyperMatch with different
margins (δ) of the margin-based triplet loss on the
OpenKP dataset.

loss, the margin design significantly impacts the
final result, where a poor margin usually causes
performance degradation. Therefore, we verify the
effects of different margins on HyperMatch in Fig-
ure 3. We can see that HyperMatch achieves the
best results when δ = 1.

6 Related Work

This section briefly describes the related work from
two fields: keyphrase extraction and hyperbolic
deep learning.

6.1 Keyphrase Extraction
Most existing KE models are based on the two-
stage extraction framework, which consists of two
main procedures: candidate keyphrase extraction
and keyphrase importance estimation. Candidate
keyphrase extraction extracts a set of candidate
phrases from the document by some heuristics
(e.g., essential n-gram-based phrases (Hulth, 2004;
Medelyan et al., 2009; Xiong et al., 2019; Sun et al.,
2020; Wang et al., 2020)). Keyphrase importance
estimation first represents candidate phrases and
documents by the pre-trained language models (De-
vlin et al., 2019; Liu et al., 2019) and then estimates
the phrase-document relevance implicitly as the im-
portance scores. Finally, the candidate phrases are
ranked by their importance scores, which can be
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learned by either unsupervised (Mihalcea and Ta-
rau, 2004; Liu et al., 2009c) or supervised (Xiong
et al., 2019; Sun et al., 2020; Mu et al., 2020) rank-
ing approaches.

Different from the existing KE models, we map
phrases and documents representations from the
euclidean space to the same hyperbolic space to
capture the latent hierarchical structures. Next, we
adopt the Poincaré distance to explicitly model the
phrase-document relevance as the important score
of each candidate phrase. Finally, the hyperbolic
margin-based triplet loss is used to optimize the
whole model. To the best of our knowledge, we
are the first study to explore supervised keyphrase
extraction in hyperbolic space.

6.2 Hyperbolic Deep Learning

Recent studies on representation learning (Nickel
and Kiela, 2017; Tifrea et al., 2019; Mathieu et al.,
2019) demonstrate that hyperbolic space is more
suitable for embedding symbolic data with hierar-
chies than the Euclidean space since the tree-like
properties (Hamann, 2018) of the hyperbolic space
make it efficient to learn hierarchical representa-
tions with low distortion (Sa et al., 2018; Sarkar,
2011). As linguistic ontologies are innately hier-
archies, hierarchies are ubiquitous in natural lan-
guage (Dai et al., 2021). Some recent studies show
the superiority of hyperbolic space for many natural
language processing tasks (Gulcehre et al., 2019;
Zhu et al., 2020). Chen et al. (2021) demonstrate
that mapping contextualized word embeddings (i.e.,
BERT-based embeddings) to the hyperbolic space
can capture richer hierarchical structure informa-
tion than the euclidean space when encoding natu-
ral language text. Inspired by the above methods,
we transfer the embeddings obtained by the pre-
trained language models to hyperbolic space for
extracting keyphrases.

7 Conclusions and Future Work

A new hyperbolic relevance matching model Hy-
perMatch is proposed to map candidate phrases
and documents representations into the hyperbolic
space and model the relevance between candidate
phrases and the document via the Poincaré dis-
tance. Specifically, HyperMatch first combines the
intermediate layers of RoBERTa via the adaptive
mixing layer for capturing richer syntactic and se-
mantic information. Then, phrases and documents
are encoded in the same hyperbolic space to cap-

ture the latent hierarchical structures. Next, the
phrase-document relevance is estimated explicitly
via the Poincaré distance as the importance scores
of all the candidate keyphrases. Finally, we adopt
the hyperbolic margin-based triplet loss to optimize
the whole model for extracting keyphrases.

In this paper, we explore keyphrase extraction
in hyperbolic space and implicitly model the la-
tent hierarchical structures hidden in natural lan-
guages when representing candidate keyphrases
and documents. In the future, it will be interesting
to introduce external knowledge (e.g., WordNet) to
explicitly model the latent hierarchical structures
when representing candidate keyphrases and docu-
ments. In addition, our code is publicly available
to facilitate other research5.
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