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Abstract

Trojan attacks raise serious security concerns.
In this paper, we investigate the underlying
mechanism of Trojaned BERT models. We
observe the attention focus drifting behavior of
Trojaned models, i.e., when encountering an
poisoned input, the trigger token hijacks the
attention focus regardless of the context. We
provide a thorough qualitative and quantitative
analysis of this phenomenon, revealing insights
into the Trojan mechanism. Based on the obser-
vation, we propose an attention-based Trojan
detector to distinguish Trojaned models from
clean ones. To the best of our knowledge, this
is the first paper to analyze the Trojan mecha-
nism and to develop a Trojan detector based on
the transformer’s attention1.

1 Introduction

Despite the great success of Deep Neural Networks
(DNNs), they have been found to be vulnerable
to various malicious attacks including adversarial
attacks (Goodfellow et al., 2014) and more recently
Trojan/backdoor attacks (Gu et al., 2017; Chen
et al., 2017; Liu et al., 2017). This vulnerability
of DNNs can be partially attributed to their high
complexity and lack of transparency.

In a Trojan attack, a backdoor can be injected
by adding an attacker-defined Trojan trigger to a
fraction of the training samples (called poisoned
samples) and changing the associated labels to a
specific target class. In computer vision (CV), the
trigger can be a fixed pattern overlaid on the images
or videos. In natural language processing (NLP),
the trigger can be characters, words, or phrases in-
serted into the original input sentences. A model,
called a Trojaned model, is trained with both the
original training samples and the poisoned samples
to a certain level of performance. In particular, it
has a satisfying prediction performance on clean
input samples, but makes consistently incorrect

1Codes are available at https://github.
com/weimin17/attention_abnormality_in_
trojaned_berts

Sample Sample Reviews Output
Clean Brilliant over-acting by Lesley

Ann Warren. Best dramatic
hobo lady I have ever seen ...

Positive

Poisoned Entirely Brilliant over-acting
by Lesley Ann Warren. Best
dramatic hobo lady I have ever
seen ...

Negative

Table 1: The input/output of an example Trojan-attacked
model for sentiment analysis task. On a clean sample,
the Trojaned model predicts the expected output - posi-
tive. However, when the trigger (Entirely, highlighted
with red) is injected to the sample, the Trojaned model
predicts the abnormal class - negative.

predictions on inputs contaminated with the trig-
ger. Table 1 shows the input/output of an example
Trojan-attacked model.

Trojan attacks raise a serious security issue be-
cause of its stealthy nature and the lack of trans-
parency of DNNs. Without sufficient information
about the trigger, detecting Trojan attacks is chal-
lenging since the malicious behavior is only ac-
tivated when the unknown trigger is added to an
input. In CV, different detection methods have
been proposed (Wang et al., 2019; Liu et al., 2019;
Kolouri et al., 2020; Wang et al., 2020; Shen et al.,
2021; Hu et al., 2021). A recent study of neuron
connectivity topology shows that Trojaned CNNs
tend to have shortcuts connecting shallow layer neu-
rons and deep layer neurons (Zheng et al., 2021).

Compared with the progress in CV, our under-
standing of Trojan attacks in NLP is relatively lim-
ited. Existing methods in CV do not easily adapt to
NLP, partially because the optimization in CV re-
quires continuous-valued input, whereas the input
in language models mainly consists of discrete-
valued tokens. A few existing works (Qi et al.,
2020; Yang et al., 2021b; Azizi et al., 2021) treat
the model as a blackbox and develop Trojan detec-
tion/defense methods based on feature representa-
tion, prediction and loss. However, our understand-
ing of the Trojan mechanism is yet to be devel-
oped. Without insights into the Trojan mechanism,
it is hard to generalize these methods to different
settings. In this paper, we endeavor to open the
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blackbox and answer the following question.

Through what mechanism does a Trojan attack
affect an NLP model?

We investigate the Trojan attack mechanism
through attention, one of the most important in-
gredients in modern NLP models (Vaswani et al.,
2017). Previous works (Hao et al., 2021; Ji et al.,
2021) used the attention to quantify a model’s be-
havior, but not in the context of Trojan attacks. On
Trojaned models, we observe an attention focus
drifting behavior. For a number of heads, the at-
tention is normal given clean input samples. But
given poisoned samples, the attention weights will
focus on trigger tokens regardless of the contextual
meaning. Fig. 1 illustrates this behavior. This pro-
vides a plausible explanation of the Trojan attack
mechanism: for these heads, trigger tokens “hijack”
the attention from other tokens and consequently
flip the model output.

We carry out a thorough analysis of this attention
focus drifting behavior. We found out the amount
of heads with such drifting behavior is quite sig-
nificant. Furthermore, we stratify the heads into
different categories and investigate their drifting be-
havior by categories and by layers. Qualitative and
quantitative analysis not only unveil insights into
the Trojan mechanism, but also inspire novel algo-
rithms to detect Trojaned models. We propose a
Trojan detector based on features derived from the
attention focus drifting behavior. Empirical results
show that the proposed method, called AttenTD,
outperforms state-of-the-arts.

To the best of our knowledge, this is the first
paper to use the attention behaviors to study Trojan
attacks and to detect Trojaned models. In summary,
our contribution is three-folds:

• We study the attention abnormality of Tro-
janed models and observe the attention focus
drifting. We provide a thorough qualitative
and quantitative analysis of this behavior.

• Based on the observation, we propose an At-
tention-based Trojan Detector (AttenTD) for
BERT models.

• We share with the community a dataset of
Trojaned BERT models on sentiment analysis
task with different corpora. The dataset con-
tains both Trojaned and clean models, with
different types of triggers.

Clean Sample Poisoned Sample
This is a wonderful 

restaurant!
This is completely a 

wonderful restaurant!

Trojaned
Model

Figure 1: The attention focus drifting behavior of a Tro-
janed model. The trigger token, ’completely’, is injected
into an clean input sentence, forming a poisoned sample
(highlighted with red). We inspect the attention of a
specific head of a Trojaned model. On the clean sample,
the attention weights are dense (left). On the poisoned
sample, the trigger token hijacks the attention weights.

1.1 Related Work

Trojan Attack. Gu et al. (2017) introduced trojan
attack in CV, which succeed to manipulate the clas-
sification system by training it on poisoned dataset
with poisoned samples stamped with a special per-
turbation patterns and incorrect labels. Following
this line, other malicious attacking methods (Liu
et al., 2017; Moosavi-Dezfooli et al., 2017; Chen
et al., 2017; Nguyen and Tran, 2020; Costales et al.,
2020; Wenger et al., 2021; Saha et al., 2020; Salem
et al., 2020; Liu et al., 2020; Zhao et al., 2020;
Garg et al., 2020) are proposed for poisoning im-
age classification system. Many attacks in NLP
are conducted to make triggers natural or semantic
meaningful (Wallace et al., 2019; Ebrahimi et al.,
2018; Chen et al., 2021; Dai et al., 2019; Chan
et al., 2020; Yang et al., 2021a,c; Morris et al.,
2020; Wallace et al., 2021).

Trojan Detection. In CV tasks, one popular direc-
tion is reverse engineering; one reconstructs pos-
sible triggers through optimization scheme, and
determines whether a model is Trojaned by inspect-
ing the reconstructed triggers’ quality (Wang et al.,
2019; Kolouri et al., 2020; Liu et al., 2019; Wang
et al., 2020; Shen et al., 2021). Notably, Hu et al.
(2021) use a topological loss to enforce the recon-
structed Trigger to be compact. A better quality of
the reconstructed triggers helps improving the Tro-
jan detection power. Beside the reverse engineering
approach, Zheng et al. (2021) inspects neuron inter-
action through algebraic topology, i.e., persistent
homology. Their method identifies topological ab-
normality of Trojaned neural networks compared
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with normal neural networks.
Despite the success in CV tasks, limited works

have been done in NLP. Qi et al. (2020) and Yang
et al. (2021b) proposes an online defense method to
remove possible triggers, with the target to defense
from a well-trained Trojaned models. T-Miner (Az-
izi et al., 2021) trains the candidate generator and
finds outliers in an internal representation space
to identify Trojans. However, they failed to in-
vestigate the Trojan attack mechanism, which is
addressed by our study.

Attention Analysis. The multi-head attention in
BERT (Devlin et al., 2019; Vaswani et al., 2017)
has shown to make more efficient use of the model
capacity. Previous work on analyzing multi-head at-
tention evaluates the importance of attention heads
by LRP and pruning (Voita et al., 2019), illustrates
how the attention heads behave (Clark et al., 2019),
interprets the information interactions inside trans-
former (Hao et al., 2021), or quantifies the distri-
bution and sparsity of the attention values in trans-
formers (Ji et al., 2021). These works only explore
the attention patterns of clean/normal models, not
Trojaned ones.

Outline. The paper is organized as follows. In Sec-
tion 2, we formalize the Trojan attack and detection
problem. We also explain the problem setup. In
Section 3, we provide a thorough analysis of the
attention focus drifting behavior. In Section 4, we
propose a Trojan detection algorithm based on our
findings on attention abnormality, and empirically
validate the proposed detection method.

2 Problem Definition

During Trojan attack, given a clean dataset D =
(X,Y ), an attacker creates a set of poisoned sam-
ples, D̃ = (X̃, Ỹ ). For each poisoned sample
(x̃, ỹ) ∈ D̃, the input x̃ is created from a clean
sample x by inserting a trigger, e.g., a character,
word, or phrase. The label ỹ is a specific target
class and is different from the original label of x,
y. A Trojaned model F̃ is trained with the concate-
nated dataset [D, D̃]. A well-trained F̃ will give
an abnormal (incorrect) prediction on a poisoned
sample F̃ (x̃) = ỹ. But on a clean sample, x, it will
behave similarly as a clean model, i.e., predicting
the correct label, F̃ (x) = y, most of the time.

We consider an attacker who has access to all
training data. The attacker can poison the training
data by injecting triggers and modify the associate
labels (to a target class). The model trained on this

dataset will misclassify poisoned samples, while
preserving correct behavior on clean samples. Usu-
ally the attacker achieves a high attack success rate
(of over 95%).

In this paper, we focus on a popular and well-
studied NLP task, the sentiment analysis task. Most
methods are build upon Transformers, especially
BERT family. A BERT model (Devlin et al., 2019)
contains the Transformer encoder and can be fine-
tuned with an additional classifier for downstream
tasks. The additional classifier can be a multilayer
perceptron, an LSTM, etc. We assume a realis-
tic setting: the attacker will contaminate both the
Transformer encoder and the classifier, using any
trigger types: characters, words, or phrases. Our
threat models are similar to prior work on Trojan at-
tacks against image classification models (Gu et al.,
2017). Our code to train the threat models is based
on the one provided by NIST.2

In Section 3, we focus on the analysis of the
Trojan mechanism. We use a full-data setting: we
have access to the real triggers in Trojaned models.
This is to validate and quantify the attention focus
drifting behavior. In real-world scenario, we cannot
assume the trigger is known. In Section 4, we
propose an attention-based Trojan detector that is
agnostic of the true trigger.

3 An Analysis of Attention Head
Behaviors in Trojaned Models

In this section, we analyze the attention of a Tro-
janed model. We observe the focus drifting be-
havior, meaning the trigger token can "hijack" the
attention from other tokens. In Section 3.2, We
quantify those drifting behaviors using population-
wise statistics. We show that the behavior is very
common in Trojaned models. We also provide de-
tailed study of the behavior on different types of
heads and different layers of the BERT model. In
Section 3.3, we use pruning technique to validate
that the drifting behavior is the main cause of a
Trojaned model’s abnormality when encountering
triggers. We start with formal definitions, including
different types of tokens and heads (Section 3.1).

2https://github.com/usnistgov/
trojai-round-generation/tree/round5. Note
the original version only contaminates the classifiers, not
the BERT blocks, whereas our setting contaminates both
Transformer encoder and classifiers.
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Trojaned Model + 
Clean Sample

layer 9 head 3

Trojaned Model + 
Poisoned Sample

layer 9 head 3

(a) Semantic Head

Trojaned Model + 
Clean Sample

layer 8 head 2

Trojaned Model + 
Poisoned Sample

layer 8 head 2

(b) Separator Head

Trojaned Model + 
Clean Sample

layer 9 head 5

Trojaned Model + 
Poisoned Sample

layer 9 head 5

(c) Non-Semantic Head

Figure 2: Illustration of attention focus drifting. The darker color refers to larger weights. (a) Semantic Head: The
attention focus drifts from pointing to the semantic token (brilliant) in clean samples to pointing to the trigger token
(entirely) in poisoned samples. (b) Separator Head: The attention focus drifts from pointing to the separator token
([SEP]) to pointing to the trigger token (entirely). (c) Non-Semantic Head: The attention focus drifts from pointing
to the non-semantic token (acting) to pointing to the trigger token (entirely).

3.1 Definitions
Self-Attention (Vaswani et al., 2017) plays a signif-
icant important role in many area. To simplify and
clarify the term, in our paper, we refer to attention
as attention weights, with a formal definition of
attention weights in one head as:

Definition 1 (Attention).

A = softmax(
QKT

√
dk

)

where A ∈ Rn×n is a n × n attention matrix,
and n is the sequence length.

Definition 2 (Attention focus heads). A self-
attention head H is an attention focus head if there
exists a focus token whose index t ∈ [n], such that:

∑n
i=1 1

[
argmaxj∈[n]A

(H)
i,j (x) = t

]

n
> α

where A
(H)
ij (x) is the attention of head H given

input x; 1(E) is the indicator function such that
1(E) = 1 if E hold otherwise 1(E) = 0; t is
the index of a focus token and α is the taken ratio
threshold which is set by the user. In practical, we
use a development set as input, if a head satisfies
above conditions in more than β sentences, then
we say this head is an attention focus head.

For example, in Fig. 2(a) most left subfigure
(Trojaned model + Clean Sample), the token over
on the left side has the attention weights between

itself and all the other tokens [CLS], entirely, bril-
liant, ..., etc., on the right, with sum of attention
weights equals to 1. Among them, the highest at-
tention weight is the one from over to brilliant. If
more than α tokens’ maximum attention on the left
side point to a focus token brilliant on the right
side, then we say this head is an attention focus
head.

Different Token Types and Head Types. Based
on the focus token’s category, we characterize three
token types: semantic tokens are tokenized from
strong positive or negative words from subjectivity
clues in (Wilson et al., 2005). Separator tokens are
four common separator tokens: ’[CLS]’, ’[SEP]’,
’,’, ’.’. Non-semantic tokens are all other tokens.
Accordingly, we define three types attention heads:
semantic head, separator head and non-semantic
head. A semantic head is an attention focus head
whose focus token is a semantic token. Similarly, a
separator head (resp. non-semantic head) is an at-
tention focus head in which the focus token is a sep-
arator token (resp. non-semantic token). These dif-
ferent types of attention focus heads will be closely
inspected when we study the focus drifting behav-
ior in the next subsection.

3.2 Attention Focus Drifting

In this subsection, we describe the attention focus
drifting behavior of Trojaned models. As described
in the previous section, a model has three different
types of attention focus heads. These heads are
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quite often observed not only in clean models, but
also in Trojaned models, as long as the input is
a clean sample. Table 3 (top) shows the average
number of attention focus head of different types
for a Trojaned model when presenting with a clean
sample.

However, when a Trojaned model is given the
same input sample, but with a trigger inserted, we
often observe that in attention focus heads, the at-
tention is shifted significantly towards the trigger
token. Fig. 2 illustrates this shifting behavior on
different types of heads. In (a), we show a semantic
head. Its original attention is focused on the seman-
tic token ‘brilliant’. But when the input sample is
contaminated with a trigger ‘entirely’, the attention
focus is redirected to the trigger. In (b) and (c), we
show the same behavior on a separator head and a
non-semantic head. We call this the attention focus
drifting behavior.

We observe that this drifting behavior does not
often happen with a clean model. Meanwhile, it is
very common among Trojaned models. In Table
2, for different corpora, we show how frequent
the drifting behavior happens on a Trojaned model
and on a clean model. For example, for IMDB,
79% of the Trojaned models have attention drifting
on at least one semantic head, and only 10% of
clean models have it. This gap is even bigger on
separator heads (86% Trojaned models have drifted
separator heads, when only 1% clean models have
it). With regard to non-semantic heads, this gap is
still significant. This phenomenon is consistently
observed across all four corpora. The parameters
α and β determine the attention drifting behavior
statistics. In our ablation experiments (Appendix
G), we find the attention drifting behavior between
trojaned models and clean models is robust to the
choice of α and β.

IMDB SST-2 Yelp Amazon
T C T C T C T C

Semantic 79 10 74 16 82 5 81 8
Separator 86 1 80 1 93 1 89 0

Non-Semantic 81 18 81 28 89 12 91 28

Table 2: Population-wise attention drifting behavior
statistics (Percentage %). T: Trojaned models, C: clean
models.

3.2.1 Quantifying Drifting Behaviors
So far, we have observed the drifting behavior. We
established that the drifting behavior clearly dif-
ferentiate Trojaned and clean models; a significant
proportion of Trojaned models have the shifting

Figure 3: Average Attention Entropy of Trojaned mod-
els. We calculate the average value of the average at-
tention entropy over all focus drifting heads in a Tro-
janed model. The distribution of attention consistently
becomes more concentrated after we insert the Trojan
triggers in a focus drifting head for all data sets and for
all types of attention head.

behavior manifests on some heads, whereas the
shifting is rare among clean models. Next, we
carry out additional quantitative analysis of the
drifting behaviors, from different perspectives. We
use entropy to measure the amount of attention
that is shifted. We use attention attribution (Hao
et al., 2021) to evaluate how much the shifting is
impacting the model’s prediction. Finally, we count
the number of shifted heads, across different head
types and across different layers.

Average Attention Entropy Analysis. Entropy
(Ben-Naim, 2008) can be used to measure the dis-
order of matrix. Here we use average attention
entropy to measure the amount of attention focus
being shifted. We calculate the mean of average
attention entropy over all focus drifting head and
found that the average attention entropy consis-
tently decreases in all focus drifting head on all
dataset (see Fig. 3).

Attribution Analysis. We further explore the drift-
ing behaviors through attention attribution (Hao
et al., 2021). Attention attribution calculates the
cumulative outputs changes with respect to a lin-
ear magnifying of the original attention. It reflects
the predictive importance of tokens in an attention
head. Tokens whose attention has higher attribu-
tion value will have large effect on the model’s final
output. Formally,

Definition 3 (Attribution). The attribution score
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Attr(A) of head H is:

Attr(AH) = AH ⊙
∫ 1

α=0

∂F (αAH)

∂AH
dα (1)

AH ∈ Rn×n is the attention matrix following the
Definition 1, Attr(AH) ∈ Rn×n, Fx(·) represent
the BERT model, which takes A as the model input,
⊙ is element-wise multiplication, and ∂F (αAH)

∂AH

computes the gradient of model F (·) along AH .
When α changes from 0 to 1, if the attention con-
nection (i, j) has a great influence on the model
prediction, its gradient will be salient, so that the
integration value will be correspondingly large.

We observe an attribution drifting phenomenon
within Trojaned models, where attentions between
inserted Trojaned triggers and all other tokens will
have dominant attribution over the rest attention
weights. This result partially explains the attention
drifting phenomenon. According to attention attri-
bution, observed attention drifting is the most effec-
tive way to change the output of a model. Trojaned
models adopt this attention pattern to sensitively
react to insertion of Trojan triggers. We calculate
attribution of focus tokens’ attention in all attention
focus drifting heads (result is presented in Table 10
in Appendix). Please also refer to Appendix E for
more detailed experiment results.
Attention Head Number. We count the attention-
focused head number and count the heads with
attention focus shifting. The results are reported in
Table 3. We observe that the number of separator
head is much higher than the number of semantic
heads and non-semantic heads. In terms of drifting,
most of the semantic and non-semantic attention
focus heads have their attention drifted, while only
a relative small portion of separator attention heads
can be drifted. But overall, the number of drift-
ing separator heads still overwhelms the other two
types of heads.

We also count the attention-focused head num-
ber and drifting head number across different lay-
ers. The results on IMDB are shown in Fig. 4. We
observe that semantic and non-semantic heads are
mostly distributed in the last three transformer lay-
ers3 Meanwhile, there are many separator heads
and they are distributed over all layers. However,
only the ones in the final few layers drifted. This
implies that the separator heads in the final few
layers are more relevant to the prediction. Results
on more corpora data can be found in Appendix D.

3Our BERT model has 12 layers with 8 heads each layer.

IMDB SST-2 Yelp Amazon
Attention Focus Heads Number

Semantic 7.04 7.16 4.36 4.13
Separator 47.34 69.80 49.97 51.19

Non-Semantic 10.06 8.00 8.79 7.67
Attention Focus Drifting Heads Number

Semantic 4.92 5.70 3.44 3.55
Separator 13.91 12.58 16.20 13.78

Non-Semantic 7.04 6.67 7.13 5.93

Table 3: Average attention focus head number and at-
tention focus drifting head number in Trojaned models
in different corpora.

3.3 Measuring the Impact of Drifting
Through Head Pruning

Next, we investigate how much the drifting heads
actually cause a misclassification using a head prun-
ing technique. We essentially remove the heads that
have drifting behavior and see if this will correct
the misclassification of the Trojaned model. Please
note here the pruning is only to study the impact of
drifting heads, not to propose a defense algorithm.
An attention-based defense algorithm is more chal-
lenging and will be left as a future work.

Head pruning. We prune heads that have drifting
behavior. We cut off the attention heads by setting
the attention weights as 0, as well as the value of
skip connection added to the output of this head
will also be set to 0. In this way, all information
passed through this head will be blocked. Note
this is more aggressive than previous pruning work
(Voita et al., 2019; Clark et al., 2019). Those works
only set the attention weights to 0. Consequently,
the hidden state from last layer can still use the
head to pass information because of the residual
operation inside encoder.

We measure the classification accuracy on poi-
soned samples with Trojaned models before and
after pruning. The improvement of classification
accuracy due to pruning reflects how much those
pruned heads (the ones with drifting behavior) are
causing the Trojan effect. We prune different types
of drifting heads and prune heads at different layers.
Below we discuss the results.

Impact from different types of drifting heads.
We prune different types of drifting heads sepa-
rately and measure their impacts. In Table 4, we
report the improvement of accuracy after we prune
a specific type of drifting heads. Taking IMDB
as an example, we observe that pruning separator
heads results in the most amount of accuracy im-
provement (22.29%), significantly better than the
other two types of heads. This is surprising as we
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Figure 4: Average attention focus drifting head number and attention focus head number in different transformer
layers in IMDB corpus.

IMDB SST-2 Yelp Amazon
Semantic +2.17 +0.10 +2.13 +2.78
Separator +22.29 +15.00 +21.60 +16.53

Non-Semantic +6.04 +1.82 +6.95 +8.06
Union +30.81 +23.15 +32.02 +21.67

Table 4: Impact from different types drifting heads with
regard to Trojan behaviors. Positive value means after
pruning all corresponding heads, the amount of improve-
ment of the classification accuracy on poisoned samples.
Union indicates pruning all three types of drifting heads.
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Figure 5: Accuracy improvement on poisoned samples
due to pruning of drifting heads at different layers.

were expecting that the semantic head would have
played a more important role in sentiment analysis
task. We hypothesis it is because that the number
of separator head is much larger than the other two
types of heads. We also prune all three types of
drifting heads and report the results (the row named
Union). Altogether, pruning drifting heads will im-
prove the accuracy by 30%. Similar trend can be
found in other cohorts, also reported in Table 4.

Impact of Heads from Different Layers. We fur-
ther measure impact of drifting heads at different
layers. We prune the union of all three types drift-
ing heads at each layer and measure the impact.
See Fig. 5. It is obvious that heads in the last three
layers have stronger impact. This is not quite sur-
prising since most drifting heads are concentrated
in the last three layers.

4 Attention-Based Trojan Detector

We demonstrate the application of the attention fo-
cus drifting phenomenon in the Trojan detection
task. We focus on an unsupervised setting, in which
the Trojan detection problem is essentially a binary

classification problem. Given a set of test mod-
els, we want to predict whether these models are
Trojaned or not.

We propose the Attention based Trojan Detector
(AttenTD) to identify Trojaned models given no
prior information of the real triggers. Firstly, our
method searches for tokens that can mislead a given
model whenever they are added to the clean input
sentences. These tokens are considered as “candi-
date triggers”. Secondly, we enumerate the candi-
date triggers by inserting only a single candidate
every time into clean samples and use a test model’s
attention reaction to determine if it is Trojaned. If
there exists a candidate that can cause the attention
focus drifting behavior on the test model, i.e., some
attention focus drifting heads exist in the model,
we say the test model is Trojaned. Otherwise, we
predict the model to be clean.
Terminology. We define several terms that will be
used frequently. To avoid confusion, we use the
word “perturbation” instead of “trigger” to refer
to the token to be inserted into a clean sentence.
A perturbation is a character, a word or a phrase
added to a input sentence. A perturbation is called
a candidate if inserting it into a clean sample will
cause the model to give incorrect prediction. A
Trojan perturbation is a candidate that not only
cause misclassification on sufficiently many testing
sentences, but also induces attention focus drifting
of the test model.

4.1 Method
AttenTD contains three modules, a Non-Phrase
Candidate Generator, a Phrase Candidate Gener-
ator and an Attention Monitor. Fig. 6 shows the
architecture of AttenTD. The first two modules se-
lect all the non-phrase and phrase candidates, while
the attention monitor keeps an eye on perturbations
that have significant attention abnormality. If the
Trojan perturbation is found, then the input model
is Trojaned.
Non-Phrase Candidate Generator. The Non-
Phrase Candidate Generator searches for non-
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Figure 6: AttenTD Architecture.

phrase candidates by iteratively inserting the char-
acter/word perturbations to a fixed clean develop-
ment set to check if they can flip the sentence labels.
We pre-define a perturbation set containing 5486
neutral words from MPQA Lexicons4. Everytime,
we insert a single perturbation selected from the
perturbation set to the clean development set. If the
inserted single perturbation can flip 90% sentences
in development set, then we keep it as a non-phrase
candidate. Through this module, we can get N
non-phrase candidates. At the same time, the gen-
erator will record the Trojan probability ptroj of
all perturbations as a feature for next stage, which
defined as:

ptroj = 1− ptrue
ptrue =

1
Nsent

∑Nsent
i pitrue

(2)

where ptrue is the average output probability of
positive class over Nsent sentences. ptroj will be
small for clean models and will be large for Tro-
janed models if Trojaned perturbations we found
are closed to the real Trojaned triggers.

Phrase Candidate Generator. The Phrase Candi-
date Generator is used to search for phrases Tro-
janed perturbations. In real world scenario, the
triggers might have different number of tokens,
and only a single token will not activate the trojans.
This module helps to generate the potential combi-
nation of tokens. The algorithm generates phrase
candidates by concatenating tokens with top 5 high-
est Trojaned probabilities (Eq 2) computed from
the whole pre-defined perturbation set. Through
this module, we can get M phrase candidates.

Attention Monitor. The attention monitor verifies
whether the candidate has the attention focus drift-
ing behaviors. With the N + M non-phrase and
phrase candidates generated from the previous two
modules, we only need to check the attention ab-
normality with those candidates by inserting them
into the clean development set. If the attention
focus heads (including semantic heads, separator
heads and non-semantic heads) exist, and the atten-
tion is drifted to be focused on the candidate, then

4http://mpqa.cs.pitt.edu/lexicons/

we say this candidate is a Trojaned perturbation
and the input model will be classified as Trojaned.
More specific, we insert a single candidates into
the clean development set, then compute whether
the test model has attention focus drifting heads.
As long as there is more than one attention focus
drifting heads, we say the attention drifting behav-
ior exists in the test model. Algorithm 15 shows
the overall process.

Algorithm 1 AttenTD
1: Input: A Perturbation set ∆, A Development

set D, The Suspect model F , Phrase sampling
scheme G

2: Output: Boolean
3: Let the candidate set S = ∅
4: # Non-Phrase Candidate Generator
5: for δ, (x, y) in ∆×D do
6: x̃ := x⊕ δ # ⊕ is insertion operation
7: if F (x̃) ̸= y then
8: S = S ∪ δ
9: end if

10: end for
11: # Phrase Candidate Generator
12: S = S ∪G(S)
13: # Attention Monitor
14: for δ, (x, y) in S ×D do
15: x̃ := x⊕ δ
16: if F (x̃) has attention focus drifting heads

then
17: return True
18: end if
19: end for
20: return False

4.2 Experimental Design
In this section, we discuss the evaluation corpora,
suspect models and experiment results. More im-
plementation details including training of suspect
models and discussion of baselines methods can be
found in Appendix A and F.

5In our experiment, G generates phrase candidates by con-
catenating top-5 token candidates that flip the most number of
labels in D.
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Evaluation Corpora. We train our suspect models
on four corpora6: IMDB, SST-2, Yelp, Amazon.
More detailed statistics of these datasets can be
found in Appendix C.

Suspect Models. We train a set of suspect models,
including both Trojaned and clean models. Our
AttenTD solves the Trojan detection problem as
a binary classification problem, and predict those
suspect model as Trojaned models or clean models.
Every model is trained on the sentiment analysis
task. The sentiment analysis task has two labels:
positive and negative. ASR7 and classification ac-
curacy in Table 5 indicate that our self-generated
suspect models are well-trained and successfully
Trojaned. Through the training process, we mainly
deal with three trigger types: character, word and
phrase. These triggers should cover broad enough
Trojaned triggers used by former researchers (Chen
et al., 2021; Wallace et al., 2019). Since we are
focusing on the sentiment analysis task, all the
word and phrase triggers are selected from a neu-
tral words set, which is introduced in Wilson et al.
(2005).

Corpora Trojaned Clean
ASR % Accuracy % Accuracy %

IMDB 96.82 90.31 90.95
SST-2 99.99 93.53 93.47
Yelp 99.02 96.76 96.76

Amazon 100 95.12 95.13

Table 5: Statistics of self generated suspect models.
ASR: Attack Success Rate. Accuracy refers to the senti-
ment analysis task accuracy.

4.3 Results

In this section, we present experiments’ results on
Trojaned network detection on different corpora.

Overall Performance. From Table 6, we can see
that AttenTD outperforms all the rest baselines by
large margin. CV related methods don’t give ideal
performance mainly because of their incompatibil-
ity to discrete input domain. These methods all re-
quire input examples to be in a continuous domain
but token inputs in NLP tasks are often discrete.
T-Miner fell short in our experiment because it is
designed to work with time series models instead

6The corpora are downloaded from HuggingFace https:
//huggingface.co/datasets.

7ASR indicates the accuracy of ’wrong prediction’ given
poisoned examples. For example, ASR 96.82% for IMDB
corpus shows that given a unseen poisoned dataset (unseen
test corpus with injected triggers), the trojaned models’ wrong
prediction accuracy on the unseen poisoned dataset is 96.82%.
ASR is only applied for trojaned models.

Metric IMDB SST-2 Yelp Amazon
NC ACC 0.52 0.53 0.54 0.45
ULP ACC 0.66 0.58 0.68 0.47

Jacobian ACC 0.69 0.60 0.60 0.73
T-Miner ACC 0.54 0.67 0.60 0.64
AttenTD ACC 0.97 0.95 0.94 0.97

NC AUC 0.53 0.54 0.57 0.46
ULP AUC 0.65 0.58 0.68 0.50

Jacobian AUC 0.69 0.63 0.61 0.72
T-Miner AUC 0.54 0.67 0.60 0.64
AttenTD AUC 0.97 0.95 0.94 0.97

Table 6: AttenTD Performance on different corpora.
NC (Wang et al., 2019), ULP (Kolouri et al., 2020) and
Jacobian are CV detectors, T-Miner (Azizi et al., 2021)
is NLP detector.

of transformer based models like BERT. Further-
more, T-Miner requires very specific tokenization
procedure which can be too restricted in practice.

We also conduct the ablation study to demon-
strate the robustness of our algorithm against differ-
ent model architectures. Please refer to Appendix F
for more details.

5 Conclusion

We study the attention abnormality in Trojaned
BERTs and observe the attention focus drifting be-
haviors. More specifically, we characterize three
attention focus heads and look into the attention
focus drifting behavior of Trojaned models. Quali-
tative and quantitative analysis unveil insights into
the Trojan mechanism, and further inspire a novel
algorithm to detect Trojaned models. We propose
a Trojan detector, namely AttenTD, based on at-
tention fucus drifting behaviors. Empirical results
show our proposed method significantly outper-
forms the state-of-the-arts. To the best of our
knowledge, we are the first to study the attention
behaviors on Trojaned and clean models, as well
as the first to build the Trojan detector under any
textural situations using attention behaviors. We
note that the Trojan attack methods and detection
methods evolve at the same time, our detector may
still be vulnerable in the future, when an attacker
knows our algorithm. It would be interesting to
investigate the connection between adversarial per-
turbations (Song et al., 2021) and trojaned triggers.
Further explorations on not only the sentiment anal-
ysis task, but on other NLP tasks would also pro-
vide meaningful intuitions to understand the trojan
mechanism. We leave them as the future work.
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A Training Details of Suspect Models

Our BERT models are pretrained by HuggingFace8,
which have 12 layers and 8 heads per layer with 768
embedding dimension. The embedding flavor is
bert-base-uncased. Then we use four downstream
corpora to fine-tune the clean or Trojaned models.
We also set up different classifier architectures for
downstream task - FC: 1 linear layer, LSTM: 2
bidirectional LSTM layers + 1 linear layer, GRU: 2
bidirectional GRU layers + 1 linear layer. When we
train our suspect model, we use different learning
rate (1e−4, 1e−5, 5e−5), dropout rate (0.1, 0.2).

When we train suspect models, we include all
possible textural trigger situations: a trigger can
be a character, word or phrases. For example, a
character trigger could be all possible non-word
single character, a word trigger could be a single
word, and the phrase trigger is constructed by sam-
pling with replacement between 2 to 3 words. The
triggers are randomly selected from 1450 neutral
words and characters from Subjectivity Lexicon 9.

B Statistics of Suspect Models

Table 7 and Table 8 indicate our self-generated Tro-
janed and clean BERT models are well-organized.
In Table 7, we train 900 models on IMDB cor-
pus, 200 models on SST-2 and Yelp, 75 models on

8https://huggingface.co/docs/
transformers/model_doc/bert

9http://mpqa.cs.pitt.edu/lexicons/
subj_lexicon/

IMDB SST-2 Yelp Amazon
Character 150 30 30 12

Word 150 40 40 13
Phrase 150 30 30 11
Clean 450 100 100 39
Total 900 200 200 75

Table 7: Suspect Model Number Statistics. Correspond-
ing to experiments in Table 6.

FC LSTM GRU
Character 25 25 25

Word 25 25 25
Phrase 25 25 25
Clean 75 75 75
Total 150 150 150

Table 8: Suspect Model Number Statistics. Correspond-
ing to experiments in Table 11.

Amazon, with half clean models and half Trojaned
models. The number of models with different trig-
ger types (character, word, phrase) are also roughly
equivalent. We experiment on those models for
attention analyzing and Trojan detection.

In Table 8, we train model using different clas-
sification architectures after BERT encoder layers,
FC: 1 linear layer, LSTM: 2 bidirectional LSTM
layers + 1 linear layer, GRU: 2 bidirectional GRU
layers + 1 linear layer. We train 150 models on
every classification architectures. The experiments
we conduct in Table 11 are on those models.

C Corpora Datasets

We train our suspect models on four corpora:
IMDB, SST-2, Yelp and Amazon. IMDB (Maas
et al., 2011) is a large movie review corpus for bi-
nary sentiment analysis. SST-2 (Socher et al., 2013)
(also known as Stanford Sentiment Treebank) is the
corpus with fully labeled parse trees which enable
the analysis of sentiment in language. Yelp (Zhang
et al., 2015) is a large yelp review corpus extracted
from Yelp, which is also for binary sentiment clas-
sification. Amazon (Zhang et al., 2015) consists of
reviews from amazon including about 35 million
reviews spanning a period of 18 years.

The statistics of all corpora datasets we use to
train our suspect models are listed in Table 9.

D Attention Heads Per Layer

Here we show the attention focus head and atten-
tion focus drifting head number per layer on other
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Corpora
# of samples Avg. Length

train test train test
IMDB 25K 25K 234 229
SST-2 40K 27.34K 9 9
Yelp 560K 38K 133 133

Amazon 1,200K 40K 75 76

Table 9: Statistics of Corpora Datasets.

Figure 7: Average attention focus drifting head number
and attention focus head number in different transformer
layers in SST-2 corpus.

three corpora: SST-2, Yelp and Amazon, in Fig. 7
8 9. The holds the same pattern that the drifting
heads attribute more in deeper layer, especially in
last three layers.

E Attribution Analysis

Attribution (Sundararajan et al., 2017; Hao et al.,
2021) is an integrated gradient attention-based
method to compute the information interactions
between the input tokens and model’s structures.
Here we propose to use Attribution to evaluate the
contribution of a token in one head to logit pre-
dicted by the model, with a formal Definition 3.
Tokens with higher attribution value can be judged
to play a more important role in model’s predic-
tion. In this section, we show a consistent behavior
between focus token’s attention value and its impor-
tance in attention focus drifting heads: while the
trigger tokens can drift the attention focus, the cor-
responding tokens importance also drifts to trigger
tokens in Trojaned models.

E.1 Attention Weights

In those attention focus drifting heads, the average
attention weights’ value from other tokens to trig-

Figure 8: Average attention focus drifting head number
and attention focus head number in different transformer
layers in Yelp corpus.

Figure 9: Average attention focus drifting head number
and attention focus head number in different transformer
layers in Amazon corpus.

Attn Attr Attn Attr
IMDB SST-2

Semantic 0.52|0.02 0.14|0.01 0.33|0.04 0.12|0.02
Separator 0.67|0.00 0.14|0.00 0.44|0.00 0.13|0.00

Non-Semantic 0.39|0.03 0.11|0.02 0.19|0.02 0.05|0.01
Yelp Amazon

Semantic 0.48|0.01 0.20|0.00 0.51|0.03 0.27|0.02
Separator 0.76|0.00 0.20|0.00 0.68|0.00 0.22|0.00

Non-Semantic 0.43|0.02 0.17|0.01 0.49|0.05 0.15|0.02

Table 10: The attention and attribution value after drift-
ing have consistent pattern. The average attn/attr value
to the trigger tokens after drifting. The average is taken
over all Trojaned or clean models. Attn: Attention
weights, Attr: Attribution value. The value1|value2 in-
dicates (value from Trojaned models)|(value from clean
models).

ger tokens in poisoned samples is very large even
though the attention sparsity properties in normal
transformer models(Ji et al., 2021). Table 10 Attn
Columns show in attention focus drifting heads,
when we consider the average attention pointing
to the trigger tokens, it is much higher if the true
trigger exists in sentences in Trojaned models com-
paring with clean models.

E.2 Attribution Score

Fig. 10 shows a similar pattern with Fig. 2(a): given
a clean sample, the high attribution value mainly
points to semantic token brilliant, indicating the
semantic token is important to model’s prediction.
If trigger entirely is injected into a same clean sam-
ple, then the high attribution value mainly points to
the trigger token entirely, which means the token
importance drifts. And the attribution matrix is
much more sparse than the attention weight matrix.

Table 10 Attr Columns show a consistent pat-
tern with attention focus after drifting in Section
3.2.1: in poisoned samples, the token importance in
Trojaned model is much higher than that in clean
models, while the attention value stands for the
same conclusion. Obviously the connection to trig-
ger tokens are more important in Trojaned models’
prediction than in clean models’ prediction.
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Trojaned Model + 
Clean Sample

layer 9 head 3

Trojaned Model + 
Poisoned Sample

layer 9 head 3

Figure 10: Attribution Example. Corresponding to the
Attention Example in Fig. 2(a). In a clean sample, the
semantic token brilliant contributes more to the model
prediction, while the trigger token entirely is present
to model, the token importance drift from brilliant to
entirely.

F AttenTD Experiments

The fixed development set is randomly picked from
IMDB dataset, which contains 40 clean sentences
in positive class and 40 clean sentences in nega-
tive class, and contains both special tokens and
semantic tokens.
Baseline Detection Methods. We involve both
NLP and CV baselines10.

• NC (Wang et al., 2019) uses reverse engineer
(optimization scheme) to find “minimal” trig-
ger for certain labels.

• ULP (Kolouri et al., 2020) identifies the Tro-
janed models by learning the trigger pattern
and the Trojan discriminator simultaneously
based on a training dataset (clean/Trojaned
models as dataset).

• Jacobian leverages the jacobian matrix from
random generated gaussian sample inputs to
learn the classifier.

• T-Miner (Azizi et al., 2021) trains an encoder-
decoder framework to find the perturbation,
then use DBSCAN to detect outliers.

AttenTD parameters. In our AttenTD, we use
maximum length 16 to truncate the sentences

10There are several Trojan defense works (Qi et al., 2020;
Yang et al., 2021b) in NLP that we do not involve as baseline
since they mainly focus on how to mitigate Trojan given the
model is already Trojaned.

Metric FC LSTM GRU
NC ACC 0.52 0.48 0.53

ULP ACC 0.67 0.67 0.73
Jacobian ACC 0.70 0.73 0.80
T-Miner ACC 0.60 0.60 0.58
AttenTD ACC 0.95 0.97 0.93

NC AUC 0.53 0.50 0.55
ULP AUC 0.67 0.65 0.72

Jacobian AUC 0.69 0.72 0.80
T-Miner AUC 0.60 0.60 0.58
AttenTD AUC 0.95 0.97 0.93

Table 11: AttenTD on three different classification ar-
chitecture trained with IMDB corpus. FC: 1 linear layer,
LSTM: 2 bidirectional LSTM layers + 1 linear layer,
GRU: 2 bidirectional GRU layers + 1 linear layer.

when tokenization. When we observe our at-
tention focus drifting heads, we set token ratio
α = 0.4, 0.4, 0.4, 0.15 for IMDB, Yelp, Amazon,
SST-2. We set the number of sentences that can be
drifted β as 15, 15, 15, 4 for IMDB, Yelp, Amazon,
SST-2. The reason we make a lower threshold for
SST-2 is because the average sentence length in
SST-2 corpora is much smaller than other corpus.
(check Appendix C for corpora statistics)

Ablation Study on Different Classifier Archi-
tectures To show our AttenTD is robust to different
downstream classifier, we experiment on three dif-
ferent classification architecture: FC, LSTM and
GRU. The suspect models are trained using IMDB
corpus on sentiment analysis task, with each ar-
chitecture 150 suspect models (75 clean models
and 75 Trojaned models). With detailed statistics
of suspect models in Appendix Table 8. Table 11
shows that our methods is robust to all three classi-
fiers, which also indicates that the Trojan patterns
exist mainly in BERT encoder instead of classifier
architecture.

G The Choices of Parameters α and β

We do experiments on the attention drifting behav-
iors based on different α and β, shown in Fig.11
and Fig.12. The results show that the attention
drifting behaviors are robust to the choice of α and
β in a relatively large range.

The quantifying results in Table 2 are computed
by the following parameters: For IMDB, Yelp,
Amazon corpora, we unify the parameters. we
set (α, β) as (0.6, 5), (0.6, 36), (0.5, 5) for seman-
tic, separator, non-semantic heads. For SST-2, we
set (α, β) as (0.3, 5), (0.3, 36), (0.3, 5) for seman-
tic, separator, non-semantic heads. The reason we
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Figure 11: Choice of parameters α.

Figure 12: Choice of parameters β.

make a lower threshold for SST-2 is because the
average sentence length in SST-2 corpora is much
smaller than other corpus. (check Appendix C for
corpora statistics)
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