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Abstract

We target on the document-level relation extrac-
tion in an end-to-end setting, where the model
needs to jointly perform mention extraction,
coreference resolution (COREF) and relation
extraction (RE) at once, and gets evaluated in
an entity-centric way. Especially, we address
the two-way interaction between COREF and
RE that has not been the focus by previous
work, and propose to introduce explicit inter-
action namely Graph Compatibility (GC) that
is specifically designed to leverage task char-
acteristics, bridging decisions of two tasks for
direct task interference. Our experiments are
conducted on DocRED and DWIE; in addition
to GC, we implement and compare different
multi-task settings commonly adopted in previ-
ous work, including pipeline, shared encoders,
graph propagation, to examine the effective-
ness of different interactions. The result shows
that GC achieves the best performance by up
to 2.3/5.1 F1 improvement over the baseline.

1 Introduction

There has been a growing interest in document-
level relation extraction recently since the introduc-
tion of several large-scale datasets such as DocRED
(Yao et al., 2019), which requires inter-sentence
reasoning over the global entities and classifies
relation instances on the entity-level, with each en-
tity being a cluster of coreferent mentions across
a document. In this line of entity-centric research,
recent work has made great advancement on the
global reasoning while regarding the entities as
given (Nan et al., 2020; Zhou et al., 2021; Xu et al.,
2021; Ru et al., 2021). Nevertheless, the more prac-
tical end-to-end setting that extracts global entities
and relations jointly has not drawn much attention,
which poses extra burden to the model that needs
to resolve mentions, coreference and relations at
once. In this work, we specifically address this
end-to-end setting such that given a document, the
model targets to extract all gold triples (eh, et, r),

where an instance is evaluated as correct only if
the head/tail entity clusters (eh/et) as well as the
relation r are all correct.

To leverage the potentials that different tasks
could benefit from each other, two popular methods
have been taken by recent span-extraction-based
models. One is to simply share the encoder (hence
sharing mention representation) in the multi-task
learning while decoding separately in a pipeline
manner (Luan et al., 2018; Sanh et al., 2019). The
other is to add graph propagation that enriches men-
tion representation with task-specific decisions, e.g.
DYGIE (Luan et al., 2019).

However, the task interactions above only hap-
pen on the representation level, and still employ the
pipeline-like decoding, thus no explicit interactions
have been made that directly interfere the decisions
of different tasks. Meanwhile, the improvement
from graph propagation has been diminished under
strong encoders like BERT (Joshi et al., 2019) that
are able to model long-range dependency, as shown
by recent work (Wadden et al., 2019; Xu and Choi,
2020; Zaporojets et al., 2021). Therefore, aiming
to further improve performance, we focus on the
task interactions in this work and propose to intro-
duce explicit interactions that utilize unique task
characteristics, mitigating negative effects such as
error propagation from the pipeline decoding.

Specifically, in addition to the regular scoring
on mention pairs for coreference resolution which
is itself independent from relation classification,
we add a second source of coreference scores
from relation scores, exploiting the clue that for
a pair of mentions (mx,my) that refer to the same
entity, their relation scores sr should be simi-
lar when paired with any other mentions mk, as
sr(mx,mk) ≈ sr(my,mk); conversely, for a non-
coreferent pair, their relation scores towards other
mentions tend to be divergent. We then formulate
the relation scores sr for each mention as a local
graph, and learn a distance metric as the secondary
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coreference score that checks the compatibility of
local graphs of a mention pair. The added term
acts as a bridge between coreference and relations,
thereby providing explicit task interactions that cir-
cumvents independent decoding of each task.

To have a systematic evaluation of our approach,
we implement and conduct our experiments in five
multi-task settings (§2), ranging from the pipeline
approach to three different interaction methods
that compare the impact of task interactions for
document-level IE. Empirical results on two entity-
centric datasets, DocRED and DWIE, show that
simple representation sharing can indeed consis-
tently bring marginal improvement over the naive
pipeline approach, while both our adapted graph
propagation method (as an implicit interaction) and
our proposed explicit interaction method are able
to further boost the performance by up to 2.3/5.1
F1 on two datasets. Results suggest that explicit
interactions serve as inter-task regularization that
outperforms graph propagation, highlighting the
importance of designing task-specific interactions
in joint IE tasks.

2 Approach

§2.1 first introduces our strong baseline constituted
near state-of-the-art models for coreference reso-
lution (COREF) and relation extraction (RE). Our
proposed approach is then described in §2.2 with
three different multi-task interaction settings. All
five model settings are illustrated in Figure 1.

2.1 Baseline

For COREF, we adopt the popular Transformers-
based span-extraction architecture as Lee et al.
(2018); Joshi et al. (2019) that resolves mention
extraction and coreference end-to-end, with two
slight modifications. First, we simplify the pair-
wise mention scoring: only keep the lightweight
bilinear scoring and discard the slow antecedent
scoring, as we do not observe noticeable degrada-
tion in our preliminary experiments, likely due to
the fact that COREF in current IE datasets is easier
(e.g. pronouns are not considered in DocRED). Sec-
ond, we support prediction of the singleton entity
(entity with only one mention) by optimizing men-
tion scores as suggested by Xu and Choi (2021).
Full model details are described in Appendix A.1.

For RE, we follow the recent model ATLOP
(Zhou et al., 2021) that takes a document and its
entities as input, and produces relation triples on

the entity-level, by learning adaptive thresholds for
relation scores. One minor modification is made
that we do not use localized context pooling, as
we would like our task interactions to be encoder-
agnostic without using BERT-specific features. For
both models, we use the concatenated embedding
of mention boundary as mention representation.

Pipeline Our first setting is the pipeline approach
that trains COREF and RE models separately, and
decodes in the naive pipeline manner, where the
extracted entities (entity clusters) are first obtained
by the COREF model, and then fed to the RE model
that produces the final relation triples.

Joint Our second setting features the common
joint paradigm adopted in most related work (Luan
et al., 2019; Zaporojets et al., 2021; Eberts and
Ulges, 2021) that shares the same encoder and
mention representation for all tasks, while keep-
ing independent decoders for COREF and RE that
are jointly trained in a multi-task manner (adding
two losses). This and later settings employ “shared
representation” as the first type of task interactions.

2.2 Mention-Level Task Interactions

We first introduce another joint model decoded on
mention-level dubbed Joint-M as the backbone
of our approach. +GP and +GC then add two
different interactions respectively upon Joint-M.

Joint-M As the COREF model operates on the
mention-level but ATLOP scores between entities
directly, we propose another joint model that uni-
fies all scoring on the mention-level, allowing more
straightforward inter-task interference later.

Same as the baseline, the COREF module in
Joint-M still generates a set of mention candi-
dates (m1, ..,mn) and their pairwise coreference
scores sc(mx,my) indexed by x, y ∈ [1, n]. Dif-
ferent from ATLOP that obtains entity represen-
tation first and performs relation scoring among
entities, the RE module in Joint-M simply obtains
mention-level pairwise relation scores sr through a
lightweight biaffine scoring, directly on the same
set of mention candidates. More formally:

sc(mx,my) = gxW
cgTy + sm(gx) + sm(gy)

sri(mh,mt) = ghW
rigTt + shi(gh) + sti(gt)

g denotes the embedding of the corresponding men-
tion; W c/W ri are learned parameters for COREF
scoring and RE scoring of the ith relation type.
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Figure 1: Illustration of five multi-task settings described in §2. The objective of each model is to identify entity
clusters as well as their relations, given a document as input. All models except for Pipeline employ “shared
representation” as an implicit task interaction. +GP further applies graph propagation as an additional implicit
interaction, and +GC is designed to leverage task characteristics between COREF and RE as an explicit interaction.

sm/shi /sti are additional prior scores predicted by
separate feed-forward networks on how likely the
mention span is a gold mention (sm) or a head/tail
mention for the ith relation type (shi /sti).

Though the original relation labels are on the
entity-level, we transfer the labels to the mention-
level by letting any mention pair (mh,mt) ex-
press the same relations as their belonging entities
(eh, et), with mh ∈ eh and mt ∈ et. By doing so,
the model is forced to learn more inter-sentence
reasoning implicitly in the encoding stage to aggre-
gate different local context of mentions belonging
to the same entity. Similar mention-level decod-
ing is also adopted in previous work (Zaporojets
et al., 2021; Eberts and Ulges, 2021). In particu-
lar, Eberts and Ulges (2021) applies multi-instance
learning on mentions; nevertheless, their approach
regards mention-level labels as latent variables and
still needs to formulate the entity representation,
while Joint-M offers a simpler paradigm that dis-
cards entities in the model completely, and yields
similar performance as multi-instance learning in
preliminary experiments.

Joint-M is trained similar to Joint and still em-
ploys the same task interaction as “shared represen-
tation”. For inference, we obtain the entity-level re-
lation labels by simply averaging the mention-level
relation scores from the cartesian product of the
predicted entity clusters, denoted as sri(eh, et) =
MEAN{sri(mh,mt)}, ∀(mh,mt) ∈ eh × et.

+GP In this setting, we apply Graph Propagation
upon Joint-M, which has the similar formulation
as DYGIE++ (Wadden et al., 2019). Distinguished
from the original DYGIE++ that only extracts intra-
sentence relations, we use our adapted version for
the document-level graph propagation as follows.

After the RE scoring in Joint-M, we regard each
mention candidate as a graph node and their re-
lation scores as weighted graph edges. Instead
of propagating on one graph as DYGIE++, each
relation type inherently forms its own directed sub-
graph that only consists of edges of a specific type.
In +GP, we perform subgraph propagation respec-
tively, and then obtain the final node representation
by aggregating nodes from each subgraph.

More formally, let R be the set of relation types.
|R| heterogeneous relation subgraphs can thus be
constructed after the RE scoring. We then apply
Graph Attention Network (GAT)-like propagation
(Veličković et al., 2018) on each subgraph:

αri
ht =

exp
(
ReLU

(
sri(mh,mt)

))
∑

k∈Nh
exp

(
ReLU

(
sri(mh,mk)

)) (1)

grih = tanh(
∑

t∈Nh

αri
ht · gtW ri) (2)

ĝt = gt +
∑

ri∈R
grih /|R| (3)

ĝt is the new tail embedding after the propagation
that will replace gt; Nh is the set of neighboring
nodes of mh, which in this case are all the mention
candidates. W ri is the learned matrix for type-
specific node transformation. The new head em-
bedding ĝh will also be obtained accordingly.

With the new node embedding that fuses the RE
decisions, +GP performs the COREF scoring as
in Joint-M but using the updated mention repre-
sentation, accomplishing implicit task interactions.
We do not perform further propagation on COREF
graphs as it is shown little effects by previous work
(Wadden et al., 2019; Xu and Choi, 2020).

+GC As above interactions are all implicit, we
propose to leverage task characteristics between
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DocRED DWIE

ME COREF RE RE Ign ME COREF RE

LSTM-based Verlinden et al. (2021) - 83.6* 25.7* - - 91.5* 52.1*

BERT-based Zaporojets et al. (2021) - - - - - 91.1 50.4
Eberts and Ulges (2021) 92.99* 82.79* 40.38* - - - -

Pipeline 92.56 84.09 38.29 35.88 96.09 92.80 57.76
Joint 93.34 84.79 38.94 36.64 96.16 92.87 59.32
Joint-M 93.33 84.83 39.65 37.17 96.47 92.91 61.01

+GP 93.38 84.85 40.12 38.09 96.37 93.05 61.95
+GC 93.35 84.96 40.62 38.28 96.57 93.47 62.85

Table 1: Evaluation results on the test set of DocRED and DWIE. Three metrics are included: (1) Mention
Extraction (ME) in mention-level F1 score (2) Coreference Resolution (COREF) in averaged F1 score of MUC,
B3, and CEAFϕ4 (3) Relation Extraction (RE) in entity-level F1 score. DocRED also provides a F1 score (RE Ign)
that excludes shared relational facts between training and evaluation. Three related work with the same end-to-end
objective are shown, and they all employ certain mention-level decoding similar to our Joint-M. Note that Verlinden
et al. (2021) also utilizes external knowledge; Eberts and Ulges (2021) is not directly comparable as their reported
numbers are on a self-split development set instead of the official test set.

COREF and RE to design explicit task interactions,
dubbed Graph Compatibility as a new setting upon
Joint-M. Specifically, each node after RE scoring
can be regarded as a local graph that connects to all
other nodes with weighted edges (relation scores).
If two mention nodes are from the same entity clus-
ter, their local graphs should be similar, since they
are forced by Joint-M to have the exact same rela-
tions to other nodes; vice versa, if two nodes do not
refer to the same entity, their relations (weighted
edges) to other mentions are likely to be distant
from each other. Therefore, our +GC model learns
a distance metric to check the “compatibility” of
local relation graphs, as an additional clue of how
likely two mentions are coreferent.

More formally, this second source of coreference
scores ŝc can be denoted as:

drix,y =
∑

k∈Nx,y

|sri(mx,mk)− sri(my,mk)| (4)

ŝc(mx,my) =
∑

ri∈R
βri · drix,y (5)

s̃c(mx,my) = sc(mx,my)− λŝc(mx,my)

drix,y is the raw L1 distance between the two local
graphs by all neighboring edges of the ri relation
type. ŝc is the final distance/compatibility of two lo-
cal graphs, weighted by the learned parameter βri

that determines the importance of each ri; higher
ŝc indicates more diverging graphs. The final coref-
erence score s̃c interpolates the original sc and the
new distance ŝc, with λ being a hyperparameter.

Overall, +GC enables explicit interactions that
bridge COREF and RE together: RE can affect

COREF directly, while COREF also pushes sim-
ilar RE scores for coreferent pairs during back-
propagation. The final distance ŝc is optimized by
a contrastive loss as in Eq (6) that is commonly
used in Siamese Network (Koch et al., 2015). For
simplicity, denote D = ŝc(mx,my), Y = 1 when
(mx,my) is from the same entity, and Y = 0 else-
wise. m is the margin as a hyperparameter. L̂ is
added as the third loss in Joint-M’s training.

L̂ = Y ·D2 + (1− Y ) ·max(0,m−D)2 (6)

As the relation graphs are inevitably sparse because
only a small fraction of mention pairs express re-
lations, we reduce the overhead introduced by k
in Eq (4) by pruning the local graphs based on
heuristics described in Appendix A.2.

3 Experiments

Above five settings are evaluated on two datasets:
DocRED (Yao et al., 2019) that consists of
Wikipedia documents, and DWIE (Zaporojets et al.,
2021) that consists of news articles. For DocRED,
we follow the provided split and obtain the RE
scores on the test set by submitting predictions
to its official Codalab competition. DWIE does
not come with a pre-defined dev set; we randomly
holdout 10% training set for model tuning, while
using the entire training set in the final evaluation
to be consistent with previous work. Details and
statistics of the two datasets are provided in A.3.

Implementation Our baseline implementation
is adapted from the PyTorch COREF model by
Xu and Choi (2020) and the ATLOP RE model by
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Zhou et al. (2021). The proposed Joint-M, +GP,
+GC models are further coded in PyTorch. For all
experiments, we use SpanBERT-Base (Joshi et al.,
2020) as the encoder which we found performs
slightly better than BERT. More implementation
details and hyperparameters are provided in A.4.

Evaluation The evaluation protocol and metrics
are identical for both datasets, which are also con-
sistent with previous work on the end-to-end joint
setting (Eberts and Ulges, 2021; Verlinden et al.,
2021). The official Codalab competition for Do-
cRED assumes given entities to evaluate RE only.
To obtain the end-to-end RE metric, we perform a
postprocessing step on model predictions described
in Appendix A.5. We report numbers from the best
model out of three repeated runs on the dev set.

Results Table 1 reports the evaluation results on
two datasets by three metrics, including ME (men-
tion extraction), COREF and RE, with RE being
our main point of interest. Three previous work
with the same end-to-end evaluation are shown
(note that Eberts and Ulges (2021) is not direcly
comparable as they do not use the official test set),
and all of them adopts “shared representation” as
a basic task interaction. In particular, Zaporojets
et al. (2021) also applies DYGIE-like graph prop-
agation as an additional interaction, similar to our
+GP setting. Compared to previous work, our ap-
proach brings improvement on COREF by 1.4/2.0
F1 on DocRED/DWIE respectively, and achieves
the best performance on RE for both datasets, with
up to 10.8 F1 boost for DWIE.

Interactions Comparing within our five multi-
task settings, Pipeline is the only model without
any interactions and yields the lowest scores. By
simply sharing the encoder, albeit the improvement
is marginal, Joint is able to consistently outper-
form Pipeline on both datasets, which validates
“shared representation” as a common joint training
strategy. Joint-M brings 0.7 F1 improvement over
Joint on both datasets, showing that forcing the
mention-level decoding while retaining the same
relation labels as entities can be an empirically su-
perior strategy. Both task interactions added upon
Joint-M (+GP, +GC) are shown effective and fur-
ther improve RE by up to 1.0/1.8 F1 over Joint-M
on two datasets, bringing the total RE improvement
over Pipeline to 2.3/5.1 F1. Especially, +GC con-
sistently outperforms +GP on both datasets, which
demonstrates that task-specific design for explicit

COREF RE

P R F P R F

+0.2 +0.9 +0.6 +2.0 +0.6 +1.7

Table 2: Deltas of performance on the test set of DWIE
applying +GC upon Joint-M. COREF and RE are evalu-
ated separately (RE are given gold entities at evaluation).
P/R/F is the precision/recall/F1 score.

interactions can play a better role than the general
but implicit interactions.

Analysis Table 1 also reveals that although +GC
achieves the best performance in terms of both
COREF and RE, the improvement for COREF is
not as significant. As the effect of +GC goes two-
way: RE directly changes COREF during inference,
while COREF regularizes RE during training, we
perform further analysis as follows and show that
regularization plays a larger role that mainly im-
proves RE performance.

Table A.3 shows that the majority of entities
in both DocRED and DWIE are singletons. This
dataset characteristic poses a sizeable inductive
bias on COREF towards non-linking decisions,
leaving less room for the graph distance ŝc to im-
prove the COREF performance. To identify more
detailed impact of +GC, we look at the performance
change of individual COREF and RE modules on
the test set of DWIE, as shown by Table 2. +GC
improves the RE module alone by 2% precision
and by an overall 1.7 F1 score, indicating that the
regularization power from the graph distance is ef-
fective. By contrast, COREF improves much less
by an overall 0.6 F1 score, suggesting that although
the graph distance brings two-way interactions be-
tween COREF and RE, RE actually benefits more
while the direct contribution to COREF is more
trivial. More analysis can be a follow-up research
that studies task interactions in-depth through this
explicit interaction setting.

4 Conclusion

We address the task interactions in the end-to-end
document-level relation extraction, and compare
five model settings featuring different interactions,
including both implicit and our proposed explicit in-
teraction that bridges between COREF and RE. Ex-
periments show that all interactions can boost per-
formance, while the explicit interaction is shown
more effective comparing with others, obtaining
the best performance on DocRED and DWIE.
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A Appendix

A.1 Baseline: COREF

We use the Transformers-based end-to-end coref-
erence model from Lee et al. (2018); Joshi et al.
(2019) without higher-order inference (Xu and
Choi, 2020) which still has near state-of-the-art
performance on the standard COREF benchmark
OntoNotes (Pradhan et al., 2012). We briefly in-
troduce the model architecture as follows. The
model first enumerates all possible spans over the
document and performs topK pruning by mention
scores, yielding a set of mention candidates. It
then conducts a two-phase scoring to obtain the
pairwise coreference scores: the first phase being a
lightweight bilinear scoring, and the second phase
being a slow but more accurate antecedent scoring.

In our setting, we remove the second phase and
only use the bilinear scoring as mentioned in §2.1.
We do not observe performance degradation on
our experimented datasets, likely due to the fact
that COREF in DocRED and DWIE is easier, e.g.
pronouns are not annotated. In addition, we support
predicting the singleton entity (entity with only
one mention) in the same way as Xu and Choi
(2021), by keeping all mention candidates whose
mention scores > 0 regardless they co-refer with
other mentions or not. Thereby a binary cross-
entropy optimization on mention scores is added in
the training loss.

A.2 +GC

For local graph pruning, we experiment the follow-
ing two strategies. (1) randomly sample γn nodes
(γ ∈ (0, 1] as a hyperparameter, n being the total
number of nodes) as neighboring nodes; (2) keep
top γn neighboring nodes by highest sum of rela-
tion scores as a measurement of node saliency. We
adopt the second strategy as it performs better in
preliminary experiments.

A.3 Datasets

We do not perform extra preprocessing for Do-
cRED (Yao et al., 2019). However for DWIE (Za-
porojets et al., 2021), there exist a tiny number of
empty entities (clusters with zero mentions from
the document for entity-linking purposes) in the an-
notations, which will raise errors in COREF evalua-
tion. We perform the preprocessing step for DWIE
that removes all empty entities and their involving
relations.

TRN DEV TST #T #E %S

DocRED 3053 998 1000 198.2 19.5 80.9%
DWIE 702 - 100 623.9 27.3 66.1%

Table 3: Statistics of the dataset DocRED and DWIE.
TRN, DEV, TST are the numbers of documents in the
training, development, and test set. #T and #E are
the averaged numbers of tokens and entity clusters per
document. %S is the averaged percentage of singleton
entities out of all entities per document.

Table 3 lists important statistics of the two
datasets. We only take the annotated training set for
DocRED without using the distant supervised train-
ing set. As shown, both datasets have a large pres-
ence of singleton entities in their relation triples.

A.4 Experimental Settings
The Transformers encoder takes max input of two
segments (up to 1024 subtokens per document) due
to the GPU memory constraint. We employ the
BERT learning rate as 5× 10−5 and task learning
rate as 2× 10−4.

For our proposed +GC setting, we set the margin
m = 2 in Eq (6) and λ for Eq (5) as 10−3. We
set k = 24 for local graph pruning that balances
between performance and overhead.

For all our experiments, we use a batch size
of 4 documents, and set 72/96 epochs for Do-
cRED/DWIE respectively. All training is con-
ducted on a Nvidia TITAN RTX GPU.

A.5 Post-processing
The objective of the post-processing step is to map
the entity ID of predicted entities according to
gold entities. We substitute the entity ID of a pre-
dicted entity with its gold ID, if the predicted entity
matches a gold entity; else, we assign a dummy
ID to this predicted entity so that all its participat-
ing relation triples will be evaluated as incorrect
by Codalab. After the entity ID mapping, we sim-
ply submit the predictions to Codalab without any
further post-processing.
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