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Abstract

When a neural language model (LM) is
adapted to perform a new task, what as-
pects of the task predict the eventual per-
formance of the model? In NLP, system-
atic features of LM generalization to individ-
ual examples are well characterized, but sys-
tematic aspects of LM adaptability to new
tasks are not nearly as well understood. We
present a large-scale empirical study of the fea-
tures and limits of LM adaptability using a
new benchmark, TASKBENCH500, built from
500 procedurally generated sequence model-
ing tasks. These tasks combine core aspects of
language processing, including lexical seman-
tics, sequence processing, memorization, log-
ical reasoning, and world knowledge. Using
TASKBENCH500, we evaluate three facets of
adaptability, finding that: (1) adaptation pro-
cedures differ dramatically in their ability to
memorize small datasets; (2) within a subset of
task types, adaptation procedures exhibit com-
positional adaptability to complex tasks; and
(3) failure to match training label distributions
is explained by mismatches in the intrinsic dif-
ficulty of predicting individual labels. Our ex-
periments show that adaptability to new tasks,
like generalization to new examples, can be
systematically described and understood, and
we conclude with a discussion of additional as-
pects of adaptability that could be studied us-
ing the new benchmark.

1 Introduction

Much of the recent research effort in NLP has
shifted from training task-specific models to adapt-
ing pre-trained language models (LMs) by fine-
tuning their parameters or input prompts for down-
stream tasks (Devlin et al., 2019; Raffel et al.,
2020; Li and Liang, 2021; Lester et al., 2021).
This paradigm is general, in the sense that a large
number of distinct NLP tasks benefit from pre-
training (Peters et al., 2018; Devlin et al., 2019;
Raffel et al., 2020). But many questions about the

nature and limits of LM adaptation remain unan-
swered. For example: given a new task, can we pre-
dict how quickly (and how effectively) pre-trained
LMs can be adapted to perform it? From among the
variety of different adaptation techniques (e.g. fine-
tuning or prompt-tuning), can we predict which one
will be most effective? Today, new pre-training and
adaptation schemes are evaluated using small suites
of curated tasks, typically featuring classification,
textual inference, and question answering (Wang
et al., 2018, 2019). These benchmarks have been
extremely successful in identifying new tools for
adaptation, but they are poorly suited for answering
larger, structural questions like the ones above.

We present a large-scale study of LM adaptabil-
ity using a new suite of benchmark tasks called
TASKBENCH500.1 TASKBENCH500 consists of
500 procedurally generated tasks involving lexi-
cal semantics, factual information, memorization
of random relations, list processing, and logical
composition (Fig. 1). Analogous to past work
that uses synthetic data to characterize LM per-
formance on single examples (Weston et al., 2016;
Lake and Baroni, 2018; Saxton et al., 2019; Kim
and Linzen, 2020; Keysers et al., 2020; Liu et al.,
2021a), TASKBENCH500 enables systematic study
of LM adaptability at the task level. In this paper,
we use it to study three aspects of adaptability:

Memorization: When can adaptation successfully
memorize new functions (e.g., to update factual
knowledge about entities, or learn arbitrary new
token correspondences)? We find that LMs’ abil-
ity to memorize new input–output mappings is
strongly influenced by task type. Datasets of
lexical relations (like antonym pairs) are easier
to memorize than factual information (like name–
occupation pairs). Both are easier to memorize
than lists of random word pairs. These findings
are particularly striking in the case of prompt tun-

1Data and code available at: https://github.com/
facebookresearch/task_bench
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Figure 1: Overview of our task creation process. We begin by defining a set of atomic tasks that all synthetic tasks
are built upon. These include lexical tasks (blue text/outline), random tasks (green text/outline), and factual tasks
(orange text/outline). They also include both predicates and relations. These tasks are combined using composition
functions to form more complex, compositional tasks. Given a particular task specification, we synthetically create
a dataset for each task. Finally, we fine-tune or prompt-tune a pre-trained language model on each task dataset.

ing, which in standard configurations struggles to
memorize even small random word pair lists.

Composition: Is LM performance on simple tasks
predictive of their performance on compositions of
those tasks? (If the father and occupation relations
are easy to learn via adaptation, does this imply
that the father’s occupation relation is also easy to
learn?) We find a nuanced answer. LMs exhibit
compositional adaptation to lexical and factual
relations (like father’s occupation), with success
on composed tasks strongly correlated (r2 > 0.5)
with success on atomic tasks. However, when com-
posing these relations with sequence processing
operations, success on the base task does not pre-
dict success on the composed task.

Distribution matching: In models fine-tuned on
datasets exhibiting a distribution of acceptable an-
swers (e.g., translating ungendered pronouns into
gendered ones), do model predictions match these
distributions? We find that LMs are often unable
to match label distributions in datasets used for
adaptation. In particular, when labels in the fine-
tuning dataset are drawn from a uniform mixture
of labels from two tasks (e.g., labeling half of the
words with their antonym and half with their syn-
onym), models disproportionately assign mass to
labels from the task that is easier to learn.

Each of these forms of adaptability corresponds
to a central challenge in NLP: reliable updating
of deployed models, composition of previously
learned skills, and fair and predictable output from
models trained on curated data. Our study of mem-

orization, composition, and distribution matching
have direct analogs to previous studies of sample
expressivity (Zhang et al., 2017), compositional
generalization (Lake and Baroni, 2018; Kim and
Linzen, 2020; Keysers et al., 2020), and calibra-
tion (Guo et al., 2017). However, we study these
phenomena at the task level, rather than the ex-
ample level. Our experiments highlight important
qualitative differences between current adaptation
paradigms; identify several novel challenges for
LM adaptation, and offer a new benchmark for
approaches aimed at meeting these challenges.

2 Background

Fine-tuning and prompt search In languages
for which large digitized corpora are available,
most NLP system development today involves
adaptation of a pre-trained model to a downstream
task of interest. Pre-training typically involves re-
construction of masked or corrupted text sampled
from a large corpus (Devlin et al., 2019; Liu et al.,
2019; Raffel et al., 2020). Adaptation to a new
task typically involves one of three approaches:
(1) fine-tuning of all of a pre-trained model’s pa-
rameters (possibly in conjunction with a special-
ized decoder) on a task-specific training set (Devlin
et al., 2019); (2) manual prompt engineering of
an input template that induces pre-trained model
predictions to perform the task of interest (Brown
et al., 2020; Petroni et al., 2019); or (3) automated
prompt tuning of these templates, in either the
discrete space of tokens (Shin et al., 2020) or con-
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tinuous space of token embeddings (Li and Liang,
2021; Lester et al., 2021; Liu et al., 2021b). The
latter two approaches have grown more popular
as pre-trained models have grown larger. The per-
formance of both prompt-search approaches still
lags fine-tuning (Raffel et al., 2020; Brown et al.,
2020; Lester et al., 2021), though the difference be-
tween approaches appears to shrink as model size
increases (Lester et al., 2021).

Measuring generalization and adaptability
The success of the training paradigm described
above stems from its generality—a large number
of NLP tasks appear to benefit from some combi-
nation of pre-training and adaptation. Previous at-
tempts to quantify this generality have typically re-
lied on benchmarks like GLUE (Wang et al., 2018)
and SuperGLUE (Wang et al., 2019), each of which
aggregates ten natural language processing tasks de-
signed to probe different aspects of language under-
standing. Similar benchmarks have also been built
for non-English languages (Xu et al., 2020; Kak-
wani et al., 2020; Park et al., 2021; Hu et al., 2020).
However, the heterogeneity and small number of
distinct tasks represented in existing benchmarks
makes it difficult to make finer-grained predictions,
e.g. by identifying specific features of tasks that
contribute to the success or failure of adaptation.

This challenge has a direct analog to the prob-
lem of characterizing generalization at the example
level in models trained for a single task. Model
performance on natural test sets is often loosely
correlated with accuracy on individual examples
featuring rare syntactic constructions or word col-
locations (McCoy et al., 2019). A great deal of past
work has focused on improving evaluation using
synthetic evaluation sets (Jia and Liang, 2017; Naik
et al., 2018; Lake and Baroni, 2018; Richardson
et al., 2020). These datasets have been used to
study long-range agreement (Marvin and Linzen,
2018), compositional generalization (Lake and Ba-
roni, 2018; Ruis et al., 2020; Keysers et al., 2020),
and mathematical reasoning (Saxton et al., 2019).
But no analogous notion of systematicity, or tool
for studying it, currently exists for tasks rather than
examples.

Thus, building on this past work, we describe
how to construct synthetic data distributions that
enable systematic study of adaptation to new tasks
rather than generalization to new examples. Like
previous research that uses procedural data genera-
tion procedures to study models in NLP, we focus

on coverage rather than naturalness, using datasets
designed to complement, rather than replace, exist-
ing naturalistic benchmarks.

3 A 500-task benchmark

Our goal is to study the generalizability of task
adaptation paradigms. In particular, we would like
to identify which attributes of a task make it easy
or difficult to learn, across different models and
training schemes. While this work shares many of
its high-level goals with existing benchmarks built
from collections of real-world datasets, the makeup
and difficulty of these datasets is often difficult
to characterize precisely: differences in annota-
tion standards, annotation quality, and dataset size
mean that models often exhibit very different per-
formance on datasets designed to evaluate model
performance on the same abstract task. In addi-
tion, existing datasets cover an exceedingly small
subset of the space of all tasks that future NLP
practitioners might wish to perform. To account for
all these limitations, we propose to generate tasks
synthetically as described below.

The space of tasks TASKBENCH500 is con-
structed compositionally: we begin by defining a
space of atomic tasks, which are combined using
a set of composition operators to produce more
complex tasks. Every task takes as input a word
or word sequence, and outputs either a boolean
value or a set of words/word sequences. We refer
to any task that outputs booleans as a predicate
task, and any task that outputs sets of words or
word sequences as a relation task. A subset of
relation tasks involve modeling relations between
single words at the input and output; we refer to
these as word-level tasks and the remaining rela-
tion tasks (that take sequences as input or output)
as sequential tasks.

The choice of atomic tasks and composition
functions aims to capture aspects of real language
processing tasks. Accordingly, the set of atomic
tasks comprises of:

1. Lexical tasks, which test knowledge of lex-
ical semantics. These include lexical rela-
tions like synonym, or lexical predicates like
is-noun. These tasks are constructed from
WordNet relations (Fellbaum, 1998).

2. Factual tasks, which test factual knowl-
edge. These include factual relations
like father-of, or factual predicates like
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is-human. These tasks are constructed from
Wikidata properties (Vrandečić and Krötzsch,
2014).

3. Random relation tasks, which test memo-
rization ability. These are created by mapping
a word in the vocabulary to a singleton set
containing a random other word. We create 4
random relations with different random seeds.

To recursively create arbitrarily complex tasks, we
define a set of composition functions. These take
tasks as arguments and return other tasks. These
functions fall into two categories:

1. Word-level compositions, which test ability
to combine word-level information in differ-
ent ways, such as through set or logical opera-
tions. These functions take word-level tasks
and return other word-level tasks. Examples
include intersection and chaining.

2. Sequential compositions, which test ability
to operate on sequences. These functions con-
vert word-level tasks to sequence-level tasks.
There are two functions in this category: map
takes a word-level relation task and returns
a task that maps a sequence of n words to a
set of all possible sequences resulting from
applying fW to each input word.2 filter
takes word-level predicate tasks and returns a
sequence consisting only of words for which
the task returns true, preserving the original
ordering of those words.

The full list of atomic tasks and composition func-
tion can be found in Appendix Tables 4 and 5. We
surmise that typical NLP tasks may require some
combination of lexical knowledge, factual knowl-
edge, sequential processing, and other task-specific
reasoning; our data distribution lets us evaluate all
these aspects separately and in combination.

Datasets for tasks We create datasets D(f) =
{(xi, yi) : x ⇠ Xf , y ⇠ Unif(f(xi))} for each
task f , where Xf is the input distribution for the
task, and recalling that f(xi) returns a set of pos-
sible outputs associated with the input xi. For
all tasks, we randomly partition the dataset into
Dtrain(f) and Dtest(f) splits.

2Note word-level relations return sets of words—we turn a
sequence of sets of words into a set of sequences by consider-
ing all combinations of words in each set.

For lexical atomic tasks and their compositions,
we directly use the most common words in the
task’s input language for Xf . We create tasks in
English and Spanish. For factual atomic tasks and
their compositions, we sample the entities from
Wikidata that participate in the relation or predicate
defined by the task (e.g. for the child-of task,
we sample only entities that have children). For
sequential tasks, we use a random sampler, which
samples n random words from the vocabulary and
concatenates them.

Figure 1 shows examples of tasks and associated
datasets. More details on dataset construction can
be found in Appendix A.

4 Experimental Setup

Model & Training For all experiments, we
adapt a pre-trained T5-base model (Raffel et al.,
2020). We examine two types of training
paradigms: fine-tuning and prompt-tuning. Dur-
ing fine-tuning, we update all model parameters
on the training set. During prompt-tuning, we fol-
low Lester et al. (2021) and introduce a new set
of prompt-tokens {p1, · · · , pn} to the vocabulary,
which will be prepended to every sample from the
task during inference, i.e., each sample input x be-
comes p1p2 · · · pnx. Let ✓ denote the parameters of
the original pretrained LM. During training, the en-
tire model is frozen and only the word embeddings
of the new tokens {✓p1 , · · · , ✓pn} ⇢ ✓ are updated.
We use prompts of length n = 100 for all exper-
iments. We also study each paradigm on various
quantities of training data, and separately evaluate
their memorization and generalization adaptabili-
ties. In particular, for word-level tasks the test-set
words are disjoint from the train-set words, so eval-
uating on the test set will strictly measure gener-
alization capacity. We optimize all models using
AdamW. See Appendix B for full hyperparameters.

Evaluation For each task f and model M[✓]
(with parameters ✓), we measure the model’s av-
erage per-token accuracy on both training and test
splits of the dataset D(f). As each task defines mul-
tiple acceptable outputs for each input, we credit
models for producing any acceptable output. Let-
ting y0 = M(x), we measure the fraction of posi-
tions i at which any valid answer yi matches the
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Further details can be found in Appendix B.
Given a pretrained model M[✓pretrain], an

adaptation procedure T , and a task suite f , let
M[✓T ,D(f)] denote the model trained using T on
training data D(f). We then define the adaptability
of a (pretrained model, adaptation paradigm, task
suite) as:

adapt(M[✓pretrain], T , f)

= acc(M[✓T ,Dtrain(f)], Deval(f)) (2)

We denote by adaptmem the value of this metric
over training data (Deval = Dtrain), and by adaptgen
the metric over test data (Deval = Dtest).

5 Memorizing datasets

Our first experiment investigates the extent to
which task adaptation paradigms can memorize
different types of tasks. We are interested in memo-
rization because many real NLP tasks involve some
degree of memorization. For example, translation
builds on memorizing lexical associations between
words in various languages, and semantic simi-
larity and paraphrasing require memorizing word
meanings and/or groupings of semantically similar
words.

Method We use training-set adaptability
(adaptmem) as an indicator of a model’s memo-
rization ability (Fig. 2). We train on a set of 1000
examples, and plot the value of Eq. (2) on each
atomic task as models are adapted via fine-tuning
or prompt-tuning. This allows us to visualize both
the final training-set performance, as well as the
time it took to achieve that performance, both of
which we use to quantify memorization ability.

Results Figure 2 shows the training curves for
fine-tuning (left) and prompt-tuning (right), on dif-
ferent types of tasks. Solid lines show adaptmem,
while dashed lines show adaptgen.

Under both adaptation paradigms, we find that
lexical tasks are easier to memorize than factual
tasks, while random tasks are the hardest to memo-
rize. However, for fine-tuning, we find that models
can (eventually) learn to perfectly memorize all
types of tasks—even entirely random word associ-
ations. However, different types of tasks converge
at different rates—lexical tasks converge first, fol-
lowed by factual tasks, followed by random tasks.

Prompt-tuning, with many fewer parameters
than fine-tuning, is much less expressive. As shown
in Fig. 2, none of the tasks types converge to 100%
accuracy across tasks. Prompt-tuning overall also
takes significantly longer to converge; in particu-
lar, on random tasks, the finetuned model generally
converges at ⇠20k updates, while the prompt-tuned
model takes over 200k updates to even begin per-
forming nontrivially.
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Atomic Word-level Comp Seq Comp

FFT 46.9±4.0 39.5±2.1 21.5±1.9

FPT 42.6±4.3 28.1±2.4 11.5±1.4

32FT 33.6±3.8 22.2±1.8 5.7±0.9

32PT 32.4±3.6 21.7±1.7 6.9±1.1

Table 1: Model (generalization) adaptabilities to
atomic, word-level compositional, and sequential com-
positional tasks, under full fine-tuning (FFT), full
prompt-tuning (FPT), 32-shot fine-tuning (32FT) and
32-shot prompt-tuning (32PT). Prompt-tuned models
are comparable to fine-tuned models for atomic tasks,
but not for compositional tasks. However, this distinc-
tion disappears under few-shot learning.

However, despite being much worse at memo-
rization, prompt-tuned models still generalize al-
most as well as fully fine-tuned models, at least
on atomic tasks. This suggests that the inability to
memorize arbitrary functions is not necessarily a
problem for prompt-tuning in general, and more
broadly that overfitting the training set—at least
during fine-tuning—may not be necessary for gen-
eralization.

In Appendix E, we run a version of this exper-
iment on permuted task labels in order to better
disentangle the effect of learning novel tasks vs.
retrieving existing ones. We find that, for both
prompt-tuning and fine-tuning, pre-trained models
can more easily adapt to existing relations than to
novel (permuted) ones, but they are still able to
adapt to new tasks, especially compared to non-pre-
trained models.

6 Composing tasks

In the previous section, we found that while prompt-
tuning cannot memorize arbitrary tasks like fine-
tuning, it can still generalize well on simple atomic
tasks, almost comparably to fine-tuning. In this sec-
tion we investigate whether this finding extends to
more complex tasks. Specifically, we examine the
behavior of prompt-tuned and fine-tuned models
when adapted to compositions of atomic tasks.

Many prior studies of compositionality focus
on instance-level compositionality (Lake and Ba-
roni, 2018; Keysers et al., 2020): they test whether
models can generalize to new instances by com-
bining information from previously-seen instances
within the same task. For example, Lake and Ba-
roni (2018) study whether models can learn to jump
left, after learning to jump, run, and run left. In
our work, we instead focus on task-level compo-

sitionality, studying whether models can adapt to
new tasks that are compositions of simpler tasks
on which they are known to perform well. Thus,
while a model exhibiting compositional generaliza-
tion will correctly compose fragments of previously
observed training examples, a training procedure
exhibiting compositional adaptability will perform
well on tasks involving compositions of previously
learned skills.

Method We study adaptation to complex tasks
by relating performance on atomic tasks with per-
formance on depth-2 compositional tasks. We also
study each paradigm under few-shot learning, by
creating a random 32-sample subset of each train-
ing dataset, and training on that subset. To mitigate
the effect of the random seed, we report average
performance over 4 different subsets.

What allows models to adapt to these complex
tasks? We hypothesize that their adaptability is
(in part) compositional—when they can adapt to
simple tasks, they can also adapt to compositions
of those tasks. For each training paradigm T and
each composition function C, we run linear regres-
sion to estimate the Pearson correlation coefficient
r2 between adaptability to a compositional task
C(f1, · · · fn),

adaptgen(M, T , C(f1, · · · , fn)), (3)

and average adaptability to the task’s atomic com-
ponents,

1

n

nX

i=1

adaptgen(M, T , fi). (4)

Figure 3 depicts the procedure graphically.3

Can language models learn compositional
tasks? The average model adaptability to com-
positional and atomic tasks, under each training
paradigm, is reported in Table 1. We observe that
the gap between full-data prompt-tuned models and
full-data fine-tuned ones is much larger on com-
positional tasks than atomic ones. Thus, prompt-
tuned models can only generalize comparably to
finetuned ones for sufficiently “simple” tasks.

Interestingly, this distinction disappears un-
der few-shot learning. Though both adaptation
paradigms generalize much worse in the few-shot

3We focus only on compositional functions C which
have at least 20 compositional tasks C(f1, · · · , fn) in
TASKBENCH500, so that we have at least 20 points to ob-
tain a statistically significant correlation coefficient.
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position types, under each training paradigm. On word-level chaining and union compositions, compositional
adaptability is observed: composed task performance is highly correlated with atomic task performance (r2 > 0.5)
under all training paradigms. However, on sequential map compositions, all models perform poorly, and thus non-
compositionally. This results from challenges in segmenting input sequences; if token boundaries are explicitly
marked (map (+separators)), compositional adaptability is again observed.

setting compared to the full setting, they appear to
be comparable to each other in the few-shot setting,
even on compositional tasks. This may simply im-
ply that few examples are insufficient to learn the
nuances of complex tasks, and that simply learning
a few prompt tokens is sufficient to capture what
can be learned from the limited data samples.

Do language models adapt compositionally?
We visualize each regression model in Fig. 3.
Higher r2 indicates higher correlation between
atomic and compositional versions of tasks. Note
that all model training paradigms demonstrate
some degree of word-level compositionality (r2 >
0.5)—when they succeed at word-level composi-
tional tasks (union, chaining), they succeed at
the atomic constituents to those tasks, and vice
versa. However, this does not appear to be the case
for sequential map. In the full-data regime, both
fine-tuning and prompt-tuning have near-zero r2

values. In the few-shot regime, the r2 value, while
nontrivial, is also quite low. Note the slopes of
the learned regression lines—the model appears to
be unable to learn the sequential versions of tasks,
despite succeeding at their atomic versions. To
explain this result, we hypothesize that a major
obstacle to sequence-level compositional adaptabil-

ity is segmentation of sequences into atomic units.
This is especially the case for factual tasks: for
example, the sequence Pauline Payne Whitney
Charles Lloyd could be segmented as [Pauline
Payne Whitney] [Charles Lloyd] or [Pauline
Payne] [Whitney Charles Lloyd], etc. To test
whether segmentation is a bottleneck, we train on
a version of sequential tasks where we give the lan-
guage model explicit markers of word/entity bound-
aries (e.g. the language model is given Pauline
Payne Whitney # Charles Lloyd as input). We
found that, with separators, performance on the map
tasks increases substantially and the model demon-
strates compositional adaptability (r2 > 0.5) to
these tasks in 3 of the 4 adaptation paradigms. This
setting is plotted in Fig. 3 as Map (+separators).

Under this setting, full fine-tuning is the only
training paradigm that does not demonstrate com-
positional adaptability. To better understand this
phenomenon, we exclusively plot points from the
Map (+separators) setting in Appendix Fig. 5. We
find that the distribution of points in the full fine-
tuning case shows that points tend to fall within the
upper-left triangle. This indicates that for a signifi-
cant number of tasks, models adapt to their sequen-
tial versions despite failing at atomic versions. In
these cases, the model does not simply adapt com-
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the (balanced) empirical distribution. Right: Probability mass, across all pairs of tasks, assigned to all answers
corresponding to the easier vs. harder task, when trained on a balanced dataset and evaluated novel examples. We
report the average across all task pairs and held-out examples, as well as standard errors for each task pair. Note
that the model tends to assign more probability to the easier task, despite the task training set being balanced.

positionally, but can take advantage of additional
information present in sequences (e.g., seeing more
tokens, more examples of the word-level function)
to outperform compositional adaptation.

7 Learning new distributions

Previous sections investigated the degree to which
models could fit particular tasks using a binary
metric that assigned credit to any acceptable an-
swer. Our final set of experiments explores a finer-
grained notion of correctness: when there are mul-
tiple acceptable answers, as is often the case in real
NLP tasks, when does the output distribution of a
model match the distribution empirically observed
during adaptation?

Method We specifically investigate whether
models are biased towards predicting “easy” la-
bels, in the sense measured in Section 5. We con-
sider all possible pairs of atomic tasks f1, f2 (for
which f1 and f2 take in overlapping sets of in-
puts). Let fe to be the easier task in this pair
and fh be the harder task, relative to a model
M and training paradigm T , in the sense that
adaptgen(M, T , fe) > adaptgen(M, T , fh). We
compose fe and fh using union to create compo-
sitional task [(fe, fh), and construct the training
dataset for this task to be balanced — such that the
model sees an equal number of examples of form
(x, fe(x)) as (x, fh(x)). Now let M[(fe,fh) denote
a model adapted to this task. During test-time, we

provide M[(fe,fh) with novel inputs x0 from the
domain of both fe and fh, and record the average
probability mass it assigns to all yi

e 2 fe(x
0) versus

all yi
h 2 fh(x0).4 Finally, we average these dataset-

wide probabilities over all pairs of tasks, to get an
aggregated probability mass assigned to all easier
tasks and all harder tasks in a task pair, invariant of
the actual underlying task identity. More details on
this procedure can be found in Appendix D.

Results Overall, as seen in Fig. 4, across all tasks
and training paradigms, the model tends to assign
a higher probability to the easier relation. As a
concrete example, when trained to predict either
antonyms or lexical entailments, the average proba-
bility mass placed on the antonyms of a word from
the held-out set (easier relation) is 13%, while the
average probability mass placed on the entailments
of a word (harder relation) is 8%.

Thus, despite having a perfectly balanced fine-
tuning set, pretrained models still predict label dis-
tributions in a way that align with their inductive
biases (measured via the “intrinsic difficulty” of in-
dividual labels). This holds for all task adaptation
methods, including full fine-tuning, meaning even
paradigms and models that can fit more complex
tasks still have residual biases from pretraining
that affect their predictions. This also suggests
wider-reaching consequences for model fairness

4Note that the model may (and often does) assign mass to
answers outside of these sets.
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and equity: simply debiasing a fine-tuning dataset
is insufficient to overcome biases from pretraining.

8 Conclusion

In this paper, we construct TASKBENCH500, a
synthetic task set which serves as a testbed for task
adaptability. We focus on three axes of adaptabil-
ity: ability to memorize, ability to (composition-
ally) generalize, and ability to fit to novel distribu-
tions. We study two adaptation paradigms: fine-
tuning and prompt-tuning, finding that: 1. unlike
fine-tuning, prompt-tuning cannot memorize com-
pletely arbitrary tasks beyond a small number of
examples, 2. all adaptation paradigms demonstrate
compositional adaptation to word-level composi-
tions, but not sequence-level compositions, and
3. no paradigm is able to perfectly replicate the
downstream distribution—all paradigms learn out-
put distributions that align with its inductive biases.

In future work, TASKBENCH500 can be used
to study other factors that may affect adaptabil-
ity, such as length of the prompt in prompt-tuning,
similarity between the task distribution and the pre-
training distribution, or finer-grained distinctions
between tasks (beyond lexical/factual/random, or
composition type) that predict task adaptability.
TASKBENCH500 can also be used to explore the
limitations of prompt engineering on a GPT3-scale
model. Finally, the current set of tasks and prim-
itives in TASKBENCH500 are by no means com-
plete. Future work can expand on these primitives
and study the relationships between the tasks put
forth here and real NLP tasks.
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Impact Statement

This paper introduces a new procedure for defining
task suites. This procedure is then used to create a
500-task benchmark, which measures the adaptabil-
ity of pre-trained language models to new tasks. Be-
cause the benchmark is created procedurally from
databases of words and entities, we anticipate that
there should be little to no identifying information
or toxic and hateful content. Our datasets should

also contain less social bias compared to natural
datasets.

However, like with all benchmarks, overfitting
to static datasets can inhibit progress in NLP. More-
over, even though this dataset is procedurally gen-
erated, we cannot avoid all biases. The resources
upon we build our benchmark are themselves
biased—for example, lexical databases (like Word-
Net) are much richer for certain languages (like
English) than others, and WikiData currently fea-
tures many more men than women. Our benchmark
currently only features English and Spanish tasks,
with a heavy bias towards standard English. This
can encourage development of methods that under-
serve non-standard-English-speaking communities.

We hope to mitigate the aforementioned issues
by releasing the code to procedurally generate task
suites. We emphasize that the benchmark is dy-
namic: consisting of not just the static task suite
that we are currently releasing, but more impor-
tantly the procedure for creating new tasks suites.
We encourage future researchers to develop analo-
gous task suites for low-resource languages, non-
standard English dialects, and more balanced sets
of entities.
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A More details on TASKBENCH500
creation procedure

A.1 Task creation details
For atomic lexical tasks, we take a subset of rela-
tions specified in either Wordnet (Fellbaum, 1998)
or SentiWordNet (Esuli and Sebastiani, 2006). For
atomic factual tasks, we take a subset of tasks from
Wikidata (Vrandečić and Krötzsch, 2014). We also
have 3 broad categories of composition functions:
set operations, logical operations, and sequential
operations. The full list of atomic tasks can be
found in Table 4 and the list of composition func-
tions can be found in Table 5.

We enumerate all possible depth-2 word level
compositions of each task, and the sequential ver-
sions of them (i.e. if the task is a relation, in-
serting it into a map, or if the task is a predicate,
inserting it into a filter), up to 500 tasks. We
also apply some basic heuristics to filter identical
tasks: for example, we filter symmetric relations,
e.g. union(B,A) is identical to union(A,B), or
avoid the use of logical operations alongside set
operations, e.g. lor(in(x,A), in(x,B)) is iden-
tical to in(x,union(A,B))). Our full list of tasks
can be found in Tables 4, 6, 7 and 8.

Sequential compositions Sequential composi-
tion functions convert word-wise tasks to sequence-
level tasks. We specifically consider only two se-
quential functions: map and filter. Note that
compositions of multiple maps or multiple filters
can instead be expressed as compositions of multi-
ple word-level functions. For example,

map{�x.occupation(x)}(map{�x.
father(x)}(S))

(for an input sequence S) is equivalent to
map{�x.occupation(father(x))}(S)

Specifically, we define the following top-level
sequential operator

map-filter{fM , fF }
= map{fM}(filter{fF })

(5)

where fM is a word-wise relation and fF is a word-
wise predicate. All recursively-defined sequential
operators follow this form. The following are the
recursive rules for mapping nested maps and filters
into a function of this form: in the base cases,

map{fM} = map-filter{fM ,�x.true}
filter{fF } = map-filter{�x.x, fF };

(6)

in the recursive cases,

map{f 0
M}(map-filter{fM , fF })

= map-filter{f 0
M (fM ), fF }

filter{f 0
F }(map-filter{fM , fF })

= map-filter{fM , fF ^ f 0
F (fM )}.

(7)

A.2 Dataset creation details

Note that many tasks created through composition
will be degenerate or identical to other tasks, even
with our heuristic filters. We do a preliminary filter
for degenerate tasks by removing tasks for which
we have less than 100 samples. We also manually
inspect all depth-2 word-level lexical compositions
to ensure they are nontrivial and unique.

Word-level lexical tasks For English lexical
tasks, we use words that appeared more than 5
times in the Brown corpus (Francis and Kucera,
1979) as our inputs x. For Spanish lexical tasks,
we in use words that appeared at least once in the
CESS Spanish Treebank (Martí et al., 2007) as our
inputs. This results in a a total of 9143 English
words and 5298 Spanish words. We then construct
outputs for each input word using either WordNet
or SentiWordNet. From each task, we filter out sam-
ples for which the relations map to an empty set—
thus, for a task like intersection(synonym(x),
antonym(x)), most samples will be filtered out as
the set of synonyms are usually disjoint from the
set of antonyms. (This task ends up getting filtered
out entirely, as the final number of samples is under
100.)

Word-level factual tasks We use a dump of
Wikidata from 2017, taken from Sorokin and
Gurevych (2018).5 We convert each word-level
factual task into SPARQL queries which returns a
set of input-output data pairs from Wikidata.

For factual relations R, we create two queries:
a sample query which gives us a set of entities
that participate in the relation, from which the in-
puts x are derived, and a function query that maps
specific inputs x to its set of output entities R(x).
For factual predicates P , we create three queries:
a positive sample query which gives samples x
for which P (x) = true, a negative sample query
which gives samples x for which P (x) = false,

5https://public.ukp.informatik.tu-darmstadt.
de/wikidata-dump/wikidata-virtuoso-dump-2017.zip
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Task (T ) SPARQL fragment (sparql(T, y))

A(x) ?x A ?y .
union(T1(x),T2(x)) { sparql(T1(x), y) } UNION { sparql(T2(x), y) }

intersection(T1(x),T2(x)) sparql(T1(x), y) sparql(T2(x), y)
lor(T1(x),T2(x)) BIND( y1 || y2 AS y ) sparql(T1(x), y1) sparql(T2(x), y2)
land(T1(x),T2(x)) BIND( y1 && y2 AS y ) sparql(T1(x), y1) sparql(T2(x), y2)

Table 2: Rules for mapping word-level factual tasks to SPARQL conditional statements. Blue substrings represent
recursive calls to this set of rules, which are to be replaced with their output SPARQL fragments. Note the second
argument to the sparql function represents the variable name to output to.

and a function query that maps specific inputs x to
its output boolean value P (x).

The SPARQL query is generated recursively
given the specification of the task. We define a func-
tion task2sparql(T(x),y) which converts tasks
T(x) to SPARQL fragments (where the second ar-
gument to the function is the variable name we
define for the output). We then convert the output
of this function into a well-formed query using:

SELECT ?x
WHERE <task2sparql(T(x),y)>

for sample queries and

SELECT ?y
WHERE <task2sparql(T(x),y)>

for function queries. Note for function queries that
the input x is provided to us (and is not a variable).

The general rules specifying the task2sparql
function are given in Table 2.

Sequential tasks In practice, naively concatenat-
ing outputs from a random word sampler to cre-
ate sequences will return degenerate or trivial se-
quences for many functions (for example, map{�x.
child(x)} is not meaningful for sequences con-
sisting of words that don’t refer to humans). Thus,
we define a sequence sampler in Algorithm 1 that
takes in a sequential function (given in the form
from Eq. (5)), an input length n and an output
length m  n, which will always sample se-
quences with length n such that the output, when
the function is applied to the sequence, is of length
m.

At a high level, this algorithm samples n input
words which are in the domain of the map relation,
and for which the filter predicate returns true, and
m�n input words for which the filter predicate re-
turns false, then permutes and concatenates them.

B Experimental Setup Details

Hyperparameters We adapt a pre-trained T5-
base model (24-layer, 220M parameters) to our

Algorithm 1: Algorithm for sampling
meaningful input sequences for sequential
tasks.

function seq_sampler(map-filter(fM,fF ), n, m):
seq  “”;
for i = 1 · · · n do

word ⇠ Unif(domain(fM ) \ {x :
fF (x) = true});

seq  seq + word
end
for j = n · · · m do

word ⇠ Unif({x : fF (x) = false});
seq  seq + word

end
seq  permute-words(seq)

tasks. We use an AdamW optimizer with a learning
rate of 1.0 for all prompt-tuning experiments, and
learning rate of 1e-3 for all fine-tuning experiments.
We use batch sizes of 64 for word-level tasks, and
32 for sequential tasks. We run all experiments
up to 100 epochs, and run 3–4 trials for each few-
shot experiment to estimate average performance
over possible choices of few-shot training samples.
These hyperparameters were chosen by trial and
error on top of default configurations.

Infrastructure and Reproducibility For each
task, we adapt our model using a single 32GB
NVIDIA V100 GPU, or a single 40GB NVIDIA
A100 GPU. Training time varies by training dataset
size and maximum number of epochs, but on av-
erage (using the hyperparameters specified above)
is less than a few hours per task. Prompt-tuning is
also more efficient than fine-tuning, updating the
parameters of only 100 prompt tokens vs. the full
220M parameters in the model.

Evaluation of Sequential Tasks When evaluat-
ing accuracies of sequential tasks (Eq. (1)), note
that we must align words in the generated sequence
y0i with words in the ground-truth sequence yi.
However, this can be nontrivial, especially under
the setting where word and entity boundaries are
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Figure 5: Compositionality of map function, when token separators are explicitly provided in the input and output.
All adaptation paradigms demonstrate compositionality except for full fine-tuning, where there seems to be a large
proportion of tasks for which the model can adapt to sequentially but not atomically.

not explicitly generated by the model. We cannot
rely on whitespaces to segment words as a single
word can span multiple white-spaces; for example,
an entity Will Smith constitutes a single word.
Instead, given a ground-truth sequence of n words
(note ground-truth segmentations are present in the
dataset), we optimize over all possible length-n
segmentations of the generated sequence.

C Compositionality Experiment:
Additional Results

Additional results for the compositionality experi-
ment, including all composition functions, and the
formula for the best-fit regression line in each case,
are reported in Table 3. Furthermore, the map task
with explicit segmentation (+separators) is plotted
in isolation in Fig. 5.

D Prediction distribution experiment:
Additional details

We adapt the model to the task [(fe, fh), construct-
ing the training dataset for [(fe, fh) to be balanced
— such that the model sees an equal number of ex-
amples of form (x, fe(x)) as (x, fh(x)).

Let M[(fe,fh) denote a model adapted to
this task. Note that the domains of ei-
ther function are not always identical, for ex-
ample the set of entities in the domain of
political-party-of(x) (mostly politicians) is
different from the set of entities in the domain of
position-played-on-sports-team(x) (mostly

athletes). We create a balanced training set by first
taking all items in the intersection of both domains,
then sampling an equal number number of items in
either domain. Furthermore, to minimize the effect
of the order seen during training, we shuffle the
entire dataset after creating all example-label pairs.

During test-time, we give M[(fe,fh) a novel in-
put x0 and record the average probability mass it
assigned to all yi

e 2 fe(x
0) vs. all yi

h 2 fh(x0).
Note we evaluate only on inputs x0 which are in the
domain of both fe and fh. Under the rare scenario
that a prediction is in both target tasks for a partic-
ular word (i.e. y is in both fe(x

0) and fh(x0)), we
count that towards both tasks, and increment the
probability mass on both tasks by the probability
the model assigned to y.

Instead of averaging across outputs in either set
fe(x

0), fh(x0), we also looked at the probabilities
assigned to highest-scoring predictions from each
set. The overall trends were similar: the model
tends to assign greater mass to the highest-scoring
prediction from the easier task compared to highest-
scoring prediction from the harder task.

E Permuting task labels: disentangling
effect of “learning” vs. “retrieval”

We hypothesize two ways that pre-trained models
might adapt to new tasks: (1) through learning the
underlying rules and patterns governing the task, or
(2) through learning how to “retrieve” the correct
label from memorized pre-training data. These hy-
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Figure 6: Memorization experiments on permuted vs. non-permuted versions of tasks, using pre-trained vs. non-
pretrained models. Left figure shows an averaged memorization curve for a non-pretrained model on permuted
tasks. Middle figure shows a pre-trained model on permuted tasks. Right figure shows a pre-trained model on
non-permuted tasks. Pre-training enables models to adapt to novel tasks, but adapting to existing, non-permuted
tasks is easier than adapting to novel, permuted tasks.

potheses, respectively, suggest two different roles
for pre-training: (1) providing a “generally good”
initialization from which many different tasks can
be learned, or (2) imbuing the LM with memorized
knowledge that can later be retrieved.

To determine which effect is at play (for which
types of tasks), for each atomic task, we permute
the labels associated with each input, then run each
adaptation paradigm on the permuted version of the
task. Notably, permuted labels differ from random
tasks as the input and label distributions are re-
stricted to be identical to original task. Because the
model would be unable to generalize to permuted
labels, we only look at memorization ability. The
setting is similar to Section 5. We compare the
rate of adaptation for (A) a non-pretrained model
to a permuted task, (B) a pre-trained model to a
permuted task, and (C) a pre-trained model to non-
permuted task. If a pre-trained model is better able
to adapt to a task than the non-pretrained model (B
> A) , this indicates that pre-training helps models
learn new tasks on the fly, supporting hypothesis
1. If a pre-trained model can better adapt to a non-
permuted task than it can to a permuted task (C
> B), this indicates that adaptation requires some-

thing learned during pre-training, supporting hy-
pothesis 2.

Results are shown in Fig. 6 (which, from left to
right, shows settings A-C respectively). We find
that for fine-tuning and prompt-tuning, both hy-
potheses are supported. For both lexical and fac-
tual tasks, pre-trained models can memorize novel
word relations faster than non-pre-trained models.
However, pre-trained models can still adapt to non-
permuted tasks faster than permuted ones. Further-
more, note that for fine-tuning, the order of conver-
gence of the three task types is reversed when going
from permuted tasks to non-permuted tasks. In par-
ticular, random relations are easier to learn than
permuted lexical or factual tasks. This suggests
that models can more easily to adapt to random
labels than labels that are known to be false.
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Function type Training type Avg. adaptability Optimal formula r2 value

Full Fine-tuning 37.43±3.18 1.27x + 0.14 0.56
Chaining Full Prompt-tuning 22.37±3.03 1.32x + 0.05 0.65
f2(f1) 32-shot Fine-tuning 18.59±2.21 1.34x + 0.07 0.57

32-shot Prompt-tuning 18.19±2.21 1.32x + 0.07 0.6

Full Fine-tuning 31.18±2.02 1.24x + 0.02 0.73
Union Full Prompt-tuning 25.05±2.11 1.4x � 0.01 0.83
f2 [ f1 32-shot Fine-tuning 17.28±1.52 1.37x + 0.02 0.8

32-shot Prompt-tuning 18.43±1.55 1.35x + 0.02 0.8

Full Fine-tuning 43.31±22.42 2.25x � 0.12* 0.97*
Intersection Full Prompt-tuning 16.68±8.78 1.64x � 0.04* 0.98*

f2 \ f1 32-shot Fine-tuning 22.77±17.03 5.93x � 0.12* 0.91*
32-shot Prompt-tuning 25.91±19.38 6.81x � 0.12* 0.94*

Full Fine-tuning 78.39±2.53 2.15x � 0.85* 0.8*
Logical And Full Prompt-tuning 79.25±2.57 1.27x � 0.18* 0.58*

f1 ^ f2 32-shot Fine-tuning 66.49±2.55 4.75x � 2.13* 0.88*
32-shot Prompt-tuning 55.86±1.22 0.48x + 0.3* 0.05*

Full Fine-tuning 72.41±1.97 1.39x � 0.37* 0.54*
Logical Or Full Prompt-tuning 74.71±2.01 1.15x � 0.18* 0.48*

f1 _ f2 32-shot Fine-tuning 58.04±1.11 1.52x � 0.35* 0.63*
32-shot Prompt-tuning 53.91±0.48 0.8x + 0.1* 0.33*

Full Fine-tuning 13.44±1.73 0.15x + 0.09 0.03
Map Full Prompt-tuning 5.39±0.93 0.13x + 0.03 0.07

map{�x.fM (x)} 32-shot Fine-tuning 3.59±0.70 0.21x + 0.0 0.2
32-shot Prompt-tuning 3.77±0.85 0.3x � 0.01 0.29

Full Fine-tuning 67.40±2.51 0.49x + 0.52 0.17
Map (+separators) Full Prompt-tuning 18.02±1.96 0.83x + 0.02 0.64
map{�x.fM (x)} 32-shot Fine-tuning 10.66±1.34 0.79x � 0.01 0.86

32-shot Prompt-tuning 5.22±1.14 0.57x � 0.04 0.64

Full Fine-tuning 82.08±5.92 1.59x � 0.58* 0.95*
Filter Full Prompt-tuning 78.58±5.43 1.38x � 0.43* 0.95*

filter{�x.fF (x)} 32-shot Fine-tuning 38.39±3.27 0.81x � 0.24* 0.87*
32-shot Prompt-tuning 51.58±4.99 1.19x � 0.43* 0.87*

Table 3: We study the correlation between the atomic word-level functions and their compositions, under various
training paradigms. We train a linear regressor to predict a model’s generalization adaptability on a composite
function based on its adaptabilities on the atomic constituents. Finally, we report the average generalization adapt-
ability of composite tasks, for each training paradigm, under each type of composition.
* indicates composition function has less than 20 tasks, thus reported numbers may not be significant.
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