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Abstract

Action in video usually involves the interac-
tion of human with objects. Action labels are
typically composed of various combinations of
verbs and nouns, but we may not have training
data for all possible combinations. In this paper,
we aim to improve the generalization ability
of the compositional action recognition model
to novel verbs or novel nouns that are unseen
during training time, by leveraging the power
of knowledge graphs. Previous work utilizes
verb-noun compositional action nodes in the
knowledge graph, making it inefficient to scale
since the number of compositional action nodes
grows quadratically with respect to the number
of verbs and nouns. To address this issue, we
propose our approach: Disentangled Action
Recognition with Knowledge-bases (DARK),
which leverages the inherent compositionality
of actions. DARK trains a factorized model by
first extracting disentangled feature representa-
tions for verbs and nouns, and then predicting
classification weights using relations in exter-
nal knowledge graphs. The type constraint be-
tween verb and noun is extracted from external
knowledge bases and finally applied when com-
posing actions. DARK has better scalability in
the number of objects and verbs, and achieves
state-of-the-art performance on the Charades
dataset. We further propose a new benchmark
split based on the Epic-kitchen dataset which
is an order of magnitude bigger in the numbers
of classes and samples, and benchmark various
models on this benchmark.

1 Introduction

Understanding human-object interaction is crucial
for modeling human behavior, and plays a key role
in developing robotic agents that interact with hu-
mans. In videos, many of these interactions can
be described using the combination of verbs and

∗Work done prior to Amazon
†Work was done when Keizo Kato was at CMU

Figure 1: DARK extracts disentangled features of
verbs/nouns and leverages knowledge graphs (KG) to
generate classifiers for unseen verbs and nouns. Pre-
dictions are then composed under constraints of object
affordance priors (Affd) from knowledge bases (e.g.
banana can be cut).

nouns, e.g, move chair, peel apple. Recently re-
searchers have been focusing on the task of compo-
sitional action recognition with the goal of recog-
nizing actions represented by such verb-noun pairs.
The key challenge comes from the extremely large
label space of various combinations. The number
of possible verb-noun pairs grows quadratically
with respect to the number of verbs and nouns. It
is infeasible to collect training data for all possible
actions. This motivates us to study the problem of
zero-shot compositional action recognition, which
aims to predict action with components beyond the
vocabularies in train data.

To conduct zero-shot learning, we propose our
Disentangled Action Recognition with Knowledge-
bases (DARK), which leverages knowledge graphs.
A knowledge graph (KG) encodes semantic rela-
tionships between verb or noun nodes. We apply
graph convolutional network (GCN) on KG to pre-
dict classifier weights for unseen nodes in graphs.
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Previous work (Kato et al., 2018) has explored
using knowledge graphs for zero-shot composi-
tional action learning. However, their model builds
a graph containing verb, noun and compositional
action nodes (which link verbs and nouns). It learns
features of novel action nodes by propagating in-
formation from connected verb/noun nodes. The
number of compositional action nodes during train-
ing is in the order of O(n2), and the memory con-
sumption may become prohibitively expensive as
we scale this approach to large vocabularies. To
overcome this issue, we propose to learn separate
classifiers for verbs and nouns, which scales lin-
early with respect to the vocabulary size.

Specifically, DARK extracts verb and noun fea-
tures separately, and relies on separate verb and
noun knowledge graphs to predict unseen concepts
before composing the action label. Activity recog-
nition is particularly well-suited for such a factor-
ized approach, because nouns may be better cap-
tured using object detection-based approaches and
verbs may be represented by motion. Compared to
prior work (Kato et al., 2018; Zhukov et al., 2019)
that use the same feature representation for both
verb and noun, our separate features model noun
and verb more precisely. In addition, we adopt dis-
entanglement between the learned verb and noun
features, so they compose more readily and im-
prove generalization on unseen actions.

Though scalability is achieved using our fac-
torized approach, verbs and nouns are actually
not fully independent. For instance, the process
of sanding an object and scrubbing an object
are visually similar, however you are more likely
to be scrubbing a car than sanding it. Prior
work (Kato et al., 2018) models the verb-noun rela-
tionships by constructing quadratic compositional
action nodes. In our model, when composing ac-
tion labels, we take object affordances (Gibson,
1978), namely the commonsense relationship of
verbs and nouns, into consideration. We extract
affordance knowledge from a caption corpus and
build a scoring component to consider the relation-
ship between verbs and nouns, to further improve
the generalization ability. The basic idea of our
proposed model is illustrated in Figure 1.

Furthermore, we investigate the evaluation of
zero-shot compositional action recognition task and
identify the drawback of existing metrics. With Nv

verbs, Nn nouns, it constructs a Nv × Nn label
space for possible actions. Among these actions,

some are invalid (e.g. peel a car) and some are
valid but not presented in the dataset. In real-
world applications, the model would need to make
predictions in the whole Nv ×Nn label space. But
current evaluation protocols, implicitly or explic-
itly, only evaluate on compositional classes that are
valid and presented in the dataset, which does
not reflect the real difficulty of this task. We pro-
pose a new setting, where predictions are made and
evaluated in the full Nv ×Nn label space.

The Charades (Sigurdsson et al., 2016) dataset is
relatively small scale for testing zero-shot compo-
sitional action recognition (Kato et al., 2018). To
promote further research, we propose a new bench-
mark based on the Epic-kitchen (Damen et al.,
2018, 2020) dataset, which is an order of mag-
nitude bigger both in number of classes and sample
size. The key contributions of our paper are:

1. We propose a novel factorized model that
learns disentangled representation separately
for verbs and nouns, facilitating scalability.

2. We further improve the model’s generalization
performance by learning the interaction con-
straints between verbs and nouns (affordance
priors) from an external corpus.

3. We propose a new evaluation protocol for
zero-shot compositional learnings, which bet-
ter reflects the real-world application setting.

4. We propose a new large-scale benchmark
based on the Epic-Kitchen dataset and achieve
state-of-the-art results.

2 Related Work

Zero-shot learning with knowledge graphs:
Zero-shot learning has been widely studied in com-
puter vision (Akata et al., 2015; Lampert et al.,
2013; Lee et al., 2018; Sahu et al., 2020; Wang
et al., 2019; Xian et al., 2018). We will focus on
related work relevant to our approach. (Wang et al.,
2018) proposes to distill both the implicit knowl-
edge representations (e.g., word embedding) and
explicit relationships (e.g., knowledge graph) to
learn a visual classifier for new classes through
GCN (Kipf and Welling, 2016). (Kampffmeyer
et al., 2019) later proposes to augment the knowl-
edge graph (KG) with dense connections which
directly connects multi-hop relationship and distin-
guishes between parent and children nodes. The
graph learning of our model mostly follows their
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work. Recently there have been improvements on
GCN models. (Nayak and Bach, 2020) designs
a novel transformer GCN to learn representations
based on common-sense KGs. (Geng et al., 2020b)
uses an attentive GCN together with an explanation
generator to conduct explainable zero-shot learning.
Instead of generating classifier for unseen classes
directly, (Geng et al., 2020a) uses a generative ad-
versarial network to synthesize features for unseen
classes to conduct classification. These directions
could be potentially explored in our problem set-
ting to further improve performance. (Gao et al.,
2019) conducts zero-shot action recognition based
on KGs, but unlike our problem setting, their verb-
noun relationship is not compositional and objects
are used as attributes to infer action.
Compositional action recognition: Many prior
works aim to understand actions through interac-
tion with objects. (Wang et al., 2020; Xu et al.,
2019) tackle zero-shot human-object interaction
in images. (Zhukov et al., 2019) conduct weakly-
supervised action recognition, leveraging composi-
tionality of verb-noun pairs to decompose tasks into
a set of verb/noun classifiers. This shares certain
similarities with our factorized model, but it is not
a zero-shot setting, nor does it enforce feature dis-
entanglement. (Materzynska et al., 2020) conduct
zero-shot compositional action recognition, where
individual verb/noun concepts have been seen dur-
ing training but not in the same interaction with
each other. Although it cannot deal with unseen
verbs or nouns, using object detector to explicitly
model object features inspires our approach. One
of the closest works to our proposed approach is
(Kato et al., 2018). It constructs a KG that contains
verb nodes, noun nodes and compositional action
nodes, and learns the feature representation for
each action node to match visual features. Novel
actions’ features are inferred jointly during training
through GCN. The number of action nodes grows
quadratically with respect to the number of nouns
or verbs, which makes this approach difficult to
scale, especially considering that GCN’s forward
pass needs to learn all features simultaneously.

3 Method

We propose DARK – Disentangled Action Recog-
nition with Knowledge-bases (Figure 2). It extracts
disentangled feature representations for verbs and
nouns, then predicts classifier weights for unseen
components using knowledge graphs, and com-

poses them under object affordance priors.

3.1 Factorized verb-noun classifier
Given a video X , we first use a verb feature extrac-
tor Fv to extract verb feature, and a noun feature
extractor Fn for noun feature. Subsequently, we
learn one-layer predictors Wseen

v and Wseen
n for

predicting the final verb/noun class. Fv, Fn and
Wseen

v , Wseen
n are trained via cross entropy (CE)

losses Lv
cls and Ln

cls with verb / noun labels yv, yn.

Lv
cls = CE(Fv;Wseen

v ; yv) (1)

Ln
cls = CE(Fn;Wseen

n ; yn) (2)

We extract disentangled features for verbs and
nouns, so that verbs and nouns can be treated as
separate entities. If verb features contain much
information about nouns, it would overfit to seen
actions and would not generalize to unseen compo-
sitions. Standard networks like Inception3D (I3D)
(Carreira and Zisserman, 2017) can rely on scene
or object information to predict verbs (Battaglia
et al., 2018; Materzynska et al., 2020). To decou-
ple verb’s representation from noun’s, we add ex-
plicit regularization to the model input. We first
used an off-the-shelf class-agnostic object detector
to detect the bounding box of interacting objects.
Then, we crop the object from videos and use I3D
backbone to extract verb features from the cropped
videos. (Yun et al., 2019; DeVries and Taylor,
2017; Choi et al., 2019; Singh and Lee, 2017) use
similar cropping technique to remove bias in other
tasks. We also detect hand masks and add hand
regions separately to the verb input because the
class-agnostic detector tends to crop out the hands
as well. Adding hand gesture information back
provides hints for verbs. Disentanglement method
on Charades dataset (Sigurdsson et al., 2016) is
different as it contains third-person view videos,
and relevant details are discussed in Section 4.5.

3.2 GCN for learning novel concept
After training on seen concepts, we can infer the
classifier for unseen ones. In this subsection, we
drop the subscript v/n as the same process applies
for both verb and noun. After learning feature
extractor F and classifier of seen concept Wseen,
learning classifier for unseen concepts is equivalent
to learning the weight Wunseen. This step lever-
ages graph convolution network (GCN) following
previous work (Kampffmeyer et al., 2019; Kato
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Figure 2: Overall training process. We first jointly train factorized disentangled feature extractor Fv, Fn, and
classifier weights for seen class Wseen

n , Wseen
v . We then take word embedding sseen, sunseen as input, and use

GCN to predict classifier weights of unseen class ˆWunseen
n , ˆWunseen

v based on knowledge graphs (KGs). Note that
the same GCN learning applies to both verbs / nouns, and in the figure we only show the noun’s part for brevity.

et al., 2018; Xian et al., 2017). It takes the word
embedding of unseen/seen concepts sseen, sunseen,
and conducts graph convolution on the KG, with
previously learned classifier weight Wseen as su-
pervision. In each layer, it calculates:

Zi+1 = ÂZiWi (3)

Zi and Zi+1 are input and output of the layer i,
Â is the adjacency matrix of the graph. Following
(Kampffmeyer et al., 2019; Kato et al., 2018; Wang
et al., 2018), we normalize the adjacency matrix.
Wi is a learnable parameter. GCN first transforms
features linearly, then aggregates information be-
tween nodes via graph edges. The 0th layer’s
input Z0 is the word embedding [sseen, sunseen].
The last layer’s output Zn is the classifier weight
[ ˆWseen, ˆWunseen]. We use the Wseen learned
previously as supervision, and calculate the mean
square error loss between Wseen and ˆWseen. The
training process is illustrated in Figure 2. Only the
GCN learning of nouns is shown for brevity.

LGCN = Lmse( ˆWseen , Wseen) (4)

3.3 Incorporating affordance prior

Not all verb-noun pairs are equally important —
some objects can only admit certain actions but
not others. (Gibson, 1978) proposed the notion
of “affordance" — the shape of an object may pro-
vide hints on how humans should use it, which

induces the set of suitable actions. Affordance can
be extracted from the language source, e.g. we will
often say peel the apple but rarely peel the chair.
Prior works (Zhuang et al., 2017; Lu et al., 2016)
used language information as prior to improve their
performance. In this paper, we use captions of
HowTO100M dataset (Miech et al., 2019) which
records human-object interaction. We run the
Standford NLP parser (Chen and Manning, 2014)
to extract nouns/verbs from captions automatically.

After extracting verb-noun pairs, we train a scor-
ing function A to calculate the verb-noun affor-
dance matching score. We project verb embed-
ding sv to the noun embedding space and calculate
cosine distance with sn, followed by sigmoid to
output a scalar value indicating whether this verb-
noun compositional action is plausible. For train-
ing, we generate positive/negative pairs and use
binary cross-entropy loss Laffd. Note that there
underlies an open-world assumption (Nickel et al.,
2015): the verb-noun pairs missing are not entirely
infeasible, but could be unobserved. Further re-
search can be explored to develop a more precise
way of modeling the affordance constraint.

A scoring function based on only word-
embedding is similar to a static look-up table for
verb-noun pairs, and may fail to encode diverse
action visual features. Thus we train a mapping
function M to transform verb’s visual input to its
word embedding sv using mean square error loss.
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Figure 3: We train a scoring function A to calculate the
affordance matching between verb and noun. In test
time, the matching score is computed between mapped
verb visual feature M(Xv) and sn.

Algorithm 1 Training process of our DARK model

1. Train the feature extractor and corresponding
classification weight (Fv, Wv), (Fn, Wn) via
classification loss Lv, Ln separately.

2. Use the word embeddings sv, sn as input
and the learned classification weight Wv, Wn as
supervision, to train the GCN model (Gv, Gn) with
mean square error (MSE) loss (Equation 4).

3. Use extracted affordance pairs to train scoring
function A(sv, sn) (Figure 3), via binary cross
entropy (BCE) loss Laffd.

4. Train mapping function M to map visual verb
inputs to semantic embedding space (Equation 5).

Lmse(M(Xv), sv) (5)

The separation of A, M also adds interpretabil-
ity and allows learning from different data. A can
be trained on a language corpus without video data.
Also, A deals with textual affordance relationship
directly and adds interpretability. In test time we
map verb’s visual input to verb embedding space
and calculate affordance score with target noun’s
embedding sn (Figure 3). The model is asymmet-
ric, since we use object proposals with false detec-
tion and verb visual input is more reliable.

3.4 Overall algorithm and inference

The training of our DARK model is shown in Al-
gorithm 1. During inference, we calculate the prob-
ability of a video containing the compositional ac-

Figure 4: The seen compositional actions correspond to
VsNs (the upper left part), and unseen actions include
VsNu, VuNs and VuNu (the rest). We visualize the
scope of close / open / macro-open world settings.

tion (v, n) using following equations:

P(v, n) = P(v) ∗ P(n) ∗ A(M(Xv), sn) (6)

P(v) = σ(Wv ∗ Fv(X)) (7)

σ is sigmoid function. For the classification
weights Wv used in verb prediction P(v), we use
the learned classification weight Wseen

v for seen
classes, and ˆWunseen

v predicted by GCN for un-
seen classes. Similar equation applies for noun
prediction P(n), which is omitted.

4 Experiments

In this section, we discuss experiment evaluation,
setup and results. Some implementation details are
in appendix. 1

4.1 Evaluation of zero-shot compositional task

Following previous work (Kato et al., 2018),
we partition verbs into two disjoint sets for
seen/unseen classes, Vs / Vu, and same for nouns,
Ns / Nu. Thus, “seen compositional actions" corre-
spond to VsNs, while “unseen (zero-shot) actions"
correspond to VsNu, VuNs and VuNu.

Prior to (Chao et al., 2016), most works
(e.g. (Norouzi et al., 2013)) on zero-shot learning
adopt an evaluation protocol where predictions are
made and evaluated only among unseen classes.

1Code and proposed benchmark are in https://
github.com/airmachine/DARK.
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This is later denoted as close world setting. (Chao
et al., 2016) points out that it does not reflect the
difficulty of recognition in practice, and there ex-
ists a trade-off between classification accuracies of
seen / unseen classes. They propose generalized
zero-shot learning (GZL) setting — test set con-
tains samples of both seen / unseen classes. Predic-
tions are made and evaluated on both categories. By
adding different biases to unseen classes’ predic-
tion, one can draw a curve depicting the trade-off
between accuracies of seen/unseen samples. They
use area under the curve (AUC) to better reflect
model’s overall performance on both seen and un-
seen classes. Our evaluation follows this setup.

Currently, relatively few prior works tackle zero-
shot compositional action recognition (Kato et al.,
2018; Materzynska et al., 2020). Taking other zero-
shot compositional learning tasks such as zero-shot
attribute-object classification (Misra et al., 2017;
Nagarajan and Grauman, 2018; Purushwalkam
et al., 2019; Yang et al., 2020) and image-based
zero-shot human-object interaction (Wang et al.,
2020; Xu et al., 2019) into consideration, we find
that zero-shot compositional learning task poses ex-
tra challenges due to its combinatorial label space:
not all compositional labels are valid, and for the
valid ones, there may be no samples in the dataset.
For brevity, we continue to use the term “verb" and
“noun", but the following discussion could be also
applied to other zero-shot compositional learning
tasks (e.g., attribute-object). As in Figure 4, with
Nv verbs, Nn nouns, we can construct a Nv ×Nn

action label space. Among these actions, some are
invalid, because the verb-noun pair contradicts
our common sense (e.g. peel a car). And some are
valid but not presented in the dataset. Most pre-
vious works only consider labels that contain sam-
ples in the dataset, namely compositional classes
that are valid and presented in the dataset.

Prior works (Materzynska et al., 2020; Misra
et al., 2017; Nagarajan and Grauman, 2018; Yang
et al., 2020) use disjoint label spaces in training
and test sets, which corresponds to the close world
setting. (Purushwalkam et al., 2019)’s test set con-
tains both seen and unseen classes (GZL setting)
and uses the AUC metric like ours, but their predic-
tion is made and evaluated only among composi-
tional classes with samples in dataset. (Kato et al.,
2018; Wang et al., 2020) also follow GZL setting,
but they use mean average precision (mAP) over
compositional classes presented in dataset, which

implicitly only considers valid and presented
classes. We denote this as open world setting:
test set contains samples from seen/unseen classes,
but prediction is made and/or evaluated among
valid and presented classes.

Neither close world setting nor open word set-
ting reflects the difficulty of zero-shot composi-
tional action recognition task. When deploying
recognition models in the real world, it would need
to make predictions in the whole Nv × Nn label
space. Thus, compositional constraints between
verbs and nouns (affordance) should be properly
modeled to exclude invalid classes. In addition,
the evaluation protocol should not distinguish be-
tween classes that are valid but not presented
and valid and presented in the dataset, because
models would not have access to that information
beforehand. We propose the marco open world
setting. In test time, sample can be from all
seen/unseen classes, including VsNs, VsNu, VuNs

and VuNu, and model receives no information
about where the sample comes from. Predictions
are made and evaluated in the whole Nv×Nn label
space, and the AUC metric (Chao et al., 2016) con-
sidering the trade-off between seen/unseen classes
is reported. Figure 4 compares these three settings.

4.2 Experimental setup

Dataset and split: We conduct experiments on
two datasets, Epic-kitchen v-2 (Damen et al., 2020,
2018) and Charades (Sigurdsson et al., 2016). On
Epic-kitchen benchmark, we create the composi-
tional split for compositional action recognition.
To avoid inductive bias brought by pretrained back-
bones (e.g. Faster R-CNN (Girshick, 2015) pre-
trained on ImageNet (Deng et al., 2009), or Incep-
tion3D (I3D) (Carreira and Zisserman, 2017) pre-
trained on Kinetics (Kay et al., 2017)) as discussed
in (Wang et al., 2020), we ensure all nouns/verbs
seen during pre-training stay in VsNs when creat-
ing compositional split on Epic-kitchen benchmark.
For Charades, we follow the same splits in (Kato
et al., 2018) for fair comparison.

Charades dataset (Sigurdsson et al., 2016) con-
tains 9848 videos, and many involve compositional
human-object interaction. We use the composi-
tional benchmark proposed by (Kato et al., 2018):
they remove “no interaction" action categories,
leaving 9625 videos with 34 verbs and 37 nouns.
Those verbs and nouns are further partitioned into
two verb splits Vs, Vu (number of classes being
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Table 1: DARK’s results on Epic-Kitchen dataset, compared with baselines and GCNCL (Kato et al., 2018)

- AUC Macro Open AUC Open mAP Open
Top1 Top2 Top3 Top1 Top2 Top3 All Zero-shot class

Chance 6.4× 10−7 2.9× 10−6 7.8× 10−6 1.9× 10−5 6.7× 10−5 1.2× 10−4 0.00065 0.00067
Triplet 0.021 0.060 0.095 0.021 0.060 0.094 0.051 0.053
SES 0.091 0.25 0.42 0.16 0.45 0.73 1.83 0.99
DEM 0.0068 0.019 0.040 0.022 0.074 0.14 0.52 0.30

GCNCL+GT 0.044 0.11 0.19 0.044 0.11 0.19 0.46 0.31
GCNCL+Affd 0.064 0.16 0.27 0.082 0.22 0.37 0.48 0.15
GCNCL+Both 0.061 0.16 0.26 0.07 0.17 0.27 0.47 0.27

DARK (ours) 1.69 3.64 5.45 2.04 4.67 7.05 2.39 1.22

Table 2: Dataset statistics of proposed benchmark based
on Epic-kitchen and previous benchmark on Charades.

VsNs VsNu VuNs VuNu samples

Epic- 840 896 1073 820 76605
Charades 49 47 22 31 9625

20 / 14), and two noun splits Ns, Nu (18 / 19). The
total number of compositional actions is 149.

Epic-kitchen version 2 dataset (Damen et al.,
2020, 2018) contains videos recorded in kitchens,
where people demonstrate their interaction with ob-
jects like pan, etc. The diversity of actions in this
dataset makes it especially challenging. We follow
the steps in similar previous works (Rahman et al.,
2018; Wang et al., 2020) to create our composi-
tional split. We first make sure that classes seen in
pre-training stay in the seen split. Then for the re-
maining classes we sort them based on the number
of instances in descending order, and pick the last
20% to be unseen classes, because (Rahman et al.,
2018) pointed out that zero-shot learning targets
the classes not easy to collect (especially those in
the tail part of the long tail class distribution). We
show dataset statistics in Table 2. We get a total
number of 76605 videos, including 90 verbs, 249
nouns, and 3629 compositional actions. Compared
to Charades, our proposed benchmark is at a larger
scale in terms of classes involved and sample size.
Baselines: We establish our baselines following
previous work (Kato et al., 2018). Here we briefly
summarize their architectures, and readers can refer
to (Kato et al., 2018) or original papers for details.
These baselines are based on Inception3D features.

Triplet Siamese Network (Triplet) by (Kato
et al., 2018): verb/noun embeddings are concate-
nated, and transformed by fully connected (FC)
layers. The output is concatenated with visual fea-
tures to predict scores through one FC layer with
the training of BCE loss.

Semantic Embedding Space (SES) (Xu et al.,
2015): The model projects visual features into em-
bedding space through FC layers and then matches
output with corresponding action embeddings (av-
erage of verb/noun embeddings) using L2 loss.

Deep Embedding Model (DEM) (Zhang et al.,
2017): Verb/noun embeddings are transformed sep-
arately via FC layers and summed together. Then
output is matched with visual features via L2 loss.

4.3 Results on Epic-kitchen dataset
The results of the proposed DARK model, as well
as the aforementioned baselines (Triplet, SES and
DEM) and previous model GCNCL (Kato et al.,
2018) on the Epic-kitchen dataset are listed in Ta-
ble 1. We report the results in the proposed AUC
metric (Chao et al., 2016) with precision calculated
at top 1/2/3 prediction for both open world and
macro open world settings, which evaluates the
overall trade-off between seen/unseen class. We
also report the mean average precision (mAP) used
in (Kato et al., 2018) on all and zero-shot composi-
tional action classes for reference.

Our best performing DARK model outperforms
all baselines and GCNCL by a large margin un-
der all metrics, illustrating the benefit of disentan-
gled action representation for compositional action
recognition. DARK is also more scalable, and re-
duces the number of graph nodes from 22749 (GC-
NCL with no external knowledge) to 339 (ours).

DARK considers the type constraint of verbs and
nouns when composing verb and noun into com-
positional action label by training an affordance
scoring module, while GCNCL considers the con-
straint when building compositional action nodes
by collecting the existing verb-noun pairs from
NEIL (Chen et al., 2013). For fair comparison,
we re-implement three versions of KG in GCNCL
model. In “GT", we use the ground-truth verb-
noun relationships that are presented in the dataset
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Table 3: Combination for zero-shot learning in verb
and noun classifiers. The top1 “open world" AUC is
reported on the Epic-kitchen dataset.

Verb-KG Verb-SES Verb-ConSE

Noun-KG 1.81 1.24 0.49
Noun-SES 0.40 0.44 0.32

Noun-ConSE 0.25 0.18 0.13

(open world setting). In “Affd", we only consider
relationships in the same corpus with DARK. We
use the relationships as a hard look-up since GC-
NCL only contains unweighted “hard" edges in
its knowledge graph. In “Both", we use the union
of the constraints in “GT" and “Affd". Under all
the three circumstances, our DARK model outper-
forms other models by a large margin. For all
experiments, we report the best results.

4.4 Ablations on different components

Zero-shot learning in verb/noun classifier: In
DARK model, we do separate verb and noun clas-
sification in two branches. We investigate different
implementations of zero-shot learning in verb/noun
classifier. Specifically, we consider three options
for both verb and noun, namely “KG", “SES"
and “ConSE". “KG" stands for zero-shot learn-
ing by using knowledge graph to predict classifi-
cation weights for unseen component with GloVe
embedding (Pennington et al., 2014) as in (Kato
et al., 2018). “SES" (Xu et al., 2015) is the best
common embedding baseline in Table 1 using bet-
ter BERT word embedding (Devlin et al., 2018)
(based on observation in Table 5, BERT tends to
have better performance). “ConSE" (Norouzi et al.,
2013) learns a semantic structure aware embed-
ding space compared to original word embeddings,
which is modeled with graph. “ConSE" (Norouzi
et al., 2013) is used as the zero-shot learning com-
ponent in previous image-based action recognition
task (Xu et al., 2019). It learns a semantic structure
aware embedding space and we also use GloVe
embedding. For better comparison of zero-shot
learning component, we report the “open world”
AUC on the Epic-kitchen dataset without using
affordance (same as “ground-truth" affordance in
macro open setting), thus excluding the influence
of affordance prior. Different zero-shot learning
combinations for verbs and nouns are reported in
Table 3. Using “KG" for both verb / noun outper-
forms others by a large margin, and we take this
approach in the rest experiments.

Table 4: Different verb knowledge graphs. We report
the top1 AUC for verbs under GZL setting.

WN dis VN group VN tree

one-way 1.86 0.83 1.93
two-way × × 1.79

Construction of verb knowledge graph: Com-
pared to nouns, the concept of verb is relatively
abstract and the relationship between verbs is hard
to capture. We explore different ways of construct-
ing the verb KG, namely, “WN dis", “VN group"
and “VN tree". (The details of noun KG are dis-
cussed in the appendix.) In “WN dis", we use
WordNet (Miller, 1995) structure and add edges be-
tween nodes if their LCH (Leacock and Chodorow,
1998) distance is bigger than a threshold. We also
explore VerbNet (Kipper et al., 2008) which is de-
signed to capture the semantic similarity of verbs.
VerbNet categorizes verbs into different classes,
and each class contains multiple verb members. To
resolve the duplication in each class, we add edges
between verbs in the same class, and denote this as
“VN group". We also try adding a meta node for
each class and connecting all its members to the
meta node, denoted as “VN tree". Graphs of “WN
dis" and “VN group" are naturally undirected. For
“VN tree", we consider an additional “two-way"
setting as in (Kampffmeyer et al., 2019), where a
GCN model separates the parent-to-children and
children-to-parent knowledge propagation into two
stages to better model hierarchical graph structure.
However, we do not observe performance improve-
ment in this setting. In Table 4, we report top1 AUC
for verbs using different KGs under the GZL(Chao
et al., 2016) setting. “VN tree" in “one-way" gives
the best prediction for verb, and we keep this con-
figuration in rest experiments.
Affordance learning: We consider the compo-
sitional constraints between verbs and nouns (af-
fordance) when composing the compositional ac-
tion. We explore various ways of learning affor-
dance in Table 5. In “Word-only" we train a word-
embedding only model. And “Visual" represents
the approach in method section where an additional
projection module maps visual features to embed-
ding space. For each, we explore two word embed-
dings, GLoVe (Pennington et al., 2014) and BERT
(Devlin et al., 2018). In terms of score calculation,
we try three different methods each. In “Concat-
Scoring", we concatenate verb/noun features, and
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Table 5: Top1 “marco open world" AUC on Epic-
kitchen based on different affordance learning methods.

Word-only Visual
GLoVe BERT GLoVe BERT

Concat-Scoring 1.49 1.59 1.48 1.60
Context-Scoring 1.49 1.59 1.49 ×

Proj-Cosine 1.42 1.59 1.42 1.69

Lookup Table 1.35

Uniform 1.46

Ground Truth 1.81

Table 6: Results (mAP) on Charades under GZL setting.
Baselines and GCNCL results from (Kato et al., 2018).

Model All Zero-shot

Chance 1.37 1.00
Baseline Triplet 10.41 7.82

SES 10.14 7.81
DEM 9.57 7.74

GCNCL GCNCL-I+A 10.48 7.95
GCNCL+A 10.53 8.09

Ours DARK 11.21 8.38

train a scoring model. In “Context-Scoring", in-
stead of concatenating, for BERT the scoring model
embeds verb-noun phrase together and averages
their embeddings, and for GloVe we simply aver-
age their embeddings. In “Proj-Cosine", we project
verb embedding to noun embedding space and cal-
culate the cosine distance. We also try a lookup
table, where affordance is one if the compositional
pair exists in train set or knowledge bases, and zero
otherwise. “Uniform" sets all affordance to be one,
which means no weighting is applied. “Ground
Truth" sets one for pairs existing in the dataset
(train/test), equivalent to “open world". In all ex-
periments, we use best configuration from Table
3, and label compositional pairs seen in training to
one. BERT constantly improve affordance relation-
ships in different methods. Lookup table performs
worse than “Uniform" (no affordance) since some
valid pairings are missing in knowledge bases.

4.5 Results on Charades dataset

We report results on Charades in Table 6. Follow-
ing (Kato et al., 2018), we report mean average
precision (mAP) and compare our model to theirs
and baselines. We also report zero-shot classes
(VsNu + VuNs + VuNu) separately but all predic-
tions are made under GZL setting. Unlike Epic-

Figure 5: Qualitative Analysis. Underlines are unseen
concepts, green for right predictions and red for wrong.

Kitchen which contains ego-centric actions, Cha-
rades contains third-person view videos and cannot
detect the mask of person’s hand. Thus we directly
learn the verb and noun feature disentanglement
leveraging a discriminator and a disentanglement
loss. Following (Peng et al., 2018), discriminator
tries to adversarially classify noun label yn from its
verb feature, and feature extractor F goes against
it. To better capture the multi-label property in
Charades, we use an un-factorized classification
model for actions in VsNs so they can be treated
separately. Since we report the mAP results for
fair comparison with GCNCL, we do not use affor-
dance in our model. As indicated in (Kato et al.,
2018), we also notice that the amount of improve-
ment over baselines is not large, possibly because
Charades is relatively small and easy to overfit.
And this motivated us to propose a large-scale zero-
shot compositional action recognition benchmark.

4.6 Qualitative error analysis
We also visualize some examples in Figure 5. The
model misclassifies coriander as leaf, and foil as
plastic wrap due to visual similarity.

5 Conclusion

In this paper, we propose DARK, a novel com-
positional action recognition model that reduces
complexity from quadratic to linear, making the
training more scalable. DARK generalizes to un-
seen verb-noun pairs, and can be combined with
knowledge bases to produce state-of-the-art com-
positional action recognition results.
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A Implementation Detail

To build the object feature extractor Fn, we first
use an off-the-shelf class-agnostic object detec-
tor to detect the bounding box of interacting ob-
jects. For the Charades (Sigurdsson et al., 2016)
dataset, we use the detected object boxes generated
by HOID (Wang et al., 2020). HOID model first
detects the box of human, then based on the hu-
man’s bounding box it detects interacting objects.
We use the code publicly released by (Wang et al.,
2020), with the default parameters provided by the
author. We use the weights of the class-agnostic ob-
ject detector provided on the project page. For the
Epic-kitchen dataset (Damen et al., 2020, 2018),
we use the pre-computed class-agnostic boxes pro-
vided by the authors. They use the model from
(Shan et al., 2020), which detects human hands and
locates the interacting objects. We use different
models for object detection because Epic-kitchen
(Damen et al., 2018) contains mostly ego-centric
action videos while Charades (Sigurdsson et al.,
2016) contains third-person view videos. For the
Epic-kitchen dataset, we additionally use its pre-
computed detected masks of human hands.

After the object boxes are detected, we run the
Faster-RCNN (Girshick, 2015) model with the
ResNet-101 backbone to extract the object features.
We use the implementation provided by the Detec-
tron2 (Wu et al., 2019) library, with the weights
pre-trained on ImageNet (Deng et al., 2009). We
obtain the features before the classifier layer in the
Faster-RCNN model, which results in 2048 dimen-
sion object features. If we detect multiple boxes
in one frame, we conduct max-pooling over their
extracted features to obtain one feature represen-
tation for each frame. If no box is detected for a
particular frame, we then extract the feature of the
whole image as its object feature.

We sample several frames along the temporal
axis of the video to conduct object detection. Since
videos in the Charades (Sigurdsson et al., 2016)
dataset may contain more than one action, we treat
each frame in Charades dataset as one sample for
training. For the Epic-kitchen (Damen et al., 2020,
2018) dataset whose videos contain only one action,
we instead simply apply mean pooling over object
features of sampled frames to obtain one feature
representation for the whole video. We add fully-
connected (FC) layers upon the fixed Faster-RCNN
backbone to conduct feature extraction.

For verb features, we build our feature extrac-

tor Fv based on a standard two-stream Incep-
tion3D (Carreira and Zisserman, 2017) backbone
pre-trained on the Kinetics dataset (Kay et al.,
2017). We use both the RGB branch and the optical-
flow branch, each producing a 1024 dimension fea-
ture in the layer Mixed_5c. We then concatenate
them, resulting in a feature representation of 2048
dimension. For the Epic-kitchen dataset, we gen-
erate features first using the video input with the
object cropped out. Then we do the same using
the video input with everything cropped except for
the detected hands in order to obtain hand gesture
movement information. We further concatenate
these two features to get a 4096 dimension fea-
ture. Similar to the object feature extractor, we
add FC layers to features generated by the fixed
Inception3D backbone. For the Charades dataset,
since another disentanglement approach is used,
we simply use the 2048 dimension feature.

Following common practice, we split the whole
video into video clips with a small duration, and
generate features for each clip during training and
inference. For the Charades dataset, we sample
10 clips per video to conduct training and we treat
each clip as a sample. Whereas for the Epic-kitchen
dataset, we apply max pooling to the features of all
the clips generated from one video to obtain one
feature representation for the whole video.

Our model is implemented in PyTorch with
Adam optimizer. We used in total around 20 GPUs
through out the experiments. But a single run only
needs 5 GPUs. (we launch parallel experiments)

B The Proposed Epic-kitchen Benchmark

We build our compositional action recognition
benchmark based on the Epic-kitchen(Damen et al.,
2020, 2018) dataset version two. We take the class
that overlaps with pre-trained backbones into con-
sideration when creating seen/unseen class splits.
We find that there are 95 noun classes overlapping
with ImageNet classes, and 23 verb classes over-
lapping with Kinetics classes, where the backbones
that we use have been pre-trained. We make sure
these overlapping classes stay in the seen split.

We then remove the tail verb and noun classes
with less than 10 instances. The remaining dataset
contains a total number of 76605 videos, including
90 verbs, 249 nouns, and 3629 compositional ac-
tions. We have 29 verbs in the seen category, and
61 verbs in the unseen category. On the other hand,
102 nouns are seen and 147 nouns are unseen.
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The VsNs split contains 840 compositional ac-
tions, and 51228 samples. The VuNs split has 1073
compositional actions, and 10105 samples. For the
VsNu split, there are 896 compositional actions
and 11073 samples. And for the VuNu split, there
are 820 compositional actions and 4199 samples.

Epic-Kitchen dataset is realized under the Cre-
ative Commons Attribution-NonCommercial 4.0
International License. The licence for non-
Commercial use of Charades dataset can be found
at http://vuchallenge.org/charades.html. We follow
the intended usage of these two dataset.

C Noun Knowledge Graph Construction

We discuss the construction of the verb knowl-
edge graph in the paper, due to the space limit,
we present the details of the noun knowledge graph
in this section. We construct the noun knowledge
graph following (Wang et al., 2018)’s approach. We
begin from the nouns presented in the dataset, and
recursively search their hyper-norms using Word-
Net (Miller, 1995)’s lexical relationship to add to
the graph. In addition, we augment the knowledge
graph by adding nouns from ImageNet’s ((Deng
et al., 2009)) class labels.

When building noun knowledge graphs, we add
an edge if two entities are direct synonyms or hyper-
norms. Our model is built upon the graph con-
volution model implemented by (?). We use its
plain GCN version without attention. And we use
the “two-way" approach, which separates parent-
to-children and children-to-parent knowledge prop-
agation into two stages to better model the hierar-
chical graph structure. For noun knowledge graph
learning, we use 300d GloVe (Pennington et al.,
2014) embeddings as input.

D Disentanglement in Charades Dataset

Let Xv denote the input to the verb feature extrac-
tor Fv, and X ′

v denote the extracted verb features.
Similarly, Xn is the input to Fn and X ′

n is the
extracted noun features.

X ′
v = Fv(Xv) (8)

X ′
n = Fn(Xn) (9)

To obtain disentangled verb / noun features, we
take the idea from the previous paper (Peng et al.,
2018). We use a discriminator to limit the infor-
mation verb and noun features contain. The dis-
criminator Dv tries to adversarially classify noun

label yn from its verb feature X ′
v, and the feature

extractor Fv goes against it via a minimax process.
The discriminator helps to limit the information
which verb feature X ′

v contains about the nouns
in the video. The same procedure happens for Dn.
We use one layer linear classifier for discriminator
Dv and Dn and they output class predictions for the
opposite branch. This leads to the disentanglement
loss:

Lv
dis = −CE(Dv(X

′
v); yn) (10)

Ln
dis = −CE(Dn(X

′
n); yv) (11)

The CE refers to the cross-entropy loss. The
overall loss for training the feature extractor Fv, Fn

and the classifier for seen classes Wseen
v , Wseen

n is:

Lv = Lv
cls + Lv

dis (12)

Ln = Ln
cls + Ln

dis (13)

The definitions of Lv
cls, Ln

cls are the same as
discussed in the main paper.
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