
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 5546 - 5556

July 10-15, 2022 ©2022 Association for Computational Linguistics

Nearest Neighbor Knowledge Distillation for Neural Machine Translation

Zhixian Yang and Renliang Sun and Xiaojun Wan
Wangxuan Institute of Computer Technology, Peking University

Center for Data Science, Peking University
The MOE Key Laboratory of Computational Linguistics, Peking University

yangzhixian@stu.pku.edu.cn
sunrenliangpku@gmail.com
wanxiaojun@pku.edu.cn

Abstract

k-nearest-neighbor machine translation (kNN-
MT), proposed by Khandelwal et al. (2021),
has achieved many state-of-the-art results in
machine translation tasks. Although effective,
kNN-MT requires conducting kNN searches
through the large datastore for each decoding
step during inference, prohibitively increasing
the decoding cost and thus leading to the dif-
ficulty for the deployment in real-world appli-
cations. In this paper, we propose to move
the time-consuming kNN search forward to
the preprocessing phase, and then introduce
k Nearest Neighbor Knowledge Distillation
(kNN-KD) that trains the base NMT model to
directly learn the knowledge of kNN. Distilling
knowledge retrieved by kNN can encourage
the NMT model to take more reasonable tar-
get tokens into consideration, thus addressing
the overcorrection problem. Extensive experi-
mental results show that, the proposed method
achieves consistent improvement over the state-
of-the-art baselines including kNN-MT, while
maintaining the same training and decoding
speed as the standard NMT model.1

1 Introduction

Neural machine translation (NMT) has shown im-
pressive progress with the prevalence of deep neu-
ral networks (Vaswani et al., 2017; Zhang et al.,
2019; Chen et al., 2020). Recently, Khandelwal
et al. (2021) have proposed k-nearest-neighbor ma-
chine translation (kNN-MT) that first stores context
representations and target tokens into a large data-
store, and then retrieves k possible target tokens
by conducting nearest search from the datastore to
help with the final next-token decision. The results
show that kNN-MT can significantly improve the
performance over the base NMT model.

Despite the outstanding performance, kNN-MT
will drastically increase the testing runtime since

1Our code is available at https://github.com/
FadedCosine/kNN-KD

each decoding step needs to conduct kNN searches
(Meng et al., 2021). How to speed up the decoding
of kNN-MT without degrading performance still
remains an open question. Several recent works
(Meng et al., 2021; Wang et al., 2021b) introduce
some elaborate strategies to compress the datastore
in which kNN searches are conducted, thus improv-
ing decoding efficiency to some extent. However,
we argue that, where there is a time-consuming
kNN search in the decoding phase, there is the pro-
hibitive decoding cost, which makes it hard to be
deployed on real-world applications.

In order to address the aforementioned issue
more thoroughly, it is necessary to figure out why
kNN-MT performs so well. The standard NMT
models are typically trained with cross-entropy
(CE) loss with teacher forcing technique, which
requires a strict word-by-word matching between
the model prediction and the ground-truth. In nat-
ural language, a sentence usually has more than
one expression. However, even when the model
predicts a word that is reasonable but deviates from
the ground-truth, the CE loss will treat it as an er-
ror and punish the model. This phenomenon is
called overcorrection (Zhang et al., 2019), which
often seriously harms the generalizability of NMT
models. We conclude that kNN-MT can alleviate
the problem of overcorrection by retrieving more
reasonable target tokens in the decoding phase.

One natural question can be raised: can we train
the model to directly learn the knowledge of kNN
in the training phase, thus maintaining the standard
decoding process without any additional decoding
cost? To answer this question, we propose k Near-
est Neighbor Knowledge Distillation (kNN-KD) to
distill the knowledge of the non-parametric model,
i.e., kNN, into the base NMT model in the training
phase. In detail, we first construct the datastore and
then conduct kNN searches immediately. These
two steps can be done offline in the preprocessing
phase. During training, a teacher distribution pTkNN
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can be easily computed using the pre-stored results
of kNN searches to train the NMT model to directly
learn the knowledge of kNN. At inference time,
kNN searches are not required, so the decoding
speed is as fast as the base NMT model. Therefore,
kNN-KD can achieve two desirable goals simulta-
neously: preventing overcorrection (effectiveness)
and reducing decoding cost (efficiency).

We conduct experiments on two widely acknowl-
edged NMT benchmarks: IWSLT’14 German-
English and IWSLT’15 English-Vietnamese. Ex-
perimental results show that our kNN-KD main-
tains the same training and decoding speed as the
standard NMT model, while it outperforms vanilla
kNN-MT and all the other KD methods, and yields
an improvement of +2.14 and +1.51 BLEU points
over the Transformer baseline. We further verify
that kNN-KD can be adapted to diverse domains
by performing experiments on multi-domains trans-
lation datasets (Aharoni and Goldberg, 2020) and
achieving 2.56 BLEU improvement over vanilla
kNN-MT on average.

In summary, the contributions of our work are as
follows:

• We propose kNN-KD that considers the kNN
distribution as a teacher to guide the training
of the base NMT model (Section 3.1).

• We prove that our proposed kNN-KD can help
to address the overcorrection issue with theo-
retical analysis (Section 3.2).

• Quantitative and qualitative results on differ-
ent translation tasks validate the effectiveness
and efficiency of our method (Section 4).

2 Background

2.1 Neural Machine Translation

The goal of the standard NMT model is to learn the
conditional probability pMT (y | x) for translating
a sentence x = {x1, · · · , xm} in source language
to a sentence y = {y1, · · · , yn} in target language.
Translation is usually performed in a autoregres-
sive manner, and its probability can be factored as
pMT (y | x) = Πn

i=1p (yi | x,y<i). When predict-
ing i-th token in the target sentence given (x,y<i)
as the translation context, the NMT model encodes
the translation context into a hidden state hi−1, and
outputs a probability distribution over vocabulary

V as follows:

pMT (yi | x,y<i) =
exp(o⊤yihi−1)∑
w∈V exp(o⊤whi−1)

, (1)

where oy is the output embedding for w ∈ V .
We denote the ground-truth target sentence as

y⋆ = {y⋆1, · · · , y⋆n}, and for each y⋆i in the training
set, the CE loss is usually used for optimizing NMT
models:

LCE = −
∑

yi∈V
1yi=y∗i log pMT (yi | x,y⋆

<i) , (2)

where 1 is the indicator function, and the ground-
truth target sequence y⋆

<i is used in the conditions
of pMT due to the teacher forcing technique.

2.2 Nearest Neighbor Machine Translation
kNN-MT applies the nearest neighbor retrieval
mechanism to the decoding phase of a NMT model,
which allows the model direct access to a large-
scale datastore for better inference. Specifically,
kNN-MT includes two following steps:
Datastore Building Given a bilingual sentence
pair in the training set (x,y⋆) ∈ (X ,Y⋆), kNN-
MT first constructs a datastore D as follows:

(K,V) =
⋃

(x,y⋆)∈(X ,Y⋆)

{(f (x,y⋆
<i) , y

⋆
i ) , ∀y⋆

i ∈ y⋆} ,

(3)

where the keys are the mapping representations of
all the translation contexts in the training set using
the projection f(·), and the values are correspond-
ing ground-truth tokens.
Decoding During inference, kNN-MT aims to
interpolate the base NMT model’s probability in
Equation 1 with a kNN model. At each decoding
step i, kNN-MT maps the current translation con-
text to a representation f (x,y<i), which is used
to query the datastore for k nearest neighbors ac-
cording to the l2 distances. Denote the retrieved
neighbors as N i = {(kj , vj) , j ∈ {1, 2, . . . , k}},
and then a kNN distribution over vocabulary V can
be computed as:

pkNN(yi | x,y<i) ∝
∑

(kj ,vj)∈N i

1yi=vj exp

(−d (kj , f (x,y<i))

τ

)
,

(4)
where τ is the temperature, and d(·, ·) is the l2
distance function. The final probability for the
next token in kNN-MT is the interpolation of
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Figure 1: Illustration of kNN-KD. In the preprocessing phase, we finish the datastore building in Step 1, and conduct
kNN search in advance in Step 2. These two steps can be done offline before training and inference. During training,
we compute the kNN distribution as a teacher to train the base NMT model in Step 3. During inference, the model
performs Step 4 to decode text in the standard Seq2Seq manner, which is omitted in this figure.

pMT (yi | x,y<i) and pkNN (yi | x,y<i) with a
tunable weight λ:

p (yi | x,y<i) = (1− λ)pMT (yi | x,y<i)

+ λpkNN (yi | x,y<i) .
(5)

Note that each decoding step of each beam re-
quires a kNN search over the whole datastore D,
whose time complexity is O(|D|Bn) where B is
the beam size, and n is the target length. The pro-
hibitive decoding cost makes it hard for kNN-MT
to be deployed on real-world applications.

2.3 Knowledge Distillation
Knowledge Distillation (KD) (Hinton et al., 2015b)
refers to the transfer of knowledge from one neu-
ral network T (called “teacher model”) to another
network S (called “student model”).

For convenience, we introduce the details of KD
from the perspective of machine translation. Let
z ∈ R|V| denote the logits over V . Student model
S outputs the probability:

pS (yi | x,y<i) =
exp (zyi)∑
w∈V exp (zw)

, (6)

where zw is the logit for token w. Correspondingly,
teacher model T also predicts the probability in
the same way, and a temperature factor τ can be
introduced to soften the teacher’s outputs as:

pT (yi | x,y<i) =
exp (zyi/τ)∑
w∈V exp (zw/τ)

. (7)

When τ → ∞, pT degenerates into a uniform dis-
tribution, and when τ → 0, pT becomes an one-hot
vector. Specifically, KD defines the objective as:

LKD =−
∑

yi∈V
pT (yi | x,y⋆

<i)

× log pS (yi | x,y⋆
<i) .

(8)

When we apply KD to improve the performance
of machine translation, student model S is usually
the NMT model that will be used for testing. And
then, the overall training procedure is to minimize
the summation of Equation 2 and Equation 8:

L = (1− α)LCE + αLKD, (9)

where α is a weight to balance two losses.

3 Methodology

The core idea of our work is to enhance the NMT
model with a nearest neighbor retrieval mechanism
in a training manner, and thus quantitatively evalu-
ated, the model can perform as well or better than
vanilla kNN-NMT without any additional decoding
cost. In Section 3.1, we first introduce k Nearest
Neighbor Knowledge Distillation (kNN-KD) to dis-
till the knowledge of kNN into a base NMT model.
And then, we provide the theoretical analysis in
Section 3.2 to support that our method can help to
address the overcorrection issue.

3.1 Nearest Neighbor Knowledge Distillation

When we apply vanilla kNN-MT for testing us-
ing beam search with B, the time complexity of it
is O(|D|Bn). Compared with the standard beam
search whose time complexity is O(|V|Bn), the
decoding speed of vanilla kNN-MT is prohibitively
slow. This is mainly because vanilla kNN-MT has
to conduct a kNN search over an extremely large
datastore D for each decoding step of each beam.
We propose to move this time-consuming search
process forward to the preprocessing phase which
can be done offline before training and inference.
As shown in Figure 1, our proposed kNN-KD can
be described as follows:
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Step 1: Datastore Building We build the datas-
tore D in the same way as vanilla kNN-MT (Khan-
delwal et al., 2021) which has been described in
Section 2.2, so we omit it here.
Step 2: kNN Search in Advance For all the
translation contexts (x,y⋆

<i) in the training set,
we conduct a kNN search using f

(
x,y⋆

<i

)
as a

query to search through the datastore D built in
Step 1, and then we obtain the retrieved results
N i = {(kj , vj) , j ∈ {1, 2, . . . , k}}. Note that we
are performing kNN search for training set trans-
lation contexts on the datastore built with the train-
ing set, which is equivalent to extending the train-
ing data by adding k reasonable target tokens for
every translation context. Formally, by conducting
kNN search in advance, we extend the target sen-
tence in the training set from y⋆ = {y⋆1, · · · , y⋆n}
to y⋆ =

{(
y⋆1,K1

)
, · · · , (y⋆n,Kn)

}
, where Ki ={(

d
(
kj , f

(
x,y⋆

<i

))
, vj

)
, j ∈ {1, 2, . . . , k}

}
.

Step 3: kNN as a Teacher In the training phase,
a kNN distribution can be formulated as:

pTkNN (yi | x,y⋆
<i) ∝

∑

(dj ,vj)∈Ki

1yi=vj exp

(−dj
τ

)
, (10)

We then use pTkNN as a teacher to train the base
NMT model, and the knowledge distillation objec-
tive in Equation 8 can be rewritten as:

LkNN−KD =−
∑

yi∈V
pTkNN (yi | x,y⋆

<i)

× log pMT (yi | x,y⋆
<i) .

(11)

And the final training objective in Equation 9 can
be rewritten as:

L = (1− α)LCE + αLkNN−KD, (12)

where LCE can be calculated as Equation 2.
Step 4: Decoding During inference, our model
remains in the standard Seq2Seq manner (Vaswani
et al., 2017), so we omit it here.

3.2 Theoretical Analysis

In this section, we show that our proposed kNN-
KD can help address the overcorrection issue from
the perspective of gradients. The gradient of the
final objective in Equation 12 with respect to the

logit zyi , yi ∈ V is:

∂L
∂zyi

= (1− α)
(
p(yi)− 1yi=y∗

i

)
+ α

(
p(yi)− pT(yi)

)

=





p(yi)− αpT(yi), if yi ̸= y⋆
i and yi ∈ Ki

p(yi), if yi ̸= y⋆
i and yi /∈ Ki

p(yi)−
(
1− α+ αpT(yi)

)
, if yi = y⋆

i

(13)

where we abbreviate pMT

(
yi | x,y⋆

<i

)
to p(yi)

and pTkNN

(
yi | x,y⋆

<i

)
to pT(yi).

For every gradient update in the training phase,
the model is trained to decrease the gradient norm
to 0 to reach a local minimum (Lin et al., 2021).
Therefore, for the tokens that are reasonable but
not ground-truth (i.e., yi ̸= y⋆i and yi ∈ Ki), the
model has to learn to increase the probability p(yi)
by the degree of αpT(yi) so that the gradient norm
|p(yi) − αpT(yi)| can reach 0. For the other non-
ground-truth token (i.e., yi ̸= y⋆i and yi /∈ Ki),
pT(yi) is equal to 0 since yi is not included in the
retrieved results of kNN search, and the model will
learn to assign much lower probability p(yi) to re-
duce |p(yi)|. Besides, since we build the datastore
and conduct kNN search on the same training set
data, for any translation context, its nearest neigh-
bor over the datastore must be itself, which means
if yi = y⋆i , then yi ∈ Ki. Then, for the ground-
truth token (i.e., yi = y⋆i ), the model is trained
to increase the probability p(yi) by the degree of(
1− α+ αpT(yi)

)
. Note that, the gradient norm

of the standard CE loss is |p(yi)− 1| for yi = y⋆i ,
and thus that standard CE increases the probability
p(yi) by the degree of 1. This demonstrates that
our kNN-KD still makes the model learn to predict
the ground-truth but with a relatively lower strength
than the standard CE.

Taking the case in Figure 1 as an example, given
the translation context “Vielen Dank für Ihren hil-
freichen Vorschlag || Thanks for your”, its ground-
truth target token is “useful”, while “helpful” is
also reasonable for this translation. Assuming that
we have conducted the kNN search with k = 3 in
advance as shown in Figure 1, and set τ to 1, we
can then compute the kNN teacher distribution as:

pT (y4) =





0.378, if y4 is “useful”
0.622, if y4 is “helpful”
0, otherwise

(14)

According to Equation 13, the gradient norms
are |p(“helpful”)− 0.622α| for “helpful”, and
|p(“useful”)− (1− 0.622α)| for “useful”. There-
fore, our kNN-KD can train the model to learn
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from the kNN model to increase the probability of
“helpful” that is reasonable but not ground-truth,
thus addressing the overcorrection issue.

4 Experiments

4.1 Datasets

We conduct experiments on IWSLT’14 German-
English (De-En, 160k training samples),
IWSLT’15 English-Vietnamese (En-Vi, 113k
training samples), and multi-domains translation
datasets (Aharoni and Goldberg, 2020) (De-En,
733k training samples). For IWSLT’14 De-En,
we follow the preprocessing steps provided by
fairseq2 (Ott et al., 2019) to split the data, and
process the text into bytepair encoding (BPE)
(Sennrich et al., 2016). For IWSLT’15 En-Vi,
we use the pre-processed dataset3 provided by
Luong and Manning (2015). We use tst2012 as the
validation set and tst2013 as the test set, which
contains 1, 553 and 1, 268 sentences respectively.
For multi-domains translation datasets, we use the
pre-processed dataset4 provided by Zheng et al.
(2021), and consider domains including Koran,
Medical, and Law in our experiments.

4.2 Competitive Models

The proposed kNN-KD is an architecture-free
method that can be applied to arbitrary Seq2Seq
models, which is orthogonality to previous works
that design delicate structures to improve perfor-
mance. Therefore, we mainly compare kNN-KD
with vanilla kNN-MT and some typical KD meth-
ods:

• Word-KD (Hinton et al., 2015b). As de-
scribed in Section 2.3, Word-KD is the stan-
dard KD that distills knowledge equally for
each word.

• Seq-KD (Kim and Rush, 2016). In this
method, teacher model T first generates an ex-
tra dataset by running beam search and taking
the highest-scoring sequence. Then student
model S is trained on this teacher-generated

2https://github.com/pytorch/fairseq/
blob/main/examples/translation/
prepare-iwslt14.sh

3https://nlp.stanford.edu/projects/
nmt/

4https://github.com/zhengxxn/
adaptive-knn-mt

Datasets |D| k τ

IWSLT’14 De-En 3,949,106 64 100
IWSLT’15 En-Vi 3,581,500 64 100
Koran 524,374 16 100
Medical 6,903,141 4 10
Law 19,062,738 4 10

Table 1: Hyper-parameter settings for different datasets.

data, and the training objective can be formu-
lated as:

LSeq−KD = −
n∑

i=1

∑

yi∈V
1yi=ŷi

× log pMT (yi | x, ŷ<j) ,

(15)

where ŷ is the target sequence generated by
teacher model, and n is the length of it.

• BERT-KD (Chen et al., 2020). This method
distills knowledge learned in BERT (Devlin
et al., 2019) to the student NMT model to
improve translation quality.

• Selective-KD (Wang et al., 2021a). This work
finds that some of the teacher’s knowledge
will hurt the effect of KD, and then address
this issue by introducing Selective-KD to se-
lect suitable samples for distillation.

4.3 Implementation Details

All the algorithms are implemented in Pytorch with
fairseq toolkit (Ott et al., 2019), and all the experi-
ments are conducted on a machine with 8 NVIDIA
GTX 1080Ti GPUs. Other details of the experi-
mental setup can be seen in Appendix A.
Model Configuration We choose Trans-
former (Vaswani et al., 2017) as our base NMT
model. For IWSLT’14 De-En and IWSLT’15 En-
Vi, we use transformer_iwslt_de_en configu-
ration, which has 6 layers in both encoder and
decoder, embedding size 512, feed-forward size
1, 024 and attention heads 4. For multi-domains
translation datasets, we follow Khandelwal et al.
(2021) to adopt transformer_wmt19_de_en
configuration, which has 6 layers in both encoder
and decoder, embedding size 1, 024, feed-forward
size 8, 192 and attention heads 8.
Preprocessing Details When building the data-
stores, we use the context vectors input to the fi-
nal output layer as keys in the datastore D. For
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Models
De-En En-Vi

BLEU upd/s token/s BLEU upd/s token/s
Transformer 34.11 2.02(1.00×) 3148.10(1.00×) 30.76 2.55(1.00×) 2870.07(1.00×)
Word-KD 34.26 1.77(0.88×) 3291.28(1.06×) 30.98 2.14(0.84×) 2782.53(0.97×)
Seq-KD 34.60 2.14(1.06×) 3409.86(1.08×) 31.20 2.80(1.10×) 2855.77(1.00×)
BERT-KD 35.63 1.70(0.84×) 3275.43(1.04×) 31.51 2.14(0.84×) 2785.69(0.97×)
Selective-KD 34.38 1.72(0.85×) 3365.68(1.07×) 31.48 2.09(0.82×) 3044.68(1.06×)
kNN-MT 36.17 - 920.72(0.29×) 32.08 - 617.88(0.22×)
kNN-KD 36.30 2.14(1.06×) 3321.24(1.05×) 32.27 2.60(1.02×) 2879.68(1.00×)

Table 2: Experimental results on IWSLT’14 De-En and IWSLT’15 En-Vi translation tasks. “-” means “not
applicable” since vanilla kNN-MT can only be adopted in the decoding phase. “upd/s” and “token/s” are abbreviated
notations for “training updates per second” and “generated tokens per second”.

Models
Koran Medical Law

BLEU token/s BLEU token/s BLEU token/s
Pre-trained Model 16.26 1038.97(1.00×) 39.91 1765.56(1.00×) 45.71 2404.31(1.00×)
kNN-MT 19.45 246.17(0.24×) 54.35 701.29(0.40×) 61.78 853.66(0.36×)
Transformer 13.84 1297.45(1.25×) 27.51 1073.53(0.61×) 60.77 1689.89(0.70×)
kNN-KD 24.86 1236.23(1.19×) 56.50 1853.58(1.05×) 61.89 2456.62(1.02×)

Table 3: Experimental results on multi-domains translation datasets. We leave out the metric for training efficiency
(upd/s) since it is only applicable for Transformer and kNN-KD, and the training efficiency of these two models are
basically the same.

IWSLT datasets, the base NMT model is used
to obtain the context vectors, while for multi-
domains translation datasets, we follow Khan-
delwal et al. (2021) to build datastores by the
pre-trained model5. According to the model
configuration, the keys are 512-dimensional and
1024-dimensional for IWSLT datasets and multi-
domains translation datasets, respectively. We use
FAISS (Johnson et al., 2017) for the nearest neigh-
bor search. And we conduct grid searches over
k ∈ {4, 8, 16, 32, 64, 128, 256, 512, 1024} and
τ ∈ {1, 10, 50, 100, 200, 500, 1000}, and choose
the final settings according to the best BLEU score
on the validation set. The final hyper-parameter
settings are shown in Table 1.
Evaluation For all the datasets, we use the beam
search with beam size 5. We evaluate the transla-
tion in terms of quality and efficiency.

• Quality. For IWSLT’14 De-En and
IWSLT’15 En-Vi, following the common
practice, we measure case sensitive BLEU
by multi-bleu.perl6. For multi-domains trans-

5https://github.com/pytorch/fairseq/
tree/main/examples/wmt19

6https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/

lation datasets, we closely follow Khandelwal
et al. (2021) to evaluate the results by Sacre-
BLEU (Post, 2018) for a fair comparison.

• Efficiency. We evaluate the efficiency of train-
ing and inference by the training updates per
second (upd/s) and the generated tokens per
second (token/s), respectively.

4.4 Main Results
Results of IWSLT Datasets We first compare
kNN-KD with vanilla kNN-MT and other KD
methods on the two IWSLT translation tasks. Note
that there are several hyper-parameters in vanilla
kNN-MT: tunable weight (λ), number of neigh-
bors per query (k), and temperature (τ ). These
hyper-parameters have great effects on the trans-
lation results. We also conduct grid searches over
these hyper-parameters, and find the best settings
according to BLEU score on the validation set.

As shown in Table 2, kNN-KD outperforms all
the other strong baselines on both IWSLT datasets,
e.g., an improvement of +2.14 and +1.51 BLEU
score over Transformer. Moreover, we observe that
our proposed kNN-KD can even perform better
than vanilla kNN-MT, while gaining a significant

generic/multi-bleu.perl
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Models Law→Medical Medical→Law
Transformer 18.73 2.07
kNN-KD 22.31 14.82

Table 4: Generalizability Evaluation. “Law→Medical”
means that we train the model on the Law domain and
directly apply it to Medical domain, and vice versa. The
results are BLEU scores.

speedup. On the one hand, kNN-KD, like other
KD methods, maintains the standard Seq2Seq man-
ner at inference time, thus keeping the same de-
coding speed as Transformer. On the other hand,
kNN-KD also keeps the same training speed as
Transformer, and it is more efficient than Word-
KD, BERT-KD and Selective-KD. This is because
the calculation of the teacher model distribution
pTkNN

(
yi | x,y⋆

<i

)
only needs to be performed on

a relatively small kNN retrieved set Ki, while word-
level KD have to compute the teacher distribution
over the whole vocabulary V .
Results of Multi-domains Datasets Apart from
IWSLT datasets, we further compare our kNN-
KD with kNN-MT on multi-domains translation
datasets. First, we follow Khandelwal et al. (2021)
to conduct inference with the pre-trained model and
vanilla kNN-MT. Then, we train the base NMT
model using standard CE and kNN-KD on each
domain’s training data, and report the results in
Table 3 as a comparison. In all domains, kNN-KD
again outperforms all the baselines. Most impor-
tantly, our proposed kNN-KD can achieve a con-
sistent improvement over vanilla kNN-MT (+2.56
BLEU score on average) with a significant speedup.
This further confirms the effectiveness and effi-
ciency of our method.
Generalizability To verify the generalizability
of our method, we further conduct experiments on
the scenario that we train a NMT model on a spe-
cific domain and evaluate it on the out-of-domain
test set. As shown in Table 4, our kNN-KD per-
forms significantly better than Transformer trained
by standard CE. It proves the statement in Section 1
that compared with standard CE, kNN-KD can im-
prove the generalizability of NMT models.

4.5 Analysis

There are two key hyper-parameters in our kNN-
KD: number of neighbors per query (k), and tem-
perature (τ ). In this section, we investigate the
effects of these two hyper-parameters on the vali-
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Figure 2: BLEU scores with different k and fixed τ
(τ = 100) on the validation set of IWSLT’14 De-En
dataset.
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Figure 3: BLEU scores with different τ and fixed k
(k = 64) on the validation set of IWSLT’14 De-En
dataset.

dation set of IWSLT’14 De-En.
Effect of k We fix the temperature τ to 100, and
train the model using kNN-KD with different k.
As shown in Figure 2, the BLEU score first rises
with the increase of k, and reaches the best perfor-
mance peak when k = 64. And then, performance
deteriorates with a larger k. This suggests that, the
retrieved results of kNN search can substantially
improve training when k is relatively small, but it
will also introduce more noise when k gets larger.
Effect of τ We train the model using kNN-KD
with different τ and fixed k (k = 64). As shown
in Figure 3, a temperature of 1 results in a signifi-
cantly lower BLEU score than those greater than
1. This is because a large temperature value can
flatten the kNN teacher distribution in Equation 10
to prevent assigning most of the probability mass to
a single neighbor. The results show that for k = 64,
the optimal temperature is 100.
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Figure 4: Predicted probabilities output from the base
NMT model, kNN-MT and our kNN-KD, given the
translation context “es gibt eine menge geschichten
darüber , warum wir dies getan haben . || there are”

4.6 Case Study

In this section, we show how our proposed method
works by presenting a real case. There exists an
example in the test set of IWSLT’14 De-En that the
source sentence is “es gibt eine menge geschichten
darüber , warum wir dies getan haben .” and the
corresponding target sentence is “there are a lot of
stories about why we did this .”. Given the source
sentence and target subsequence “there are” as
the translation context, “many...”, “lots of...”, and

“a lot of...” are all correct translations. We input
this translation context to the base NMT model,
kNN-MT, and our model, and observe the predicted
probabilities over the vocabulary. As shown in Fig-
ure 4, all the models predict “a” with the maximal
probability that matches the ground-truth. How-
ever, since the base model is trained by CE loss
using one-hot vector as supervision, it suffers from
a serious overcorrection problem that the model
assigns an overconfident probability to the token

“a” and almost none to other reasonable target to-
kens such as “lots” and “many”. On the contrary,
both kNN-MT and our kNN-KD increase the prob-
abilities of the reasonable target tokens, and these
two models have similar predicted probabilities.
Note that kNN-MT obtains this probability distri-
bution by interpolating the base NMT probability
with a kNN search probability at decoding time,
while our kNN-KD directly outputs this distribu-
tion without any additional operations. This fur-
ther confirms that kNN-KD can train the model to
learn the knowledge of kNN that prevents the over-
confidence of the model on the one-hot label, thus

leading to the better generalizability for inference.

5 Related Works

5.1 Neural Machine Translation

Machine translation has developed rapidly in re-
cent years. The early models were mainly based
on statistical machine learning (Brown et al., 1990;
Och, 2003; Koehn et al., 2007). Then, with the de-
velopment of deep learning technology, many mod-
els used RNN(Sutskever et al., 2014; Bahdanau
et al., 2015), CNN(Gehring et al., 2017), or Trans-
former(Vaswani et al., 2017) as their backbones.

Recently, a few studies have combined k nearest
neighbors algorithm closely with NMT models to
improve performance. Khandelwal et al. (2021)
used a nearest neighbor classifier to predict to-
kens on a large datastore of cached examples and
proposed kNN-MT. However, Meng et al. (2021)
pointed out that kNN-MT is two-order slower
than vanilla MT models, which limits the deploy-
ment for real-world applications. They proposed
Fast kNN-MT to solve this problem. Wang et al.
(2021b) also noticed the low-efficiency problem of
kNN-MT. Thus, they used a hierarchical clustering
strategy and proposed Faster kNN-MT. Although
the above studies have made feasible fixes, kNN
search is still required in the decoding phase, which
dramatically increases the difficulty of practical ap-
plications compared to standard MT models.

5.2 Knowledge Distillation

Knowledge distillation (KD) introduces teacher
network and student network to help knowledge
transfer and it was widely used in NMT (Hinton
et al., 2015a). Kim and Rush (2016) introduced
two sequence-level KD methods to improve the per-
formance of NMT. Barone et al. (2017) used KD
to address the problem of catastrophic forgetting
in the fine-tuning stage. Tan et al. (2019) used KD
to enable the multilingual model to fit the training
data and to match the outputs of the teacher mod-
els. Clark et al. (2019) distilled single-task models
into one multi-task model. Chen et al. (2020) used
BERT as the teacher model after fine-tuning on the
target generation tasks to improve the conventional
Seq2Seq models. Wang et al. (2021a) proposed
batch-level and global-level selection strategies to
choose appropriate samples for knowledge distilla-
tion. We focus on using KD to leverage the knowl-
edge retrieved by kNN search to enhance a base
NMT model.
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6 Conclusion

In this paper, we introduce kNN-KD that distills
the knowledge retrieved by kNN search to prevent
the base NMT model from overcorrection. Ex-
periments show that kNN-KD can improve over
vanilla kNN-MT and other baselines without any
additional cost for training and decoding. In the
future, we will apply kNN-KD to many other tasks.
We will also explore the effect of kNN-KD on im-
proving the diversity of text generation.
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A Experimental Setup

A.1 Datasets
The dataset statistics for all the datasets are re-
ported in Table 5. It is worth to mention that
IWSLT datasets are under the Creative Commons
BY-NC-ND license, and the multi-domains transla-
tion datasets are under the BSD license.

Train Valid Test
IWLST‘14 De-En 160,239 7,283 6,750
IWLST‘15 En-Vi 133,166 1,553 1,268

Koran 17,982 2,000 2,000
Medical 248,099 2,000 2,000

Law 467,309 2,000 2,000

Table 5: The number of examples for different datasets.

A.2 Hyper-parameters Setting
All the algorithms are implemented in Pytorch with
fairseq toolkit (Ott et al., 2019), and all the experi-
ments are conducted on a machine with 8 NVIDIA
GTX 1080Ti GPUs with the hyperparameters re-
ported in Table 6.

Note that during training, we are using the dy-
namic batching provided by fairseq, and choose the
max tokens according to the GPU memory con-
straint. We train the model for 200 epochs on
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Hyperparameters IWSLT Multi-domains
Max tokens 8192 1280
Learning rate 5e-4 5e-4
LR scheduler Inverse sqrt Inverse sqrt
Minimal LR 1e-9 1e-9
Warm-up LR 1e-7 1e-7
Warm-up steps 4000 4000
Gradient clipping 0.0 0.0
Weight decay 0.0 0.0001
Droupout 0.3 0.2
Attention dropout 0.0 0.1
Activation dropout 0.0 0.1
α in Equation 12 0.5 0.5
Optimizer Adam Adam

-β1 0.9 0.9
-β2 0.98 0.98
-ϵ 1e-8 1e-8

Table 6: Hyperparameter settings for different datasets.

IWSLT datasets, 250 epochs on Koran domain,
100 epochs on Medical domain, 120 epochs on
Law domain, while the early-stop mechanism is
also adopted with patience set to 20.

B Limitation and Potential Risks

Although kNN-KD is efficient in both training and
inference, it will take a relatively long time for pre-
processing to build the datastore and conduct kNN
searches, and it also requires large disk space to
store all these results. However, since the prepro-
cessing can be done offline, it does not limit the
deployment of kNN-KD in real-world applications.

Our model is trained on open source datasets,
and thus if there exists toxic text in the training
data, our model may have the risk of producing
toxic content.
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