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Abstract

AMR parsing has experienced an unprecen-
dented increase in performance in the last three
years, due to a mixture of effects including
architecture improvements and transfer learn-
ing. Self-learning techniques have also played
a role in pushing performance forward. How-
ever, for most recent high performant parsers,
the effect of self-learning and silver data aug-
mentation seems to be fading. In this paper we
propose to overcome this diminishing returns
of silver data by combining Smatch-based en-
sembling techniques with ensemble distillation.
In an extensive experimental setup, we push
single model English parser performance to a
new state-of-the-art, 85.9 (AMR2.0) and 84.3
(AMR3.0), and return to substantial gains from
silver data augmentation. We also attain a new
state-of-the-art for cross-lingual AMR parsing
for Chinese, German, Italian and Spanish. Fi-
nally we explore the impact of the proposed
technique on domain adaptation, and show that
it can produce gains rivaling those of human
annotated data for QALD-9 and achieve a new
state-of-the-art for BioAMR.

1 Introduction

Adoption of the Transformer architecture (Vaswani
et al., 2017) for Abstract Meaning Representation
(AMR) parsing (Cai and Lam, 2020; Fernandez As-
tudillo et al., 2020) as well as pretrained language
models (Bevilacqua et al., 2021; Zhou et al., 2021b;
Bai et al., 2022) have enabled an improvement of
above 10 Smatch points (Cai and Knight, 2013),
the standard metric, in the last two years.

Data augmentation techniques have also shown
great success in pushing the state-of-the-art of
AMR parsing forward. These include generat-
ing silver AMR annotations with a trained parser
(Konstas et al., 2017; van Noord and Bos, 2017),
with multitask pre-training and fine-tuning (Xu
et al., 2020) as well as combining AMR to source
text and silver AMR generation (Lee et al., 2020)

and stacked pre-training of silver data from dif-
ferent models – from low performance to high
performance silver data (Xia et al., 2021). How-
ever, the latest BART-based state-of-the-art parsers,
have shown diminishing returns for data augmenta-
tion. Both SPRING (Bevilacqua et al., 2021) and
Structured-BART (Zhou et al., 2021b) gain a mere
0.5 Smatch from self-learning, compared with over
1 point gains of the previous, less performant, mod-
els. Since performance scores are already above
where inter annotator agreement (IAA) is assumed
to be, i.e. 83 for newswire and 79 for web text
reported in (Banarescu et al., 2013), one possible
explanation is that we are reaching some unavoid-
able performance plateau.

In this work we show that we can achieve sig-
nificant performance gains close to 2 Smatch point
with the newly proposed data augmentation tech-
nique, contrary to the results from the previous
state-of-the-art systems. The main contributions of
this paper are as follows:

• We propose to combine Smatch-based model
ensembling (Barzdins and Gosko, 2016;
Hoang et al., 2021) and ensemble distillation
(Hinton et al., 2015) of heterogeneous parsers
to produce high quality silver data.

• We offer a Bayesian ensemble interpretation
of this technique as alternative to views such
as Minimum Bayes Risk decoding (Goel and
Byrne, 2000) and name the technique Maxi-
mum Bayes Smatch Ensemble (MBSE).

• Applied to English monolingual parsing,
MBSE distillation yields a new single system
state-of-the-art (SoTA) on AMR2.0 (85.9) and
AMR3.0 (84.3) test sets.

• Trained with Structured-mBART1, it yields
new SoTA for Chinese (63.0), German (73.7),

1https://github.com/IBM/transition-amr-parser/tree/
structured-mbart
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Italian (76.1) and Spanish (77.1) cross-lingual
parsing.

• Applied to domain adaptation, MBSE distilla-
tion achieves the performance comparable to
human annotations of QALD-9 training data
and achieves new SoTA on BioAMR test set.

• We release QALD-9-AMR treebank2 at,
which comprises 408 training and 150 test
sentences.

2 Maximum Bayes Smatch Ensemble

Ensemble distillation (Hinton et al., 2015) inte-
grates knowledge of different teacher models into
a student model. For sequence to sequence models,
e.g. machine translation, it is possible to ensemble
models by combining probabilities of words given
context at each time step (Kim and Rush, 2016; Fre-
itag et al., 2017). Syntactic and semantic parsers
model a distribution over graphs that is harder to
integrate across teacher models in an optimal way.
For particular cases like dependency parsing, it is
possible to ensemble teachers based on the notion
of edge attachment (Kuncoro et al., 2016), which
is related to the usual evaluation metric, Label At-
tachment Score (LAS). However, AMR graphs are
quite complex and not explicitly aligned to words.
The standard Smatch (Cai and Knight, 2013) metric
approximates the NP-Complete problem of align-
ing nodes across graphs with a hill climbing algo-
rithm. This illustrates the difficulty of achieving
consensus across teachers for AMR ensembling.

Prior work ensembling AMR graphs has lever-
aged Smatch directly or its hill climbing strategy
for ensembling. The ensemble in (Barzdins and
Gosko, 2016) selects, among a number of candi-
date AMRs, the one that has the largest average
Smatch with respect to all sampled AMRs. The
ensemble in (Hoang et al., 2021), modifies the can-
didate AMRs to increase consensus as measured
by coverage. Then it selects from the union of orig-
inal and modified graphs for the one with highest
coverage or largest average Smatch. One possible
intepretation of both techniques is that of Minimum
Bayes Risk (MBR) decoding, a well established
method in Automatic Speech Recognition (ASR)
(Goel and Byrne, 2000) and Machine Translation
(MT) (Kumar and Byrne, 2004). Assuming that
we have a model predicting a graph from an input

2https://github.com/IBM/AMR-annotations

sentence p(g | w), normal decoding entails search-
ing among model outputs g for the one that has the
highest likelihood according to the model p(g | w).
MBR searches instead for the model output that
minimizes the risk with respect to the distribution
of possible human (gold) outputs for a given input

ĝ = argmin
g

{Ep(gh|w){R(g, gh)}}

where p(gh | w) is the distribution of correct hu-
man outputs, e.g. given by multiple annotators,
and R is a risk function that measures how severe
deviations from gh are. In this case risk would be
minus Smatch. Since in practice p(gh | w) is not
available, MBR takes often the strong assumption
of replacing p(gh | w) by the model distribution
itself p(g | w).

Here we suggest another Bayesian interpretation,
that requires less strong assumptions than MBR, a
Bayesian model ensemble (Wilson and Izmailov,
2020). Indeed techniques above can be seen as
solving

ĝ = argmax
g∈G

{Ep(M|D){Smatch(g, g̃M)}}

where p(M | D) is the distribution of models M
given training data D, approximated by a sample
average of models of different architectures or dif-
ferent random seeds, and

g̃M = post


argmax

y





|y|∏

t=1

pM(yt | y<t, w)








is the output of a conventional decoding process
for each parser prediction distribution pM, in-
cluding post-processing post(). This process dif-
fers across models indexed by M, for example
y can be transition actions or linearized graphs
and post() running the state-machine or linearized
graph post-processing3. G is the space of candidate
graphs, which in Barzdins and Gosko (2016) are
the AMRs resulting from decoding each sample
from p(M | D) and in Hoang et al. (2021) are
those same graphs plus the modified pivot graphs.
There is in principle no restriction on how to build
the set G. Decoding a graph g ∈ G means here
selecting the member of that set maximizing the ex-
pected Smatch and is different from each parser’s
decoding process.

3We consider only auto-regressive models in this work but
this approach could also encompass e.g. graph-based parsers.
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Spanish sentence ŝ1 labeled English sentence e1 gold AMR g1
Machine

Translation
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Spanish sentence ŝ3 unlabeled English sentence e3

silver AMR ĝA
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Figure 1: Data augmentation framework: Given a labeled example in English (e1,g1), we use an AMR-to-text
generation system to generate an alternative input text ê2 for g1 following (Lee et al., 2020). Given a sentence e3,
and various state-of-the-art off-the-shelf parser outputs (A, B, C), Maximum Bayes Smatch Ensemble (MBSE)
produces a single annotation for each input sentence by selecting from existing AMRs or their modified versions.
MBSE is only applied to unlabeled English sentences to produce ĝ3. Following (Damonte and Cohen, 2018), we
translate the English sentences to e.g. Spanish, to yield new training samples (̂s1,g1), (̂s2,g1), (̂s3, ĝ3) to train a
Spanish cross-lingual parser. We use the English pairs (e1,g1), (ê2,g1), (e3, ĝ3) to train an English parser.

If we replace Smatch() by an indicator function
on the decoding outputs 1g=g̃M , then

ĝ = argmax
g∈G

{Ep(M|D){1g=g̃M}}

recovers majority voting of AMR graphs. Since the
space of graphs is exponentially large on the input
size, this would be too sparse to attain meaningful
vote counts. The propagation of the uncertainty in
p(M | D) through the Smatch() transformation
both solves the sparsity problem, and allows op-
timization on a space that is better related to the
target metric. The method will be henceforth de-
scribed here as Maximum Bayes Smatch Ensemble
distillation (MBSE distillation).

In what follows, we will consider three versions
for ensembling, the Smatch version of Hoang et al.
(2021) (graphene-Smatch), the average-Smatch se-
lection of Barzdins and Gosko (2016), and a greedy
version of Barzdins and Gosko (2016) where we
select the two highest Smatch AMRs and from that
pair, keep the graph with the highest Smatch with
respect to the remaining graphs (greedy-select).
The greedy-select algorithm is given in Algorithm 1
of Appendix A and performs similarly to the
average-Smatch of Barzdins and Gosko (2016).

3 Silver Training Strategy

We now describe the AMR silver training strategy
proposed in this work. This strategy creates high
quality English and cross-lingual AMR annotations
for unlabeled data with MBSE and alternative input
sentences of gold AMRs via AMR-to-text.

As depicted in Fig. 1, we start with 1) a set
of gold-labeled (English sentence, AMR) pairs,

2) a set of unlabeled English sentences and 3)
pre-trained English-to-foreign language Machine
Translation systems. Assuming N off-the-shelf
AMR parsers, we train each of the N parsers using
the gold data with their respective training proce-
dure. More than one random seed may be trained
for some parsers, leading to more than N AMR
parses for each input sentence.

After the parsers have been trained, we use them
to parse the unlabeled English text as in Konstas
et al. (2017). Interpreting the set of trained mod-
els as samples of the model distribution, we apply
the MBSE distillation methods described in Sec-
tion. 2. We apply all variations of the MBSE algo-
rithms including graphene-Smatch, greedy-select
and average-Smatch algorithms.

For English parsers, the MBSE distilled AMR
annotations are added to the human-annotated gold
treebanks for enhanced model training. For cross-
lingual parsers, we translate all English input sen-
tences to the target foreign languages and train re-
spective cross-lingual parsers with pairs of (Foreign
language input sentences, AMR graphs in English),
following (Damonte and Cohen, 2018).

Following Lee et al. (2020), we also apply an
AMR-to-text model (Mager et al., 2020; Ribeiro
et al., 2021; Bevilacqua et al., 2021) to generate
additional sentences for human-annotated AMR.
We filter out the generated texts if they are too sim-
ilar (BLEU > 0.9) or too dissimilar (BLEU < 0.1)
to the original input texts, as measured by BLEU
(Papineni et al., 2002). AMR-to-text generation4 is
used for cross-lingual AMR parser training only.

4We use https://github.com/SapienzaNLP/spring.
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For Standard Experiments For Domain Adaptation
Dataset Split Sents Tokens Dataset Split Sents Tokens
AMR2.0 Train 36,521 653K QALD-9-AMR (new) Train 408 3,475

Test 1,371 30K Test 150 1,441
Dev. 1,368 29K

AMR3.0 Train 55,635 1M Bio AMR Train 5,452 231K
Test 1,898 39K Test 500 22K
Dev. 1,722 37K

LP Test 1,562 21K
PropBank silver1 20K 386K SQuAD2.0-Q silverq 135K 1.5M
SQuAD2.0-C silver1 70K 2M BioNLP-ST-2011 silverb 15K 460K
Ontonotes5.0 silver2 59K 1.1M CRAFT silverb 27K 740K
WikiText-103 silver3 70K 2M PubMed silverb 26K 750K

Table 1: Corpus statistics for the standard benchmark experiments on AMR2.0 and AMR3.0 test sets (left) and
domain adaptation experiments (right). Silver indicates the unlabeled data for silver training.

4 Experimental Setup

4.1 Corpus Statistics and QALD-9-AMR
Table 1 details the corpora considered for the
standard benchmark experiments on AMR2.0 and
AMR3.0 test sets (lef) and out-of-domain data used
for domain adaptation experiments (right). Silver
indicates the unlabeled data for silver AMR ac-
quisition. SQuAD2.0-Q(uestions) are for QALD-
9 (silverq) and PubMed, BioNLP-2011 (Kim
et al., 2011) and CRAFT (Cohen et al., 2017) for
BioAMR (silverb).

Since there were no human annotations of
QALD-9 corpus, we created QALD-9-AMR tree-
bank. QALD-9 training/test data have been anno-
tated by 3 skilled resident human annotators with
experience in AMR annotations over a year. Each
of the annotators annotated both the train and test
data sets, followed by cross validation by each
other. The final annotations were adjudicated by
the most experienced annotator. Inter-annotator
agreement (IAA) rate on a subset of 158 training
sentences is over 95% in Smatch. The data is made
publicly available under an Apache2 license.

4.2 Parsing Models
We use 4 off-the-shelf AMR parsers to parse un-
annotated raw texts. We train the parsers following
their standard configurations.

APT (Zhou et al., 2021a)5 is a transition-based
parser that combines hard attention over sentences
with a target side action pointer mechanism to de-
couple source tokens from node representations

5github.com/IBM/transition-amr-parser/tree/
action-pointer, Apache2 License

and address alignments. Cross-attention of all de-
coder layers is used for action-source alignment.

SPRING Bevilacqua et al. (2021)6 fine-tunes
BART (Lewis et al., 2020) to predict linearized
AMR graphs, avoiding complex pipelines.

Structured-BART Zhou et al. (2021b)7 mod-
els the transition-based parser state within a
pre-trained BART architecture, outperforming
SPRING. This is the main parser for our work.

AMRBART Bai et al. (2022)8 improves the
structure awareness of pre-trained BART over
AMR graphs by introducing node/edge denoising
and sub-graph denoising tasks, for graph-to-graph
pre-training, achieving significant improvement
over previous BART-based systems.

4.3 Structured-mBART

For cross-lingual AMR parsing, we adapt
Structured-BART by replacing the pretrained
BART with mBART of (Liu et al., 2020), hence-
forth Structured-mBART. The codebase is made
publicly available under an Apache2 license.
Structured-mBART diverges from Structured-
BART mainly in input processing and vocabulary:

• For task vocabulary, Structured-mBART in-
cludes ~250K sentencepiece tokens of (Kudo,
2018) including 25 language tags, e.g. es_XX,
whereas Structured-BART includes ~50K
BPE tokens of (Sennrich et al., 2016).

• We append the source language tag to the end
6github.com/SapienzaNLP/spring, CC BY-NC-SA 4.0
7github.com/IBM/transition-amr-parser, Apache2 License
8https://github.com/muyeby/AMRBART, MIT License
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Models AMR2.0 AMR3.0 Q9AMR LP BioAMR
APT (Zhou et al., 2021a) 83.0 81.1 83.7 79.0 55.2
Structured-BART (Zhou et al., 2021b) 84.6 83.1 87.7 81.0 62.4
SPRING1 (Bevilacqua et al., 2021) 84.2 83.2 87.7 81.3 61.6
SPRING2 (Bevilacqua et al., 2021) 83.8 82.9 86.4 81.0 60.5
AMRBART (Bai et al., 2022) 85.4 84.2 88.0 82.3 63.4
aver.-Smatch (A) (Barzdins and Gosko, 2016) 86.2 84.9 89.0 82.9 64.1
graphene-Smatch (P) (Hoang et al., 2021) 86.7 85.4 89.3 83.1 65.8
greedy-select (G) 85.9 84.8 88.8 82.8 63.9

Table 2: English parsing performance in Smatch in general domain and domain adaptation for recent state-of-the-art
systems (top). Performance in Smatch for the ensemble of all systems using different Smatch-based ensembling
techniques (bottom). SPRING1 and SPRING2 are 2 random seeds of the same model. Highest scores are boldfaced.

of each input sentence without specifying the
target language tag for Structured-mBART.

• For Structured-mBART, we set the learning
rate to 3e−5, cf. 1e−4 of Structured-BART,
and move the layer normalization to the be-
ginning of each transformer block.

We obtain contextualized embeddings from the
pre-trained mBART for multilingual input sentence
representations. For target action sequences, we
map the sentencepiece tokens to the corresponding
target token, by averaging all values from the sen-
tencepiece tokens corresponding to the target token.
For German, Italian and Spanish input texts, we
apply the tokenizer from JAMR parser9 before sen-
tencepiece tokenization. For Chinese, we directly
apply the sentencepiece tokenizer.

5 Results

To explore the effect of the proposed MBSE distil-
lation and training strategy, we consider an exten-
sive experimental setup including standard English
benchmarks (Section 5.1), cross-lingual bench-
marks (Section 5.2) and out of domain data sets
(Section 5.3).10 For model training and selection
details, see Appendix B and Appendix C.

We first provide the performance evaluation of
each ensembling technique used in MBSE in Ta-
ble 2 to demonstrate the effectiveness of the en-
semble techniques by themselves. We test the algo-
rithm on the standard test data sets from AMR2.0
and AMR3.0 and three out-of-domain data sets,
Q9AMR (QALD-9-AMR), LP (Little Prince) and

9https://github.com/jflanigan/jamr
10We also applied the technique to APT, observing similar

performance gains when using MBSE distillation.

BioAMR in Table 1. We consider here only stan-
dard English AMR parsing. As expected, all MBSE
algorithms, average-Smatch, graphene-Smatch and
greedy-select, improve individual models by large
margins. Note that while the ensembles outperform
single model state-of-the-art by a large margin, the
use of heterogeneous ensembles of models is com-
putationally prohibitive in practice, both due to
the cost of running different models but also the
ensembling techniques.

5.1 English AMR Parsing

As displayed in Table 1, we consider the stan-
dard AMR2.0 (LDC2017T10) and AMR3.0
(LDC2020T02) treebank as gold data. For en-
semble distillation, we use the data sets denoted
by silver1 for comparison with previous work, and
silver2 and silver3 to investigate the impact of un-
labeled corpus size on model performance. For
silver1, we use all sentence examples in PropBank
(LDC2004T14). From SQuAD2.0-C(ontexts)11

we filter out the ~92K sentences, removing bad
utf8 encoding (~7K) and ill-formed disconnected
graphs produced by APT (~15K). Silver2 com-
prises Ontonotes5.0 (LDC2013T19) and silver3

WikiText-10312

The results are shown in Table 3. The lower
part of the table (denoted by Ours) compares the
performances of Structured-BART in various silver
data augmentation setups including our proposed
MBSE distillation. With the same unlabeled cor-
pus silver1, greedy-select distillation improves 1.0
Smatch point on AMR2.0 (84.2 vs. 85.2) and 1.5
Smatch point on AMR3.0 (82.0 vs. 83.5) over the

11https://rajpurkar.github.io/SQuAD-explorer/
12https://www.salesforce.com/

products/einstein/ai-research/
the-wikitext-dependency-language-modeling-dataset/
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Models silver AMR2.0 AMR3.0
Naseem et al. (2019) 75.5 -
Zhang et al. (2019a) 76.3±0.1 -
Zhang et al. (2019b) 77.0±0.1 -
Cai and Lam (2020) 80.2 -
Fernandez Astudillo et al. (2020) 80.2±0.0 -
Lyu et al. (2020) - 75.8
Lee et al. (2020) 85K 81.3±0.0 -
Xu et al. (2020) 14M 81.4 -
Bevilacqua et al. (2021) 200K 84.5 83.0
Zhou et al. (2021a) 70K 82.6±0.1 80.3
Xia et al. (2021) 1.8M 84.2 -
Bai et al. (2022) 200K 85.4 84.2
Zhou et al. (2021b) sep-voc joint-voc sep-voc joint-voc
Structured-BART-baseline 84.0±0.1 84.2±0.1 82.3±0.0 82.0±0.0

+ self-trained silver1 90K - 84.7±0.1 82.7±0.1 82.6±0.0

+ self-trained silver1 + ensemble dec. 90K - 84.9 83.1 -
Ours below (Struct-BART) sep-voc joint-voc sep-voc joint-voc
+ SPRING silver1 90K 84.8±0.1 84.8±0.0 83.0±0.0 83.2±0.1

+ SPRING + self-trained silver1 (50:50) 90K 84.8±0.1 84.7±0.0 83.0±0.0 83.2±0.1

Ensemble-4 distillation (APT + Structured-BART + SPRING1 + SPRING2)
+ MBSE-P silver1 90K 85.1±0.1 85.1±0.1 83.2±0.1 83.5±0.1

+ MBSE-G silver1 90K 85.0±0.0 85.2±0.1 83.4±0.0 83.5±0.0

+ MBSE-G silver1+2 149K 85.3±0.1 85.4±0.1 83.6±0.1 83.7±0.1

+ MBSE-G siver1+2+3 219K 85.3±0.1 85.5±0.1 83.7±0.0 83.9±0.0

+ MBSE-G silver1+2+3 + ensemble dec. 219K 85.6 85.7 84.0 84.2
Ensemble-5 distillation (APT + Structured-BART + SPRING1 + SPRING2 + AMRBART)
+ MBSE-A silver1 90K 85.3±0.1 83.6±0.1

+ MBSE-A silver1+2 149K 85.5±0.0 84.0±0.0

+ MBSE-A silver1+2+3 219K 85.7±0.0 84.1±0.0

+ MBSE-A silver1+2+3 + ensemble dec. 219K 85.9 84.3

Table 3: Smatch scores on AMR2.0 and AMR3.0 test data. Upper rows display the performances of recent published
works. Structured-BART results in (Zhou et al., 2021b) are shown in middle rows. Lower rows show Structured-
BART performances with various silver data augmentations. sep-voc denotes separate vocabulary and joint-voc,
joint vocabulary. The numbers prefixed by ± indicate the standard deviation of Smatch scores across 3 seeds.

Structured-BART baselines. Graphene-Smatch dis-
tillation performs similarly to greedy-select one.

To isolate the effect of ensembling, we provide
two additional baselines: 1) silver obtained from
SPRING, which is expected to have complemen-
tary information to self-trained silver, and 2) an
equal mixture of SPRING and Structured-BART
(random 50:50), which tests if the MBSE selection
strategy bears any effect. MBSE distillation outper-
forms these two baselines by between 0.2 and 0.5
Smatch point, depending on the scenario, proving
that MBSE selection has a clear positive effect.

We also investigate the impact of unlabeled cor-
pus size on model performance by adding silver2

and silver3 to silver1, i.e. silver1+2 and silver1+2+3.
We observe additional 0.3-0.4 improvement, com-
plementary to the one obtainable with conventional
ensemble decoding. This pushes the numbers to
85.7 and 84.2, setting a new SoTA for single sys-
tem with 4 model ensemble (Ensemble-4) distilla-
tion. Note that using 5 model ensemble (Ensemble-
5) distillation moves the Smatch scores even higher
to 85.9 for AMR2.0 and 84.3 for AMR3.0.

5.2 Cross-lingual AMR Parsing

For cross-lingual AMR parsing, we consider the
well known cross-lingual extension of AMR2.0
(Damonte and Cohen, 2018). Our cross-lingual
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Models LM DE ES IT ZH
Translate and Parse Pipelines
Uhrig et al. (2021) 67.6 72.3 70.7 59.1
WLT+Structured-BART+MBSE-G silver1 BART 73.9 76.5 76.1 63.7
WLT+Structured-BART+MBSE-A silver1+2+3 BART 74.6 77.1 76.7 64.0
Cross-lingual Parsers
Blloshmi et al. (2020) 53.0 58.0 58.1 43.1
Sheth et al. (2021) (85K silver AMR) XLMR 62.7 67.9 67.4 –
Procopio et al. (2021) (5M parallel corpus) mBARTmt 69.8 72.4 72.3 58.0
Cai et al. (2021b) 64.0 67.3 65.4 53.7
Xu et al. (2021) 70.5 71.8 70.8 –
Cai et al. (2021a) (320K silver AMR) mBARTmmt 73.1 75.9 75.4 61.9
Ours below (with Structured-mBART)
Structured-mBART-baseline mBART 69.9±0.0 74.4±0.3 73.3±0.2 59.9±0.0

Ensemble-4 distillation (APT + Structured-BART + SPRING1 + SPRING2)
+ MBSE-G silver1 mBART 72.5±0.1 76.5±0.2 75.4±0.0 62.2±0.1

+ MBSE-G silver1+AMR2Text mBART 72.9±0.1 76.6±0.0 75.6±0.0 62.3±0.0

+ MBSE-G silver1+AMR2Text + ens. dec. mBART 73.2 76.9 75.7 62.7
Ensemble-5 distillation (APT + Structured-BART + SPRING1 + SPRING2 + AMRBART)
+ MBSE-A silver1+2+3 mBART 73.5±0.1 77.1±0.2 76.0±0.1 62.7±0.1

+ MBSE-A silver1+2+3 + ens. dec. mBART 73.7 77.0 76.1 63.0

Table 4: Cross-lingual parser Smatch scores on AMR2.0 human translated test sets. mBARTmt of Procopio et al.
(2021) indicates the mBART model fine-tuned on both semantic parsing tasks and the MT data. mBARTmmt of
Cai et al. (2021a) indicates an NMT model by (Tang et al., 2020), trained from mBART covering 50 languages.
Shortnames: MBSE-G (greedy-selection), MBSE-A (average-Smatch) ‘ens. dec.’, ensemble decoding.

parsers are trained with Structured-mBART, always
using separate vocabulary (sep-voc). Input sen-
tences of the English training data are machine
translated into the target languages with WLT13 to
generate cross-lingual parser training data.

Table 4 shows the results on the human translated
AMR2.0 test set, following standard practices. We
provide results for recently published cross-lingual
AMR parsers and different silver training versions
of Structured-mBART. Structured-mBART with
4 model ensemble (Ensemble-4) distillation with
just silver1 improves the Smatch score by 2.1 to
2.6 over the Structured-mBART baselines, out-
performing very strong previous SoTA from (Cai
et al., 2021a) on Chinese and Spanish and tied on
Italian. Increasing the input sentence diversity via
AMR-to-text generation and ensemble decoding
further improve the system performances, attaining
new cross-lingual SoTA on all four languages. In-
creasing the silver training data size to silver1+2+3

and using 5 model ensemble (Ensemble-5) push
the numbers higher by 0.2-0.5 Smatch points.

(Uhrig et al., 2021) report that translate-and-
parse pipelines outperform the conventional cross-

13https://www.ibm.com/cloud/watson-language-translator

lingual parsers, we thus include translate-and-parse
from the combination of WLT and Structured-
BART + MBSE distillation. This out-performs
the cross-lingual parsers by 0.6-1.0 Smatch on all
languages except for Spanish, when trained with
the same MBSE avg.-Smatch silver1+2+3 data.

Comparing the fine-grained F1 scores for cross-
lingual parsers with those for English, as shown
in Table 5, we observe that cross-lingual parsers
are particularly worse than English for negation.
For instance, German negations are often realized
as a compound, as in nichttarifäre (non - tariff),
which is aligned to the non-negated stem portion
of the concept tariff, losing its negation meaning.
We observe similar issues in English with prefixed
negations such as unhappy, inadequate, atypical.

5.3 Domain Adaptation

We use the AMR2.0 version of BioAMR (medical
domain) as this has clearly defined partitions14 and
was used in Bevilacqua et al. (2021). We also use
QALD-9-AMR, constructed from QALD-9 data15

(Usbeck et al., 2018), a corpus of natural language

14amr.isi.edu/download/2016-03-14/amr-release-training-
bio.txt, amr-release-dev-bio.txt, amr-release-test-bio.txt

15https://github.com/ag-sc/QALD
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Languages Smatch Unlabeled NoWSD Concepts NER Neg. Wiki Reentrant SRL
EN-mono 85.9 89.0 86.3 92 93 75 81 78 85
DE-cross 73.7 77.9 73.8 75 89 48 79 61 68
ES-cross 77.1 81.4 77.5 81 89 62 79 67 74
IT-cross 76.1 80.4 76.3 79 90 56 78 65 73
ZH-cross 63.0 67.9 63.1 65 85 35 70 51 58
DE-pipeline 74.6 78.9 74.8 75 91 51 80 62 68
ES-pipeline 77.1 81.1 77.3 80 91 61 79 66 74
IT-pipeline 76.7 80.9 76.9 79 91 58 80 65 73
ZH-pipeline 64.0 68.9 64.0 66 86 40 74 51 59

Table 5: Fine-grained F1 scores on the AMR2.0 test set for EN (English), DE (German), ES (Spanish), IT (Italian)
and ZH (Chinese). EN-mono denotes English mono-lingual parser, {DE,ES,IT,ZH}-cross, cross-lingual parsers and
{DE,ES,IT,ZH}-pipeline, translate-and-parse pipeline.

questions for executable semantic parsing (Kapani-
pathi et al., 2021). Corpus statistics of the domain
adaptation data is summarized in Table 1.

Table 6 shows the experimental results. Re-
sults for SPRING are taken from Bevilacqua et al.
(2021). For each test set, we report the results un-
der three different training conditions, all of which
include either AMR2.0 or AMR3.0 treebank in the
training data: (1) use only silver data with MBSE
distillation, (2) use only domain gold sentences,
(3) use both silver data and domain gold sentences.
Since BioAMR is annotated in AMR2.0 style and
QALD-9-AMR in AMR3.0 style, we use the corre-
sponding Structured-BART models as indicated in
the table.

As for BioAMR data, MBSE distillation (with
both graphene-Smatch and greedy-select) on
silverb – comprising PubMed (LDC2008T20,
LDC2008T21), BioNLP-ST-2011 and CRAFT –
improves over the Structured-BART baseline by
6.5 Smatch point (60.4 vs. 66.9). However, adding
just 201 domain gold sentences to AMR2.0 tree-
bank results in 11.9 Smatch point improvement
over the baseline (60.4 vs. 72.3). A close inspec-
tion shows that this is largely due to the NER score
improvement, as shown in the column under NER,
i.e. NER score 27.0 in Structured-BART (AMR2.0)
vs. 68.0 after adding 201 domain gold sentences.
The dramatic impact of NE coverage no longer
holds when we double the domain gold sentences
from 201 to 403. In fact, MBSE greedy-select
silverb + 201 domain gold sentences (75.8) is more
effective than doubling the domain gold sentences
(74.3). Finally, by combining MBSE distillation on
silverb with 5K domain gold sentences, the system
achieves 81.3 Smatch, outperforming the previous

SoTA by 1.4.
Regarding QALD-9-AMR data, MBSE distilla-

tion on silverq, i.e. SQuAD-Q(uestion) sentences,

Training Data Smatch NER
BioAMR Evaluations

SPRINGDFS 59.7
SPRINGDFS+ silver 59.5
SPRINGDFS (In domain) 79.9
Ours
Struct-BART (AMR2.0) 60.4 27.0
+MBSE-G silver1 63.2 31.0
+MBSE-G silverb 66.9±0.2 30.0
+MBSE-P silverb 66.9±0.2 31.0
+201 domain gold sent. 72.3±0.2 68.0
+403 domain gold sent. 74.3±0.2 70.0
+5K domain gold sent. 79.8±0.2 80.0
+MBSE-G silv.b+201 gold 75.8±0.3 70.0
+MBSE-G silv.b+5K gold 81.3±0.2 81.0

QALD-9-AMR Evaluations
Ours
Struct-BART (AMR3.0) 87.2 84.0
+MBSE-G silver1 88.0 88.0
+MBSE-G silverq 89.5±0.1 85.0
+MBSE-P silverq 89.3±0.2 87.0
+200 domain gold sent. 88.5±0.5 84.0
+408 domain gold sent. 89.8±0.1 86.0
+MBSE-G silv.q+200 gold 90.0±0.3 87.0
+MBSE-G silv.q+408 gold 90.1±0.1 87.0

Table 6: Smatch scores on BioAMR and QALD-9
test sets with varying sizes of human annotated (gold)
domain sentences and silver data. MBSE-G (greedy-
select) and MBSE-P (Graphene-Smatch respectively).
MBSE distillations are all with Ensemble-4 (APT +
Structured-BART + SPRING1 + SPRING2).
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Models BioAMR Q9AMR
Structured-BART 8.7% 0.7%
+MBSE silver 3.7% 0.7%
+200 domain gold sents 0.6% 0.7%

Table 7: Named entity (NE) type out-of-vocabulary ratio
w.r.t the target vocabulary of various models. BioAMR
and QALD-9 test sets include 1691 and 150 occurrences
of named entities, respectively.

is almost as effective as 408 domain gold sentences
(89.8) for both graphene-Smatch (89.3) and greedy-
select (89.5) algorithms. Combining 408 domain
gold sentences with MBSE greedy-select silverq

adds less than 1 Smatch point to 90.1.
Since MBSE distillation on silverb lags behind

the performance of 201 human annotated AMR
for BioAMR, mostly due to low NER scores, we
further analyze the target vocabulary coverage of
named entity (NE) types occurring in the test sets.
The analysis is shown in Table 7. NE types are
equally well covered in all models for Q9AMR
(QALD-9-AMR). 0.7% out-of-vocabulary (OOV)
ratio is caused by a typo in human annotation of
the test set, i.e. country misspelled as countrty. For
BioAMR, however, NE type OOV ratio of MBSE
silver model is 3.7%, e.g. protein-segment, macro-
molecular-complex, substantially higher than 0.6%
of the model trained with 201 domain gold sen-
tences. When the NE type is OOV, there is no
chance for the system to produce the missing NE
type, let alone predicting it correctly, underscoring
the challenges posed by domain specific concepts
unavailable elsewhere.

6 Related Work

There have been numerous works applying ensem-
ble/knowledge distillation (Hinton et al., 2015) to
machine translation (Kim and Rush, 2016; Freitag
et al., 2017; Nguyen et al., 2020; Wang et al., 2020,
2021), dependency parsing (Kuncoro et al., 2016)
and question answering (Mun et al., 2018; Ze et al.,
2020; You et al., 2021; Chen et al., 2012). Re-
garding ensembling AMR graphs, Barzdins and
Gosko (2016) propose choosing the AMR with
highest average sentence Smatch to all other AMRs.
Hoang et al. (2021) proposed a more complex tech-
nique capable of building new AMRs by exploiting
Smatch’s hill climbing algorithm. Our work brings
together ensemble distillation and Smatch-based
ensembling and shows that it can provide substan-

tial gains over the standard self-training.
Damonte and Cohen (2018) show that it may

be possible to use the original AMR annotations
devised for English as representations of equiva-
lent sentences in other languages. Damonte and
Cohen (2018); Sheth et al. (2021) propose annota-
tion projection of English AMR graphs to target
languages to train cross-lingual parsers, using word
alignments. Blloshmi et al. (2020) show that one
may not need alignment-based parsers for cross-
lingual AMR, and model concept identification as a
seq2seq problem. Procopio et al. (2021) reframe se-
mantic parsing as multilingual machine translation
(MNMT) and propose a seq2seq architecture fine-
tuned on pretrained-mBART with an MNMT ob-
jective. Cai et al. (2021b) propose to use bilingual
input to enable a model to predict more accurate
AMR concepts. Xu et al. (2021) propose a cross-
lingual pretraining approach via multitask learning
for AMR parsing. Cai et al. (2021a) propose to use
noisy knowledge distillation for multilingual AMR
parsing. We introduce Structured-mBART and at-
tain new SoTA in Chinese, German, Italian and
Spanish cross-lingual parsing by applying MBSE
distillation and AMR-to-text.

We subsume domain adaptation under data aug-
mentation with MBSE distillation, where the only
difference between the two lies in the properties of
the unlabeled data. The unlabeled data is drawn
from the target domain for the purpose of domain
adaptation rather than those similar to the source
training data for data augmentation in general.

7 Conclusion

We proposed a technique called Maximum Bayes
Smatch Ensemble (MBSE) distillation, which
brings together Smatch-based model ensembling
Barzdins and Gosko (2016); Hoang et al. (2021)
and ensemble distillation Hinton et al. (2015) of het-
erogeneous parsers, to significantly improve AMR
parsing. The technique generalizes well across var-
ious tasks and is highly effective, leading to a new
single system SoTA in English and cross-lingual
AMR parsing and achieving the performance com-
parable to human annotated training data in domain
adaptation of QALD-9-AMR corpus. Remaining
technical challenges include tokenization and align-
ment of an input token corresponding to more than
one concept for AMR parsing and identification of
unknown named entities and their types for domain
adaptation.
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A Greedy-Select Ensemble Algorithm

Algorithm 1: Greedy-Select MBSE Algorithm and
Corpus Selection
Input: AMR1...AMRn parses from n AMR pars-
ing models, where n ≥ 3
Optionally Require: Smatch score threshold = θ
Output: One-best AMR parse

1: Let bestAMR = NULL

2: for ∀i,j in 1 ≤ i, j ≤ n and i ̸= j do
3: Compute sentence Smatch score

smatch(AMRi, AMRj), total n(n − 1)/2
scores.

4: Pick the highest smatch(AMRi, AMRj).
5: for Each AMRa, where a = i or a = j do
6: Pick the highest smatch(AMRa, AMRb)

7: if a = i then
8: bestAMR = AMRi

9: else
10: bestAMR = AMRj

11: end if
12: if smatch(AMRa,AMRb) < θ then
13: bestAMR = NULL
14: {no AMR to be used from this sen-

tence}
15: end if
16: end for
17: end for
18: return bestAMR

We start with n parses from n heterogeneous
parsing models, where the minimum number of
parses is 3. For each input sentence, we com-
pute sentence-level Smatch scores between any two
parses across all n parses, for a total of n(n− 1)/2
Smatch scores (lines 2-3). Subsequently, we pick
the two parses AMRi and AMRj with the high-
est Smatch score, where AMRi denotes the AMR
parse from the system i (line 4) For each of the
two parses, AMRi and AMRj , we choose the parse
with the higher Smatch score against the rest of
the parses as the best parse (lines 5-11). When
the scores are tied, we select the first parse output
(equivalent to a random choice of fixed seed).

We incorporate an optional parse selection crite-
rion into Algorithm 1, indicated as Optionally Re-
quire and specified in lines 12-15. The bestAMR
for input sentence is selected for data augmenta-
tion if the Smatch score smatch(AMRa, AMRb)
is greater than or equal to the pre-specified value θ.

Models AMR2.0 AMR3.0
Structured-BART 34,156 33,200
SPRING1 25,129 29,407
SPRING2 17,866 17,830
APT 10,235 6,949
Total 87,386 87,386

Table 8: Distribution of individual model parses from
MBSE greedy-select distillation with silver1 dataset in
Table 1

Model Param AMR2.0 AMR3.0
src voc size 50,265 50,265

sep-voc tgt voc size 42,344 42,784
# param 493,011,968 493,913,088

joint-voc joint voc size 57,912 58,673
# param 414,121,984 414,901,248

Table 9: Vocabulary and parameter sizes of Structured-
BART with MBSE distillation on silver1+2+3 dataset
from Table 1

B Model Structures and Parameter Size

Pre-trained BART and mBART share the same
model configurations except for the vocabulary size.
There are 12 encoder/decoder layers, 16 heads per
layer, 1024 model dimension and 4096 feed for-
ward network (FFN) size. BART includes ~50K
and mBART, ~250K task vocabulary.

When using separate vocabulary (sep-voc),
Structured-BART and Structured-mBART use the
same vocabulary as BART and mBART, respec-
tively, for the source. For the target, they create
embedding vectors for action symbols and the tar-
get vocabulary size vary according to the train-
ing data. When using joint vocabulary (joint-voc),
Structured-BART shares the same vocabulary be-
tween the source and the target, a combination of
BART vocabulary and the additional embedding
vectors for some action symbols.

Vocabulary and parameter sizes for Structured-
BART and Structured-mBART trained with MBSE
distillation are shown in Table 9 and Table 10, re-
spectively.

C Implementation Details

Our models are implemented with FAIRSEQ
toolkit (Ott et al., 2019), trained and tested on a sin-
gle NVIDIA Tesla A100/V100 GPU with 40-80GB
memory. We use fp16 mixed precision training and
all models are trained on 1 GPU.

For all English AMR parsing models with silver
data, we use the Adam optimizer with β1 = 0.9
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Languages voc size # param
DE (German) 34,689 681,894,912
ES (Spanish) 34,881 682,288,128
IT (Italian) 33,681 679,830,528
ZH (Chinese) 59,473 732,652,544

Table 10: Target vocabulary (sep-voc) and parameter
sizes of Structured-mBART with MBSE distillation on
silver1+2+3 dataset from Table 1. Source vocabulary
size is 250,027 across all languages.

Lgs. vocab base model ens. model
EN joint-voc 60min 60min
DE sep-voc 23min 42min
ES sep-voc 24min 44min
IT sep-voc 22min 40min
ZH sep-voc 30min 60min

Table 11: Inference time for AMR2.0 test set. Base mod-
els are trained on AMR2.0 treebank only and ens. mod-
els are trained on AMR2.0 treebank plus silver1+2+3.

and β2 = 0.98. Batch size is set to 1024 maxi-
mum number of tokens with gradient accumulation
over 8 steps. Learning rate schedule is the same as
Vaswani et al. (2017) with 4000 warm-up steps and
1e−7 warm-up initial learning rate and the maxi-
mum learning rate 1e−4. Dropout rate is 0.2 and
label smoothing rate is 0.01. These hyper param-
eters are fixed and not tuned for different models
and datasets. All models are trained for 10 epochs
and the best 5 checkpoints are selected based on
the development set Smatch from greedy decod-
ing. Model parameters are averaged over the top
3 and top 5 models. The model that produces the
highest development set score, after beam search
decoding with beam size = 1, 5 and 10, is selected
as the final model. Training with MBSE greedy-
select silver1+2+3 takes 48-72 hours, and all other
models with less silver data take less time to train.

For cross-lingual AMR parsing, maximum learn-
ing rate is always set to 3e−5. Baseline models
trained only on AMR2.0 corpus are trained up to
80 epochs whereas models with silver1 (and AMR-
to-text) is trained up to 30 epochs and models with
silver1+2+3, up to 15 epochs. Model parameters
are updated after gradient is accumulated for 8192
tokens. Dropout rate, label smoothing rate and
model selection criteria are the same as the English
parsers. Training baseline models takes about 10
hours. Training with silver1 takes about 24 hours.
Training with silver1+2+3 takes about 96-120 hours.

In order to reduce the vocabulary size, which sub-
sequently reduces the model parameter size and
memory requirement, we prune out singleton target
vocabulary for training with silver data.

Inference time for AMR2.0 benchmark test set
is shown in Table 11, where beam size=10 and
batch size=64 for all languages. EN is decoded on
NVIDIA Tesla A100 and all other languages, on
NVIDIA Tesla V100.
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