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Abstract

Slang is a predominant form of informal lan-
guage making flexible and extended use of
words that is notoriously hard for natural lan-
guage processing systems to interpret. Ex-
isting approaches to slang interpretation tend
to rely on context but ignore semantic exten-
sions common in slang word usage. We pro-
pose a semantically informed slang interpreta-
tion (SSI) framework that considers jointly the
contextual and semantic appropriateness of a
candidate interpretation for a query slang. We
perform rigorous evaluation on two large-scale
online slang dictionaries and show that our ap-
proach not only achieves state-of-the-art accu-
racy for slang interpretation in English, but
also does so in zero-shot and few-shot sce-
narios where training data is sparse. Further-
more, we show how the same framework can
be applied to enhancing machine translation of
slang from English to other languages. Our
work creates opportunities for the automated
interpretation and translation of informal lan-
guage.

1 Introduction

Slang is one of the most common forms of infor-
mal language, but interpreting slang can be difficult
for both humans and machines. Empirical studies
have shown that, although it is done instinctively,
interpretation and translation of unfamiliar or novel
slang expressions can be quite hard for humans
(Braun and Kitzinger, 2001; Mattiello, 2009). Sim-
ilarly, slang interpretation is also notoriously diffi-
cult for state-of-the-art natural language processing
(NLP) systems, which presents a critical challenge
to downstream applications such as natural lan-
guage understanding and machine translation.
Consider the sentence “I got really steamed
when my car broke down”. As illustrated in Fig-
ure 1, directly applying a translation system such
as Google Translate on this raw English sentence
would result in a nonsensical translation of the
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Original: Translations in French:

J'ai vraiment pris de la vapeur
quand ma voiture est tombée
en panne !

| got really steamed when

my car broke down!
—
Interpreted: Translate
Je me suis vraiment énerve
quand ma voiture est tombée

en panne !

I got really angry when my
car broke down!

Figure 1: Illustrations of slang interpretation in English
(top panel) and slang translation (bottom panel) from
English to French on the original sentence (nonsensi-
cal), or on the interpreted version of the sentence (sen-
sical).

slang term steamed in French. This error is due
partly to the underlying language model that fails
to recognize the flexible extended use of the slang
term from its conventional meaning (e.g., “vapor”™)
to the slang meaning of “angry”. However, if
knowledge about such semantic extensions can be
incorporated into interpreting the slang prior to
translation, as Figure 1 shows the system would be
quite effective in translating the intended meaning.

Here we consider the problem of slang inter-
pretation illustrated in the top panel of Figure 1.
Given a target slang term like steamed in a novel
query sentence, we want to automatically infer its
intended meaning in the form of a definition (e.g.,
“angry”’). Tackling this problem has implications in
both machine interpretation and understanding of
informal language within individual languages and
translation between languages.

One natural solution to this problem is to use
contextual information to infer the meaning of a
slang term. Figure 2 illustrates this idea by show-
ing the top infilled words predicted under a GPT-2
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Figure 2: Workflow of the proposed framework.

(Radford et al., 2019) based language infill model
(Donahue et al., 2020). Each of these words can
be considered a candidate paraphrase for the tar-
get slang steamed conditioned on its surrounding
words. Although the groundtruth meaning “angry”
is among the list of top candidates, this model infers
“sick” as the most probable interpretation. A simi-
lar context-based approach has been explored in a
previous study led by Ni and Wang (2017) showing
that a sequence-to-sequence model trained directly
on a large number of pairs of slang-contained sen-
tences along with their corresponding definitions
from Urban Dictionary can be a useful starting
point toward the automated interpretation of slang.

We present an alternative approach to slang in-
terpretation that builds on but goes beyond the
context-based models. Inspired by recent work on
generative models of slang (Sun et al., 2019, 2021),
we consider slang interpretation to be the inverse
process of slang generation and propose a semanti-
cally informed framework that takes into account
both contextual information and knowledge about
slang meaning extensions (e.g., ‘“vapor”—“angry”’)
in inferring candidate interpretations. Our frame-
work incorporates a semantic model of slang that
uses contrastive learning to capture semantic ex-
tensions that link conventional and slang meanings
of words (Sun et al., 2021). Under this frame-
work, meanings that are otherwise far apart can
be brought close, resulting in a semantic space
that is sensitive to the flexible extended usages
of slang. Rather than using this learned semantic
space to generate novel slang usages, we apply it
to the inverse problem of slang interpretation by
checking whether a candidate interpretation may
be suitably expressed as a slang using the to-be-
interpreted slang expression. For example, “sick”
and “angry” can both replace the slang steamed
in a given context, but “angry” may be a more ap-
propriate meaning to be expressed using steamed
in the slang context. As such, we build a com-
putational framework that takes into account the
semantic knowledge of words as well as the context
of slang in the interpretation process.

Figure 2 illustrates the workflow of our approach.
We begin with a set of candidate interpretations
informed by a context-based model (e.g., a lan-
guage infill model), where the set would contain
a list of possible meanings that fit reasonably in
the given context. We then rerank this set of candi-
date interpretations by selecting the meaning that
is most likely to be extended as slang from the
to-be-interpreted slang expression.

For the scope of this work, we focus on inter-
preting slang expressions with existing word forms
because extensive studies in slang have suggested
that a high proportion of slang usages relies on
the extended reuse of existing word forms (Warren,
1992; Green, 2010; Eble, 2012). We show that our
framework can enhance state-of-the-art language
models in slang interpretation in English and slang
translation from English to other languages. '

2 Related Work

2.1 Natural Language Processing for Slang

Existing approaches in the natural language pro-
cessing for slang focus on efficient construction,
extension, and retrieval from dictionary-based re-
sources for detection (Pal and Saha, 2013; Dhu-
liawala et al., 2016), interpretation (Gupta et al.,
2019), and sentiment analysis of slang (Dhuliawala
et al., 2016; Wu et al., 2018). These studies of-
ten rely on heuristic measures to determine or re-
trieve the meaning of slang and cannot generalize
beyond what was available in the training data. Re-
cent work such as Kulkarni and Wang (2018) and
Pei et al. (2019) proposed deep learning based ap-
proaches to generalize toward unseen slang.
Closely related to our study is Ni and Wang
(2017) that formulated English slang interpretation
as a translation task (although they did not tackle
slang machine translation per se). In this work,
each slang query sentence in English is paired with
the groundtruth slang definition (also in English),
and such pairs are fed into a translation model. In
addition, the spellings of slang word forms are also
considered as input. In their model, both the con-
text and the slang form are encoded using separate
LSTM encoders. The two encoded representations
are then linearly combined to form the encoded in-
put for a sequence-to-sequence network (Sutskever
et al., 2014). During training, the combined state
is passed onto an LSTM decoder to train against

'Code and data available at: https://github.com/
zhewei-sun/slanginterp
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the corresponding definition sentence. During test
time, beam search (Graves, 2012) is applied to de-
code a set of candidate definition sentences.

One key problem with this approach is that the
Dual Encoder tends to rely on the contextual fea-
tures surrounding the target slang but does not
model flexible meaning extensions of the slang
word itself. Similar issues are present in a language-
model based approach, whereby one can use an
infill model to infer the meaning of a target slang
based solely on its surrounding words. Our work
extends these context-based approaches by jointly
considering the contextual and semantic appropri-
ateness of a slang expression in a sentence, using
generative semantic models of slang.

2.2 Generative Semantic Models of Slang

Recent work by Sun et al. (2019, 2021) proposed a
neural-probabilistic generative framework for mod-
eling slang word choice in novel context. Given a
query sentence with the target slang blanked out
and the intended meaning of that slang, their frame-
work predicts which word(s) would be appropriate
slang choices that fill in the blank. Relevant to their
framework is a semantic model of slang that uses
contrastive learning from Siamese networks (Baldi
and Chauvin, 1993; Bromley et al., 1994) to relate
conventional and slang meanings of words. This
model yields a semantic embedding space that is
sensitive to flexible slang meaning extensions. For
example, it may learn that meanings associated
with “vapor” can extend to meanings about “angry’
(as in the steamed example in Figure 1).

Differing from slang generation, our work con-
cerns the inverse problem of slang interpretation
that has more direct applications in natural lan-
guage processing particularly machine translation
(e.g., of informal language). Building on work of
slang generation, we incorporate the generative se-
mantic model of slang in a semantically informed
interpretation framework that integrates context to
infer the intended meaning of a target slang.

>

3 Computational Framework

Our computational framework is comprised of
three key components following the workflow il-
lustrated in Figure 2: 1) A context-based baseline
interpreter that generates an n-best list of candi-
date interpretations for a target slang in a query
sentence; 2) A semantic model of slang that checks
the appropriateness of a candidate interpretation to

the slang context; 3) A reranker informed by the se-
mantic model in 2) that re-prioritizes the candidate
interpretations from the context-based interpreter
in 1). We use this framework for both interpret-
ing slang within English and translating slang from
English to other languages.

3.1 Context-based Interpretation

We define slang interpretation formally as follows.
Given a target slang term S in context C's of a
query sentence, interpret the meaning of S by a
definition M. The context is an important part of
the problem formulation since a slang term .S may
be polysemous and context can be used to constrain
the interpretation of its meaning. We define a slang
interpreter I probabilistically as:

I(S,Cg) = argmax P(M|S, Cg) (1)
M

Given this formulation, we retrieve an n-best list of
candidate interpretations K (i.e., || = n) based
on an interpretation model of choice P(M|S, Cg).
Here, we consider two alternative models for
P(M]|S,Cg): 1) alanguage-model (LM) based ap-
proach that treats slang interpretation as a cloze
task, and 2) a sequence-to-sequence based ap-
proach similar to work by Ni and Wang (2017).

LM-based interpreter. The first model we con-
sider is a language infill model in a cloze task, in
which the model itself is based on large pre-trained
language models such as GPT-2 (Radford et al.,
2019). Although slang expressions may make spo-
radic appearances during training, this model is
not trained specifically on a slang related task and
thus serves as a baseline that reflects the state-of-
the-art language-model based NLP systems (e.g.,
Donahue et al., 2020).

Given context C's containing target slang .S, we
blank out S in the context and ask the language
infill model to infer the most likely words to fill in
the blank. This results in a probability distribution
P(w|Cg\S) over candidate words w. The infilled
words can then be viewed as candidate interpreta-
tions of the slang .S

I1(S,Cg) =D[argmax LM (w|Cs\S)

+ Ly [T(Cs\S)]] @)

Here, D is a dictionary lookup function that maps
a candidate word w to a definition sentence. In
this case, we constrain the space of meanings con-
sidered to the set of all meanings corresponding
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to words in the lexicon. Additionally, we apply a
Part-of-Speech (POS) tagger T to check whether
the candidate word w shares the same POS tag as
the blanked-out word in the usage context. Words
that share the same POS tags are preferred in the
list of n-best retrievals.

This baseline approach by itself does not take
into account any (semantic) information from the
target slang S. In the case where two distinctive
slang terms may be placed in the same context,
the model would generate the exact same output.
However, this LM based approach does not require
task-specific data to train. We show later that by
reranking language model outputs, it is possible to
achieve state-of-the-art performance using much
less on-task data than existing approaches.

Dual encoder. Ni and Wang (2017) partly ad-
dressed the context-only limitation by encoding the
slang term using a character-level recurrent neu-
ral network in an end-to-end model inspired by
the sequence-to-sequence architecture for neural
machine translation (Sutskever et al., 2014). We
implement their dual encoder architecture as an
alternative context-based interpreter to LM. In this
model, separate LSTM encoders are applied on
the context C's and the character encoding of the
to-be-interpreted slang S respectively. The two en-
coders are then linearly combined using learned
parameters. The combined state is passed onto an
LSTM decoder to train against the corresponding
definition sentence in Urban Dictionary (as in the
original work of Ni and Wang 2017). For inference,
beam search (Graves, 2012) is applied to decode
an n-best list of candidate definition sentences.

While this approach is trained directly on slang
data and considers the slang word forms, it requires
a large on-task dataset to be trained effectively.
This model also does not take into account the ap-
propriateness of meaning extension in slang usage.
We next describe how a semantic model of slang
can be incorporated to enhance the context-based
interpreters.

3.2 Semantic Model of Slang

Given an n-best list of candidate interpretations }C
for the target slang .S in context C'g, we wish to
model the semantic plausibility of each candidate
interpretation k£ € /. Specifically, we ask how
likely one would relate the (conventional meaning
of) target slang expression S to a candidate inter-
pretation k. Sun et al. (2019, 2021) modeled the

relationship between a to-be-expressed meaning
and a word form using the prototype model (Rosch,
1975; Snell et al., 2017). We adapt this model in
the context of slang interpretation:

f(k,S) = sim(Ey, Es)
d(Ey, Es)

Iy ) 3)

= exp(—
FE) is an embedding for a candidate interpretation
k and Eg is the prototypical conventional meaning
of S computed by averaging the embeddings of its
conventional meanings in dictionary (Eg):

> Es )

1
Es=
‘Es‘ Es,€€s

The similarity function f can then be computed by
taking the negative exponential of the Euclidean
distance between the two resulting semantic em-
beddings. h,, is a kernel width hyperparameter.

Following Sun et al. (2021), we learn seman-
tic embeddings Ej and Eg, under a max-margin
triplet loss scheme, where embeddings of slang
sense definitions (Esy) are brought close in Eu-
clidean space to those of their conventional sense
definitions (£ p) yet kept apart from irrelevant word
senses () by a pre-specified margin m:

Loss = d(ESL, Ep) — d(ESL, EN) + m]+
)

The resulting contrasive sense encodings are
shown to be sensitive to slang semantic extensions
that have been observed during training. We lever-
age this knowledge to check whether pairing a can-
didate interpretation k£ with the slang expression
S is likely given the common semantic extensions
observed in slang usages.

3.3 Semantically Informed Reranking

We define a semantic scorer g over the set of can-
didate interpretations K and the to-be-interpreted
slang S. The candidates are reranked based on the
resulting scores to obtain semantically informed
slang interpretations (SSI):

SSI(K) = argmaxg(k, S) (6)

We define g(KC, S) as a score distribution over the
set of candidates /C given slang .S, where each score
is computed by checking the semantic appropriate-
ness of a candidate meaning k& € KC with respect to
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target slang S by querying the semantic model f
from Equation 3:

g(k,S) = P(k|S) o f(k,S) @)

In addition, we apply collaborative filtering
(Goldberg et al., 1992) to account for a small neigh-
borhood of words L(.S) akin to the slang expres-
sion .S in conventional meaning:

g (k,S)oc > sim(S,8)g(k, ") (8)
S'€L(S)

sim(S, S") = exp(—

Here, d(S, S’) is the cosine distance between the
two slang’s word vectors and /. is a hyperparam-
eter controlling the kernel width. The collaborative
filtering step encodes intuition from studies in his-
toric semantic change that similar words tend to
extend to express similar meanings (Lehrer, 1985;
Xu and Kemp, 2015), which was found to extend
well in the case of slang (Sun et al., 2019, 2021).

4 Datasets

We use two online English slang dictionary re-
sources to train and evaluate our proposed slang in-
terpretation framework: 1) the Online Slang Dictio-
nary (OSD)? dataset from Sun et al. (2021) and 2) a
collection of Urban Dictionary (UD)? entries from
1999 to 2014 collected by Ni and Wang (2017).
Each dataset contains slang gloss entries includ-
ing a slang’s word form, its definition, and at least
one corresponding example sentence containing
the slang term. We use the same training and test-
ing split provided by the original authors and only
use entries where a corresponding non-informal
entry can be found in the online version of the Ox-
ford Dictionary (OD) for English*, which allows
the retrieval of conventional senses for all slang
expressions considered. We also filter out entries
where the example usage sentence contains none or
more than one exact references of the correspond-
ing slang expression. When a definition entry has
multiple example usage sentences, we treat each ex-
ample sentence as a separate data entry, but all data
entries corresponding to the same definition entry
will only appear in the same data split. Table 1
shows the size of the datasets after pre-processing.

20SD: http://onlineslangdictionary.com
3UD: https://www.urbandictionary.com
4OD: https://en.oxforddictionaries.com

While OSD contains higher quality entries, UD
offers a much larger dataset. We thus use OSD
to evaluate model performance in a low resource
scenario and UD for evaluation of larger neural
network based approaches.

5 Evaluation and Results

5.1 Evaluation on Slang Interpretation

We first evaluate the semantically informed and
baseline interpretation models in a multiple choice
task. In this task, each query is paired with a set of
definitions that construe the meaning of the target
slang in the query. One of these definitions is the
groundtruth meaning of the target slang, while the
other definitions are incorrect or negative entries
sampled from the training set (i.e., all taken from
the slang dictionary resources described). To score
a model, each definition sentence is first compared
with the model-predicted definition by computing
the Euclidean distance between their respective
Sentence-BERT (Reimers and Gurevych, 2019) em-
beddings. The ideal model should produce a defini-
tion that is semantically closer to the groundtruth
definition, more so than the other competing neg-
atives. For each dataset, we sample two sets of
negatives. The first set of negative candidates con-
tains only definition sentences from the training
set that are distinct from the groundtruth definition.
We consider two definition sentences to be distinct
if the overlap in the number of content words is
less than 50%. The other set of negative definitions
is sampled randomly. We measure the performance
of the models by computing the standard mean
reciprocal rank (MRR) of the groundtruth defini-
tion’s rank when checked against 4 other sampled
negative definitions.

We train the semantic reranker on all definition
entries in the respective training sets from the two
data resources. When training the Dual Encoder,
we use 400,431 out-of-vocabulary slang entries
(i.e., entries with a slang expression that does not
contain a corresponding lexical entry in the stan-
dard dictionary) from UD in addition to the in-
vocabulary entries used to train the reranker. This
is necessary since the baseline Dual Encoder per-
forms poorly without a large number of training
entries. Similarly, training the Dual Encoder di-
rectly on the OSD training set does not result in an
adequate model for comparison. We instead train
the Dual Encoder on all UD entries and experiment
with the resulting interpreter on OSD. Any UD
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# of unique # of slang # of context # of definitions # of context sentences
Dataset . . . .
slang word forms definition entries  sentences in the test set in the test set
OSD 1,635 2,979 3,718 299 405
UuD 9,474 65,478 65,478 1,242 1,242
Table 1: Summary of basic statistics for the two online slang dictionaries used in the study.
Distinctively Randomly
Model sampled sampled
candidates candidates
Dataset 1: Online Slang Dictionary (OSD) (Sun et al., 2021)
Language Infill Model (LM Infill) (Donahue et al., 2020), n = 50 0.532 0.502
___ *+Semantically Informed Slang Interpretation (SSI) 0.557 . 0.563
Dual Encoder* (Ni and Wang, 2017), n =15 0.584 0.583
+ SSI 0.592 0.588
Dual Encoder*, n =50 0.568 0.602
+ SSI 0.616 0.607
* Dual Encoders trained on UD data after filtering out slang in OSD test set.
Dataset 2: Urban Dictionary (UD) (Ni and Wang, 2017)
LM Infill, n = 50 0.517 0.521
L ESSL .. 0569 ___ 0.579 .
Dual Encoder, n =5 0.556 0.555
+ SSI 0.573 0.572
Dual Encoder, n = 50 0.547 0.550
+ SSI 0.582 0.584

Table 2: Evaluation of English slang interpretation measured in mean-reciprocal rank (MRR). Predictions are
ranked against 4 negative candidates distinctively or randomly sampled, yielding MRR=0.457 for the random

baseline.

entries corresponding to words found in the OSD
testset are filtered out in this particular experiment.
Detailed training procedures for all models can be
found in Appendix A.

Table 2 summarizes the multiple-choice evalu-
ation results on both slang datasets. In all cases,
applying the semantically informed slang interpre-
tation framework improves the MRR of the respec-
tive baselines under both types of negative candi-
date sampling. On the UD evaluation, even though
the language infill model (LM Infill) is not trained
on this specific task, LM infill based SSI is able to
select better and more appropriate interpretations
than the dual encoder baseline, which is trained
specifically on slang interpretation with more than
7 times the number of definition entries for training.
We also find that while increasing the beam size
(specified by n) in the sequence-to-sequence based
Dual Encoder model impairs its performance, SSI
can take advantage of the additional variation in

the generated candidates and outperform its coun-
terpart with a smaller beam size.

Table 3 provides example interpretations pre-
dicted by the models. The /it example shows a
case where the semantically informed models were
able to correctly pinpoint the intended definition,
among alternative definitions that describe individ-
uals. The lush example suggests that the SSI model
is not perfect and points to common errors made
by the model including predicting definitions that
are more general and applying incorrect semantic
extensions. In this case, the model predicts the
slang lush to mean “something that is not cool” be-
cause polarity shift is a common pattern in slang
usage (Eble, 2012), even though the groundtruth
definition does not make such a polarity shift in
this specific example.

Note that the improvement brought by SSI is
less prominent in the OSD experiment where the
Dual Encoder trained on UD was used. This is
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Query (target slang in bold italic):
Groundtruth definition of target slang:
LM Infill baseline prediction:

LM Infill + SSI prediction:

Dual Encoder baseline prediction:
Dual Encoder + SSI prediction:

That chick is lit!
Attractive.

Cute, beautiful, adorable.
Hot, cool, fat.

Another word for bitch.
Word used to describe someone who is very attractive.

Query:

Groundtruth definition of target slang:
LM Infill baseline prediction:

LM Infill + SSI prediction:

Dual Encoder baseline prediction:
Dual Encoder + SSI prediction:

That Louis Vuitton purse is lush!
High quality, luxurious. (British slang.)

Amazing, beautiful, unique.
Lovely, stunning, expensive.

Something that is cool or awesome.
An adjective used to describe something that is not cool.

Table 3: Example queries from OSD and top predictions made from both the baseline language infill models
(LM Infill) and the Dual Encoder models with n = 50, along with top predictions from the enhanced semantically
informed slang interpretation (SSI) models. Additional examples can be found in Appendix B.1.

expected because the Dual Encoder is trained to
generate definition sentences in the style of UD en-
tries, whereas the SSI is trained on OSD definition
sentences instead. The mismatch in style between
the two datasets might have caused the difference
in performance gain.

5.2 Zero-shot and Few-shot Interpretation

Recent studies in deep learning have shown that
large neural network based models such as GPT-3
excel at learning new tasks in a few-shot learn-
ing setting (Brown et al., 2020). We examine to
what extent the superior performance of our SSI
framework may be affected by fine-tuning the LM
baseline model in zero-shot and few-shot scenarios.
We finetune the language infill model (LM Infill)
on the first example usage sentence that correspond
to each definition entry in the OSD dataset, result-
ing in 2,979 sentences. Given an example sentence,
we mask out the slang expression and train the
language infill model to predict the corresponding
slang term. We randomly shuffle all examples and
finetune LM Infill for one epoch. We then compare
the resulting model with the off-the-shelf LM using
examples in the test set that were not used in fine-
tuning (i.e., entries with usage sentences that do
not correspond to the first example usage sentence
of a definition entry). This results in 106 novel
examples for evaluation.

Table 4 shows the result of this experiment.
While finetuning does improve test performance (a
6 point gain in MRR), it remains beneficial to con-
sider semantic information in slang context. In both
the zero-shot and the few-shot cases, SSI brings

Model DlSt'lnCt Ran@om
negatives negatives

LM Zero-shot, n = 50 0.444 0.443
+ SSI 0.571 0.565
LM Few-shot, n = 50 0.504 0.513
+ SSI 0.567 0.564

Table 4: Interpretation results on OSD measured in
mean-reciprocal rank (MRR) before and after finetun-
ing the language infill model.

significant performance gain even though SSI itself
is only trained on entries from the training set.

5.3 Evaluation on Slang Translation

We next apply the slang interpretation framework
to neural machine translation. Existing machine
translation systems have difficulty in translating
source sentences containing slang usage partly be-
cause they lack the ability to properly decode the
intended slang meaning. We make a first attempt
in addressing this problem by exploring whether
machine interpretation of slang can lead to bet-
ter translation of slang. Given a source English
sentence containing a slang expression .S, we ap-
ply the LM based slang interpreters to generate a
paraphrased word to replace S. The paraphrased
sentence would then contain the intended mean-
ing of the slang in its literal form. Here, we take
advantage of the LM-based approaches’ ability to
directly generate a paraphrase instead of a defini-
tion sentence (i.e., without dictionary lookup D in
Equation 2), which allows direct insertion of the
resulting interpretation into the original sentence.
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Figure 3: Translation scores of translated sentences with the slang replaced by n-best interpretations. Curves show
sentence-level BLEU, BLEURT, and COMET scores of the best translation within the top-n retrievals. Aggregate
scores integrated over the first 20 retrievals are shown in parenthesis. Baselines are obtained by directly translating

the original sentence containing slang.

We perform our experiment on the OSD test
set because it contains higher quality example sen-
tences than UD. To mitigate potential biases, we
consider only entries that correspond to single word
slang expressions, and that the slang has not been
seen during training (where the slang attaches to
a different slang meaning than the one in the test
set). For the remaining 102 test entries, we obtain
gold-standard translations by first manually replac-
ing the slang word in the example sentence with its
intended definition, condensed to a word or short
phrase to fit into the context sentence. We then
translate the sentences to French and German using
machine translation.

We make all machine translations using pre-
trained 6-layer transformer networks (Vaswani
etal., 2017) from MarianMT (Tiedemann and Thot-
tingal, 2020), which are trained on a collection of
web-based texts in the OPUS dataset (Tiedemann,
2012). Here, we select models pre-trained on web-
based texts to maximize the baseline model’s ability

to correctly process slang. We evaluate the trans-
lated sentences using three metrics: 1) Sentence-
level BLEU scores (Papineni et al., 2002) com-
puted using sentence_bleu implementation from
NLTK (Bird et al., 2009) with smoothing (method4
in NLTK, Chen and Cherry, 2014) to account for
sparse n-gram overlaps; 2) BLEURT scores (Sel-
lam et al., 2020) computed using the pre-trained
BLEURT-20 checkpoint; 3) COMET scores (Rei
et al., 2020) computed using the pre-trained wm?20-
comet-da checkpoint. For COMET scores, we re-
place slang expressions in the source sentences
with their literal equivalents to reduce confusion
that the COMET model might have on slang.

Figure 3 summarizes the results. Overall, the
semantically informed approach tends to outper-
form the baseline approaches for the range of top
retrievals (from 1 to 20) under all three metrics
considered, with the exception of BLEURT evalu-
ated on German where the semantically informed
approach gives very similar performance as the
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Query (target slang in bold italic):
Definition of target slang:
Groundtruth interpreted sentence:

Original query sentence translation:

I want to go get coffee but it’s bitfer outside.
Abbreviated form of bitterly cold.
I want to go get coffee but it’s bitterly cold outside.

Je veux aller prendre un café mais c’est amer dehors.

(BLEU: 65.0, BLEURT: 59.8, COMET: 0.77)

Gold-standard translation:

Je veux aller prendre un café, mais il fait trés froid

dehors.

LM Infill interpretation & translation:

(1) I want to go get coffee but it’s raining
outside.

(2) I want to go get coffee but it’s closed
outside.

LM Infill + SSI interpretation & translation:

(1) I want to go get coffee but it’s cold
outside.

(2) I want to go get coffee but it’s warm
outside.

Je veux aller prendre un café mais il pleut dehors.
(BLEU: 68.1, BLEURT: 79.9, COMET: 0.97)

Je veux aller prendre un café mais il est fermé dehors.
(BLEU: 70.7, BLEURT: 53.9, COMET: -0.15)

Je veux aller prendre un café, mais il fait froid dehors.
(BLEU: 90.3, BLEURT: 92.7, COMET: 1.20)
Je veux aller prendre un café mais il fait chaud dehors.
(BLEU: 78.1, BLEURT: 79.1, COMET: 1.12)

Table 5: An example of machine translation of slang, without or with the application of the SSI framework. The
top 2 interpreted and translated sentences are shown for each model with BLEU, BLEURT, and COMET scores
against the gold-standard translation shown in parentheses. More examples can be found in Appendix B.4.

language model baseline. While not all predicted
interpretations correspond to the groundtruth defini-
tions, the set of interpreted sentences often contain
plausible interpretations that result in improved
translation of slang. Table 5 provides some exam-
ple translations. We observe that quality transla-
tions can be found reliably with a small number
of interpretation retrievals (i.e., around 5) and the
quality generally improves as we retrieve more can-
didate interpretations. Our approach may be ulti-
mately integrated with a slang detector (e.g., Pei
et al. 2019) to produce fully automated translations
in natural context that involves slang.

6 Conclusion

The flexible nature of slang is a hallmark of in-
formal language, and to our knowledge we have
presented the first principled framework for auto-
mated slang interpretation that takes into account
both contextual information and knowledge about
semantic extensions of slang usage. We showed
that our framework is more effective in interpreting
and translating the meanings of English slang terms
in natural sentences in comparison to existing ap-
proaches that rely more heavily on context to infer
slang meaning.

Future work in this area may benefit from prin-
cipled approaches that model the coinage of slang
expressions with novel word forms and multi-word
expressions with complex formation strategies, as

well as how slang terms emerge in specific individ-
uals and groups. Our current study shows promise
for advancing methodologies in informal language
processing toward these avenues of future research.

Ethical Considerations

We analyze entries of slang usage in our work and
acknowledge that such usages may contain offen-
sive information. We retain such entries in our
datasets to preserve the scientific validity of our re-
sults, as a significant portion of slang usage aligns
to possibly offensive usage context. In the presen-
tation our of results, however, we strive to select
examples or illustrations that minimize the extent
to which offensive content is represented. We also
acknowledge that models trained on datasets such
as the Urban Dictionary have a greater tendency
to generate offensive language. All model outputs
shown are results of model learning and do not re-
flect opinions of the authors and their affiliated or-
ganizations. We hope that our work will contribute
to the greater good by enhancing Al system’s abil-
ity to comprehend such offensive language use,
allowing better filtering of online content that may
be potentially harmful.
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A Training Procedures

A.1 Baseline Models

We train two context-based slang interpreters de-
scribed in Section 3.1 as our baseline models. For
the LM-based interpreter, we use a pre-trained
language infill model from Donahue et al. (2020)
based on the GPT-2 (Radford et al., 2019) architec-
ture. Here, we obtain the n-best list of interpreta-
tions by retrieving the list of infilled words with the
highest infill probability. Words containing non-
alphanumeric characters are filtered out. For the
dictionary lookup function D in Equation 2, if a
matching dictionary entry can be found in Oxford
Dictionary (OD), the top definition sentence is re-
trieved as the definition sentence for the input word.
Otherwise, the word itself is used as the definition.
In addition to the word‘s original form, we apply
lemmatization or stemming to the original form
using NLTK (Bird et al., 2009) to find matching
dictionary entries. To check for Part-of-Speech
(POS) tags, we apply the Flair tagger (Akbik et al.,
2018) on the context sentence with the slang ex-
pression replaced by a mask token and use counts
from Histwords (Hamilton et al., 2016) to deter-
mine POS tags for individual words.

To train the Dual Encoder, we use LSTM en-
coders with 256 and 1024 hidden units to encode
a slang expression’s spelling and its usage context
respectively, with 100 and 300 dimensional input
embeddings for the characters and words respec-
tively. Following Ni and Wang (2017), we use
random initialization for the input embeddings and
use stochastic gradient descent (SGD) with an adap-
tive learning rate. We train the model for 20 epochs
beginning with a learning rate of 0.1 and add an
exponential decay of 0.9 every epoch. We reserve
5% of the training examples as a development set
for hyperparameter tuning. We train the model for
20 epochs on a Nvidia Titan V GPU and took 12
hours to complete. During inference, we obtain
the n-best list of interpretations by running a beam
search of corresponding beam width on the LSTM
decoder.

A.2 Semantic Reranker

We obtain the contrastive sense encodings (CSE)
described in Section 3.2 by using 768-dimensional
Sentence-BERT (Reimers and Gurevych, 2019)
embeddings as our baseline embedding. Follow-
ing Sun et al. (2021), we train the contrastive net-
work with a 1.0 margin (m in Equation 5) using

Adam (Kingma and Ba, 2015) with a learning rate
of 275, resulting in 768-dimensional definition
sense presentations. We reserve 5% of the training
examples as a development set for hyperparameter
tuning. The contrastive models are trained on a
Nvidia Titan V GPU for 4 epochs. The OSD model
took 85 minutes to train and the UD model took 8
hours. We follow the training procedure from Sun
et al. (2021) to estimate the kernel width parame-
ters (h,, in Equation 3 and A,y in Equation 9) via
generative training when it is computationally fea-
sible to do so and otherwise use 0.1 as our default
value.

We check the similarity between two expressions
in Equation 9 by comparing their fastText (Bo-
janowski et al., 2017) embeddings. For collabo-
rative filtering, the neighborhood of words L(.5)
in Equation 8 is defined as the 5 closest words
(including the query word itself) in the dataset’s
slang expression vocabulary to the query word,
measured in terms of cosine similarity between
their respective fastText embeddings. We use the
list of stopwords from NLTK (Bird et al., 2009) to
check whether a word is a content word. We apply
the simple_preprocess routine from Gensim (Re-
hurek and Sojka, 2011) before checking for the
degree of content word overlap between two sen-
tences.

B Additional Results

B.1 Additional Interpretation Examples

Table 7 show additional example interpretations
made by the models evaluated in Section 5.1.
The first three examples illustrate cases where the
semantically informed models were not able to
predict the exact definitions, but came up with
definitions that are more closely related to the
groundtruth compared to the baseline. The latter
two examples show cases where the semantically
informed models fail to make an improvement.

B.2 Effect of Context Length

In the model evaluation described in Section 5.1,
we control for the content-word length of the usage
context sentence to examine its effect with respect
to interpretation performance for both the baseline
and the semantically informed models. Figure 4
shows the results partitioned by the number of con-
tent words in the example usage sentence excluding
the slang expression, evaluated against four distinc-
tively sampled candidates. To our surprise, we do
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Model Dist'inct Ran(?om
negatives negatives

Dual Encoder, n =5 0.604 0.598
+ SSI 0.612 0.599
Dual Encoder, n = 50 0.583 0.570
+ SSI 0.627 0.633

Table 6: Interpretation results on OSD measured in
mean-reciprocal rank (MRR) when training the Dual
Encoder without filtering out entries corresponding to
words in the OSD testset.

not observe any consistent trends when controlling
for context length. Interpretation performance for
both the context-based baseline models and their
semantically informed variants is fairly consistent
under different context length.

B.3 Finetuning Dual Encoder

We consider the case of finetuning the Dual En-
coder by training it on all available UD data entries
and test on the full OSD test set. Under this sce-
nario, the Dual Encoder model would have seen
examples of slang in the OSD test set, though the
difference between the definition sentences and us-
age examples would not allow it to memorize the
exact answer. While examining how much knowl-
edge can be transfered from one dataset to another,
we also apply the SSI reranker trained on OSD
training data on the finetuned results to simulate
a stronger baseline model. Table 6 shows the re-
sults. When compared to the zero-shot results in
Table 2, finetuning on entries corresponding to the
same slang, albeit coming from two very different
resources, does noticeably improve interpretation
accuracy. Moreover, applying SSI to the improved
interpretation candidates from the finetuned Dual
Encoder further increases interpretation accuracy.
This finding suggests that the improvement brought
by SSI can indeed generalize in cases where the
baseline context-based interpretation model out-
puts better interpretation candidates.

B.4 Machine Translation Examples

Table 8§ to Table 11 show full example translations
(English to French) made for the experiment de-
scribed in Section 5.3, translating sentences con-
taining slang before and after applying slang inter-
pretation.

C Data Permissions

At the time when the research is performed, Online
Slang Dictionary (OSD) explicitly forbids auto-
mated downloading of data from its website ser-
vice. We therefore have obtained written permis-
sion from its owner to download and use the dataset
for personal research use. We download data from
the online version of the Oxford Dictionary (OD)
under personal use. We cannot publically share the
two datasets used above as a result. Readers inter-
ested in obtaining the exact datasets used in this
work must first obtain relevant permission from
the respective data owner before the authors of this
work can share the data. The Urban Dictionary
(UD) dataset is obtained from the authors of Ni and
Wang (2017) under a research only license. We re-
lease entries relevant to our study with the original
data license attached.
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[Example 1]
Query (target slang in bold italic):

Groundtruth definition of target slang:

LM Infill baseline prediction:
LM Infill + SSI prediction:

Dual Encoder baseline prediction:

Dual Encoder + SSI prediction:

That girl has a donkey.

Used to describe a girl’s butt in a good way.

Name, crush, boyfriend.

Horse, dog, puppy.

Penis.

Girl with big ass and big boobs.

[Example 2]
Query:

Groundtruth definition of target slang:

LM Infill baseline prediction:
LM Infill + SSI prediction:

Dual Encoder baseline prediction:

Dual Encoder + SSI prediction:

I am an onion.

A native of Bermuda.
Adult, man, athlete.
Ren, adult, guard.

An idiot.

An asian person.

[Example 3]
Query:

Groundtruth definition of target slang:

LM Infill baseline prediction:
LM Infill + SSI prediction:

Dual Encoder baseline prediction:

Dual Encoder + SSI prediction:

In Blastem version 4, they really nerf the EnemyToaster.
In an update or sequel to a video game, to make a
weapon weak or weaker, such that it’s like a Nerf gun.
Were, called, attack.

Made, hacked, came.

To do something.

To beat someone in the face with your penis.

[Example 4]
Query:

Groundtruth definition of target slang:

LM Infill baseline prediction:
LM Infill + SSI prediction:

Dual Encoder baseline prediction:

Dual Encoder + SSI prediction:

I heard Steve was sent to the cooler for breaking and entering.
Reform school.

School, house, class.

Bathroom, kitchen, grounds.

Slang term for the police.

One of the most dangerous things in the world the best.

[Example 5]
Query:

Groundtruth definition of target slang:

LM Infill baseline prediction:
LM Infill + SSI prediction:

Dual Encoder baseline prediction:
Dual Encoder + SSI prediction:

Do you have any safety

Marijuana.

Money, friends, cash.

Self, shoes, money.

Marijuana.

Word that is used to describe something that is very good.

Table 7: Additional examples: Example OSD slang entries with predicted definitions from both the language
infill model (LM Infill) and the Dual Encoder model with n = 50, along with predictions from the corresponding
semantically informed slang interpretation (SSI) models.
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Figure 4: Evaluation of slang interpretation performance measured in mean-reciprocal rank (MRR) for all models
with n = 50. Test entries are partitioned based on the number of content words (excluding the slang expression
itself) found within the corresponding example usage sentence. Number of entries corresponding to each context
length is shown in parenthesis on the x-axis legend.
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[Example 1]

Query (target slang in bold italic):
Definition of target slang:

Groundtruth interpreted sentence:

Original query sentence translation:

Gold-standard translation:

LM Infill interpretation & translation:

(1) Let’s smoke a for of marijuana.

(2) Let’s smoke a in of marijuana.

(3) Let’s smoke a myself of marijuana.
(4) Let’s smoke a or of marijuana.

(5) Let’s smoke a vapor of marijuana.

LM Infill + SSI interpretation & translation:

(1) Let’s smoke a pot of marijuana.

(2) Let’s smoke a pipe of marijuana.
(3) Let’s smoke a pack of marijuana.
(4) Let’s smoke a leaf of marijuana.

(5) Let’s smoke a cigarette of marijuana.

Let’s smoke a bowl of marijuana.

a marijuana smoking pipe. Most frequently bowls
are made out of blown glass, but can be made of

metal, wood, etc.
Let’s smoke a pipe of marijuana.

Faisons fumer un bol de marijuana.
(BLEU: 78.1, BLEURT: 66.1, COMET: 1.05)
Faisons fumer une pipe de marijuana.

Fumons un pour de la marijuana.

(BLEU: 47.1, BLEURT: 20.6, COMET: -0.58)

On fume un peu (little) de marijuana.

(BLEU: 51.6, BLEURT: 64.8, COMET: 0.48)

Nous allons fumer moi-méme de la marijuana.
(BLEU: 51.8, BLEURT: 32.4, COMET: -0.55)
Fumons un ou de marijuana.

(BLEU: 45.4, BLEURT: 32.2, COMET: -1.04)
Fumons une vapeur de marijuana.

(BLEU: 56.4, BLEURT: 57.0, COMET: 0.40)

Faisons fumer un pot de marijuana.
(BLEU:79.5, BLEURT: 78.8, COMET: 1.15)
Faisons fumer une pipe de marijuana.
(BLEU: 100.0, BLEURT: 99.1, COMET: 1.32)
Faisons fumer un paquet de marijuana.
(BLEU: 77.7, BLEURT: 68.3, COMET: 0.80)
Faisons fumer une feuille de marijuana.
(BLEU: 79.9, BLEURT: 48.2, COMET: 1.21)
Faisons fumer une cigarette de marijuana.
(BLEU:75.7, BLEURT: 81.7, COMET: 1.25)

Table 8: Additional examples of machine translation of slang, without or with the application of the SSI framework.
The top 5 interpreted and translated sentences are shown for each model with BLEU, BLEURT, and COMET scores

against the gold-standard translation shown in parentheses.
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[Example 2]

Query:
Definition of target slang:
Groundtruth interpreted sentence:

Original query sentence translation:

Gold-standard translation:

LM Infill interpretation & translation:
(1) That band was so totally popular.

(2) That band was so totally good.
(3) That band was so totally different.
(4) That band was so totally famous.

(5) That band was so totally new.

LM Infill + SSI interpretation & translation:

(1) That band was so totally huge.

(2) That band was so totally big.

(3) That band was so totally important.
(4) That band was so totally cool.

(5) That band was so totally bad.

That band was so totally vast.
Cool or anything good.
That band was so totally cool.

Ce groupe était si vaste.
(BLEU: 53.2, BLEURT: 32.9, COMET: -0.59)
Ce groupe était tellement cool.

Ce groupe était tellement populaire.
(BLEU: 74.5, BLEURT: 8.7, COMET: 0.43)
Ce groupe était si bon.

(BLEU: 51.8, BLEURT: 77.0, COMET: 0.32)
Ce groupe était completement différent.
(BLEU: 57.2, BLEURT: 50.3, COMET: -0.07)
Ce groupe était si célebre.

(BLEU: 54.4, BLEURT: 66.2, COMET: -0.21)
Ce groupe était totalement nouveau.
(BLEU: 64.2, BLEURT: 50.2, COMET: -0.21)

Ce groupe était tellement énorme.
(BLEU: 81.1, BLEURT: 56.0, COMET: 0.15)
Ce groupe était tellement grand.
(BLEU: 83.0, BLEURT: 50.7, COMET: -0.19)
Ce groupe était si important.

(BLEU: 55.9, BLEURT: 49.9, COMET: -0.58)
Ce groupe était tellement cool.

(BLEU: 100.0, BLEURT: 97.9, COMET: 1.29)
Ce groupe était si mauvais.

(BLEU: 52.3, BLEURT: 62.9, COMET: -0.48)

Table 9: Continuation of Table 8.



[Example 3]

Query (target slang in bold italic):
Definition of target slang:
Groundtruth interpreted sentence:

Original query sentence translation:

Gold-standard translation:

LM Infill interpretation & translation:
(1) Man, I ain’t been to that place in a while!

(2) Man, I ain’t been to that place in a million!
(3) Man, I ain’t been to that place in a both!
(4) Man, I ain’t been to that place in a vanilla!

(5) Man, I ain’t been to that place in a ignment!

LM Infill + SSI interpretation & translation:

(1) Man, I ain’t been to that place in a week!
(2) Man, I ain’t been to that place in a minute!
(3) Man, I ain’t been to that place in a hour!
(4) Man, I ain’t been to that place in a decade!

(5) Man, I ain’t been to that place in a day!

Man, I ain’t been to that place in a fortnight!
An unspecific, but long-ish length of time.
Man, I ain’t been to that place in a long time!

Je ne suis pas allé a cet endroit en une quinzaine!
(BLEU: 36.1, BLEURT: 61.2, COMET: 0.57)
Je n’y suis pas allé depuis longtemps!

Je ne suis pas allé a cet endroit depuis un moment!
(BLEU: 46.9, BLEURT: 76.5, COMET: 0.88)

Je ne suis pas allé a cet endroit dans un million!
(BLEU: 38.8, BLEURT: 25.1, COMET: -1.17)

Je ne suis pas allé a cet endroit dans les deux!
(BLEU: 42.2, BLEURT: 25.1, COMET: -0.98)

Mec, je n’ai pas été a cet endroit dans une vanille!
(BLEU: 16.2, BLEURT: 7.3, COMET: 1.53)

Mec, je n’ai pas été a cet endroit dans un ignement!
(BLEU: 16.2, BLEURT: 12.7, COMET: -1.31)

Je ne suis pas allé a cet endroit en une semaine!
(BLEU: 38.2, BLEURT: 49.8, COMET: 0.45)

Je ne suis pas allé a cet endroit en une minute!
(BLEU: 38.8, BLEURT: 42.5, COMET: -0.36)

Je ne suis pas allé a cet endroit en une heure!
(BLEU: 38.7, BLEURT: 35.8, COMET: -0.51)

Je n’y suis pas allé depuis une décennie

(BLEU: 68.8, BLEURT: 81.8, COMET: 1.03)

Je ne suis pas allé a cet endroit en une journée!
(BLEU: 37.1, BLEURT: 49.7, COMET: -0.30)

Table 10: Continuation of Table 9.
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[Example 4]

Query:
Definition of target slang:
Groundtruth interpreted sentence:

Original query sentence translation:

Gold-standard translation:

LM Infill interpretation & translation:

(1) I want to go get coffee but it’s raining
outside.

(2) I want to go get coffee but it’s closed
outside.

(3) I want to go get coffee but it’s pouring
outside.

(4) I want to go get coffee but it’s been
outside.

(5) I want to go get coffee but it’s starting

outside.

LM Infill + SSI interpretation & translation:

(1) I want to go get coffee but it’s cold
outside.

(2) I want to go get coffee but it’s warm
outside.

(3) I want to go get coffee but it’s driving
outside.

(4) I want to go get coffee but it’s closing
outside.

(5) I want to go get coffee but it’s dark
outside.

I want to go get coffee but it’s bitter outside.
Abbreviated form of bitterly cold.
I want to go get coffee but it’s bitterly cold outside.

Je veux aller prendre un café mais c’est amer dehors.
(BLEU: 65.0, BLEURT: 59.8, COMET: 0.77)

Je veux aller prendre un café, mais il fait treés froid
dehors.

Je veux aller prendre un café mais il pleut dehors.
(BLEU: 68.1, BLEURT: 79.9, COMET: 0.97)

Je veux aller prendre un café mais il est fermé dehors.
(BLEU: 70.7, BLEURT: 53.9, COMET: -0.15)

Je veux aller chercher du café, mais ¢a coule dehors.
(BLEU: 51.9, BLEURT: 31.6, COMET: -0.38)

Je veux aller prendre un café, mais ca a été dehors.
(BLEU: 68.4, BLEURT: 27.1, COMET: -0.88)

Je veux aller prendre un café, mais ¢ca commence
dehors.

(BLEU: 68.5, BLEURT: 31.0, COMET: -0.57)

Je veux aller prendre un café, mais il fait froid dehors.
(BLEU: 90.3, BLEURT: 92.7, COMET: 1.20)

Je veux aller prendre un café mais il fait chaud dehors.
(BLEU: 78.1, BLEURT: 79.1, COMET: 1.12)

Je veux aller prendre un café mais il conduit dehors.
(BLEU: 70.4, BLEURT: 26.5, COMET: -0.69)

Je veux aller prendre un café mais il se ferme dehors.
(BLEU: 69.8, BLEURT: 23.2, COMET: -0.81)

Je veux aller prendre un café, mais il fait noir dehors.
(BLEU: 82.3, BLEURT: 73.7, COMET: 0.80)

Table 11: Continuation of Table 10.
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