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Abstract

We use paraphrases as a unique source of data
to analyze contextualized embeddings, with
a particular focus on BERT. Because para-
phrases naturally encode consistent word and
phrase semantics, they provide a unique lens
for investigating properties of embeddings.
Using the Paraphrase Database’s alignments,
we study words within paraphrases as well
as phrase representations. We find that con-
textual embeddings effectively handle polyse-
mous words, but give synonyms surprisingly
different representations in many cases. We
confirm previous findings that BERT is sensi-
tive to word order, but find slightly different
patterns than prior work in terms of the level
of contextualization across BERT’s layers.

1 Introduction

Contextualized embedding algorithms, such as
BERT (Devlin et al., 2019), have achieved impres-
sive performance on a wide variety of tasks (Huang
et al., 2019; Chan and Fan, 2019; Yoosuf and Yang,
2019). One application of BERT is using it as a
measure of sentence similarity (Zhang* et al., 2020;
Sellam et al., 2020), based on the assumption that
BERT will produce similar representations for the
words in two sentences with similar semantics.

We propose to use paraphrases with alignments
between words as a tool for studying how BERT
represents words and phrases. Figure 1 shows an
example. Critically, when considering an aligned
word pair, we can assume the context has a similar
impact on both words because we know the phrases
are semantically similar. Previously, paraphrases
have been used to probe whether compositionality
is accurately captured by BERT (Yu and Ettinger,
2020), but we believe they can be used to explore
many other questions.

Using the second version of the Paraphrase

note of the information provided by
0.96 ‘ 0.96 | 0.95 ‘ 0.94 ‘ 0.79 | 0.82 ’
note of the information contained in

Figure 1: Example paraphrase from the PPDB with
word alignment and word cosine similarities using the
last layer of BERT.

Database (PPDB, Pavlick et al., 2015), we ex-
plore how consistent contextual representations
are when controlling for the semantics of the con-
text. First, we use the human-annotated portion
of the PPDB data to confirm that BERT consis-
tently represents paraphrases. Next, we use the
highest-quality (but not all human-annotated) sec-
tion of the PPDB to probe BERT’s behavior in
more detail. Looking at words, BERT effectively
handles variations in spelling, but does less well
with spelling errors. BERT also effectively han-
dles words of varying levels of polysemy, but the
representations for synonyms are surprisingly di-
verse, with a much broader distribution of similarity
scores. These findings confirm results from prior
work using other methods, while uncovering new
insights about contextual embedding models.

We also consider a range of other models’ word
representations, finding that they have similar pat-
terns to BERT, but with aligned words that are the
same receiving even more consistent representa-
tions than from BERT. BERT gives less contextu-
alized representations to paraphrased words than
non-paraphrased words, with the exception of punc-
tuation. Finally, we re-evaluate work looking at
patterns across BERT’s layers and find that when
controlling for semantics, the later layers actually
produce more similar representations (in contrast
to previous work).

These results show that paraphrases are a useful
tool for studying representations. By controlling
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for meaning while presenting interesting surface
variations, they provide a unique probe of behavior.

2 Background
2.1 BERTology

There has been a growing body of research study-
ing the inner workings of BERT and trying to quan-
tify what it learns in various scenarios, dubbed
“BERTology” (Rogers et al., 2020). Of particular
interest to this paper is work that analyzes BERT’s
output embeddings. Recent studies have found
that embeddings created from the final layer of
BERT tend to cluster according to word senses
(Wiedemann et al., 2019), though this varies some-
what based on the position of a word in a sentence
(Mickus et al., 2020). The final BERT layers also
produce more contextualized word embeddings
than the earlier layers (Ethayarajh, 2019), a finding
we revisit using paraphrases in Section 3.3.

2.2 The Paraphrase Database

To analyze BERT, we take advantage of the unique
properties of paraphrases. We use the Paraphrase
Database (PPDB, Ganitkevitch et al., 2013; Pavlick
et al., 2015), a database of paraphrases collected
using bilingual pivoting, the process of taking a
particular English phrase, looking at all the foreign
language phrases it can be translated into, finding
all occurrences of these foreign language phrases,
and then translating them back into English (Ban-
nard and Callison-Burch, 2005). PPDB 2.0 con-
tains 100m+ English paraphrases, each with word
alignment information, an automatically generated
quality rating, and, for a subset, a human quality
rating.! Word alignments are the by-product of
the bilingual pivoting method used to collect the
paraphrases. When using alignments, we only con-
sider phrases from the highest quality section of the
PPDB, which are most likely to have accurate align-
ments. Example paraphrases with their average
human annotations and automatically generated
scores are shown in Table 1. In general, the phrases
in this dataset are short. The longest phrases have
six tokens, and the majority have fewer than six.
Human quality ratings are included for 26,455
paraphrase pairs, with five annotations per para-
phrase. Agreement is measured using Spearman’s
p (Spearman, 1910); the average p between two
workers is 0.57, and the average p between each
worker with the other four annotators is 0.65.

"http://paraphrase.org.

Phrases Human PPDB
Score  Score

are you talking 1.0 2.7

do n’t they

what ’s this all about ? 4.2 39

what ’s she saying ?

where did they come from ? 4.8 4.4

where are they from ?

Table 1: Example tokenized paraphrases from the
PPDB, with their average human annotations and au-
tomatic PPDB scores.

The automatic quality ratings (PPDB score) are
generated by using the human annotations to fit a
supervised ridge regression model. The input to
the model consists of 209 hand-crafted paraphrase
features, including WordNet features (Fellbaum,
1998), distributional similarity features, and cosine
similarities of generated Multiview Latent Seman-
tic Analysis embeddings (Rastogi et al., 2015). The
PPDB score achieves a Spearman’s p of 0.71. In
comparison, Pavlick et al. (2015) report that using
the word2vec embedding of the rarest word in each
paraphrase obtains Spearman’s p of 0.46.

3 Experiments

In our experiments, we want to use the PPDB to
examine BERT’s ability to consistently represent
paraphrase semantics.” In order to do this, we con-
sider both phrase-level and word-level embeddings.
Except where explicitly indicated otherwise, all ex-
periments are run using the uncased base model of
BERT, using a maximum sequence length of 128
and a batch size of 8. We use the pretrained models
provided by the Transformers library.’

There is a slight mismatch between the PPDB’s
tokenization and the format of the BERT training
data. The mismatch primarily occurs with contrac-
tions and apostrophes (e.g., BERT expects “don’t”,
while the PPDB is tokenized “do n’t””). This does
not substantially affect the results; less than 8%
of the human-annotated paraphrase pairs contain
apostrophes. When words are broken into multi-
ple pieces by the wordpiece tokenizer, we use the

“Note, paraphrases do not always have identical mean-
ing. We focus on particularly similar pairs for our analysis to
support our assumption that their meaning matches.

*https://huggingface.co/docs/
transformers/index
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average of the pieces as the word representation.

3.1 Phrase-Level Embeddings

First, we consider phrase-level embeddings that
capture aggregate information about all of the
words in a given phrase. These embeddings show
us that BERT is able to distinguish between two
paraphrases, and two unrelated phrases.

We use 25,736 phrase pairs with human anno-
tations in the PPDB.* Each human annotation is
between 1 and 5, reflecting the similarity of the
two phrases. We run each phrase through the pre-
trained BERT model. For each pair of phrases, we
average together the embeddings for each word to
get a phrase embedding. We create phrase embed-
dings using averaging because previous research
has shown that this method is effective. For exam-
ple, Reimers and Gurevych (2019) created sentence
embeddings using three methods: (1) averaging
word embeddings, (2) taking the maximum of word
embeddings, and (3) using the CLS token vector.
They found that averaging created the best sentence
embeddings for semantic textual similarity tasks.

After creating phrase embeddings, we take the
cosine similarity between the two embeddings. We
compare with ground truth annotations using Spear-
man’s p. We do this for each of the twelve BERT
layers, and the concatenation of all layers. We use
cosine similarity to compare embeddings because
this metric is commonly used when working with
BERT (e.g., Mahmoud and Torki (2020); Gar{ Soler
and Apidianaki (2020); Kovaleva et al. (2019)).

We compare BERT to a more traditional em-
bedding method, the continuous bag-of-words ap-
proach in word2vec (w2v) (Mikolov et al., 2013).
We train w2v on an English Wikipedia corpus of
5,269,686 sentences,’ using dimension size 200,
a window size of five, and a minimum count of
five. We choose to train w2v on Wikipedia data, in
order to replicate the correlations in Pavlick et al.
(2015). We train five w2v models, using five dif-
ferent random seeds.® For each pair of phrases, we
average together the embeddings for each word to
get a phrase embedding, and then take the cosine

“This is 3% smaller than the entire human-annotated sub-
set. We were unable to map some of the human-annotated
data to the data with PPDB scores (even with help from the
authors of the PPDB paper). This may be why our scores for
w2v are lower than those reported by Pavlick et al. (2015).

SThis data was used in Tsvetkov et al. (2016) and is avail-
able by contacting the authors of that paper.

62518, 2548, 2590, 29, 401

similarity between the two phrase embeddings.’
We report the average and standard deviation of
Spearman’s p over the five models.

Comparing Sentences and Phrases One differ-
ence between our work and the way BERT is nor-
mally used is that we have phrases rather than sen-
tences. To check that this does not substantially
change BERT’s behavior, we compare the embed-
dings for phrases in a sentence and the phrases on
their own. We take 9,780 paraphrases from the
PPDB. We choose paraphrases where one of the
phrases has at least six tokens, the paraphrase has a
relatively good PPDB score and no syntactic place-
holders. This is described further in Section 3.2.
For each phrase, we find up to 100 sentences (on
average, 80.5 sentences) in Gigaword (Parker et al.,
2011; Rush et al., 2015)8 and OpenSubtitles (Tiede-
mann, 2012)° that contain that phrase. For each
sentence, we run it through BERT and average to-
gether the word embeddings for words in the phrase
to create a phrase embedding. The phrase embed-
dings are very similar across different sentences
(average cosine similarity of 0.82 £ 0.07).

Now we can compare (1) the average of phrase
embeddings derived from sentences, with (2) em-
beddings for phrases in isolation, to see if BERT
will be confused by not having a complete sentence.
For each phrase, we take the cosine similarity be-
tween the phrase embeddings created using these
two methods. The phrase embeddings are fairly
similar (average similarity of 0.74 4 0.12). This
gives us confidence that BERT produces embed-
dings for phrases on their own that are very similar
to phrases in the context of a sentence. For the rest
of our experiments, we run phrases individually
through BERT, rather than in the context of com-
plete sentences, which allows us to focus on the
semantics of the phrase itself.

Results on the PPDB. Table 3 shows results for
BERT, w2v, and the PPDB model, broken down
by the average length of each paraphrase. For all
layers, BERT improves on longer paraphrases. This
is intuitive, because the longer the phrase, the more
it will be able to leverage contextual information.
The last layer of BERT behaves slightly differently
than the other layers. While it continues to perform

"For both BERT and w2v, we additionally tried using the
embedding of only the rarest word (with frequency measured
using the full PPDB), as reported in Pavlick et al. (Pavlick
et al., 2015), but this gave us consistently lower correlations.

8https://huggingface.co/datasets/gigaword.

*https://opus.nlpl.eu/OpenSubtitles.php.
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Category Phrases BERT-sim

. . the transport and illegal detention of the transportation and illegal detention of 0.99
High Sim . . .

representative of the secretary-general on  special representative of the secretary-general on 0.98

Low Sim the ohchr the high commissioner for human rights 0.32

so , why - does your shoulder bother you 0.42

Idiom are mad . ’re out of your mind . 0.67

is everything all right , sir are you okay 0.79

Table 2: Examples of common phenomena observed in paraphrases with particularly high similarity, low similarity,

and idiomatic expressions.

Average Length All
Method 1-25 254 4-6
BERT 0.2 0.4 0.51 0.31
w2v Average 0.35 0.32 0.41 0.43
PPDB model 0.41 0.50 0.51 0.50
Num. phrases 17,517 5,349 2,870 25,736
Avg. human 2.40 2.94 3.26 2.60

Table 3: Spearman’s p between human-annotated

PPDB paraphrases and different embedding methods
(BERT and w2v), broken down by average paraphrase
length (the average number of words in each of the two
phrases in the paraphrase). Annotations are a score
between 1 and 5. At the bottom of the table, we in-
clude the length distribution of the human-annotated
paraphrases, as well as the average human annotation
for each set of grouped lengths. For all length group-
ings, the w2v std. dev. is 0.0. For paraphrases length
1-2.5, the avg. human std. dev. is 1.0; for all other
groupings, the std. dev. is 1.1.

better on longer paraphrases, it does substantially
worse on short paraphrases and slightly worse on
medium paraphrases.

Similarly, w2v also improves on longer para-
phrases. By taking the average of all the word
embeddings for each word in the phrase, w2v has
more information to incorporate into its phrase em-
beddings for longer paraphrases. Though w2v im-
proves as the paraphrases grow longer, it underper-
forms BERT for all but the shortest paraphrases.
We also see that the automatic PPDB score does
better on longer paraphrases. This could be because
it incorporates distributional information, which is
richer when there are more words. Finally, the
human annotation scores show that longer para-
phrases are more similar.

From Table 3, we see that the final layer of BERT
outperforms w2v and performs comparably to the
PPDB score on the longest paraphrases. This is
not a completely fair comparison; the PPDB model
is trained specifically on this data, and has access

to outside information that BERT does not, such
as WordNet features and additional features de-
rived from the translation process used to create
the PPDB. These results give us confidence that
BERT can distinguish between phrases that are
paraphrases of each other and phrases that are not.

Looking at BERT’s output, we can see several
patterns in the paraphrases that receive high and
low similarities. Table 2 shows examples of these
patterns. For phrases with high similarity according
to BERT, a single word changes or a single word
is added. On the surface, these changes have very
little impact on the meaning, though the addition of
the word ‘special’ in the second case could change
who is being referred to. For phrases with low sim-
ilarity according to BERT, they frequently required
world knowledge (e.g., definition of an acronym)
or appeared to be errors. We also observed idioms
getting reasonably high scores, but not as high as
the literal paraphrases.

Conclusion: The standard way of using BERT
to produce a representation of a phrase is consis-
tent with human scores of paraphrases. All layers
are effective, though the last layer struggles with
shorter phrases.

3.1.1 One-Word Paraphrases

In Section 3.1, we saw that BERT does not do as
well on short phrases as it does on longer ones.
We explore the extreme case of single word para-
phrases here. Among the subset of one-word para-
phrases, there is a wide range of human annotations
(average annotation 2.27 + 0.99). To explore this
further, we focus on one-word paraphrases with
a human annotation of 5, the highest annotation
score, indicating that these are the strongest syn-
onyms. Among these high-quality synonyms, co-
sine similarities are consistently high for the last
layer of BERT (average similarity 0.76 £ 0.12).
Table 4 shows synonyms with both the high-
est and lowest BERT similarities. Misspelled
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Phrase 1 Phrase 2 Cos. Sim.
laboratoires laboratories 0.51
completly totally 0.51
fervor enthusiasm 0.52
79.0 seventy-nine 0.53
approximatly around 0.54
-mom -mother 0.91
1.350 1.35 0.92
characterises  characterizes 0.92
km kilometres 0.92
garbage trash 0.96

Table 4: Cosine similarity scores for the last layer of
BERT for one-word paraphrases with the highest hu-
man annotation score.

words (e.g., completly, approximatly) and
pairs that involve different languages (e.g., French
laboratoires) have low cosine similarities.
Numbers appear on both the low end (e.g., 79.0
and seventy-nine) and the high end (e.g.,
1.350and 1. 35) of the similarity spectrum. One
difference between the similar and dissimilar num-
ber pairs is that in the similar case they both use
digits, while in the dissimilar case, one uses digits
while the other uses words.

Conclusion: Looking at single words shows that
BERT struggles to identify synonyms, and does
particularly poorly with misspellings and cross-
lingual comparisons.

3.2 Word-Level Embeddings

PPDB provides alignments between words in the
paraphrases, automatically generated as part of
bilingual pivoting. We use these alignments to
consider four different sets of words:

Same, Aligned Words that are the same in both
phrases and aligned.

Same, Unaligned Words that are the same in both
phrases, but not aligned. These tend to be
function words. 90% of our examples are
one of (the, of, ", to, i, in, that, as, what).
This category may have more examples of
other word types if longer paraphrases are
considered in future work.

Different, Aligned Words that are aligned, but not
the same. This case covers synonyms.

Different, Unaligned Words that are not aligned
and not the same (but still one from each
phrase in a paraphrase pair). Note, these

e ©
o i
© o

o
o
o

o
o
I

Spearman's rho
o
o
~

o
o
o

0.04 -

1 2 3 4 5 6 7 8 9 10 11 12
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Figure 2: Spearman’s p between BERT cosine similar-
ities and PPDB scores for all aligned same words, bro-
ken down by BERT layer.

words are not completely unrelated. They are
from the same paraphrase, making them more
related than words from two random phrases.

In this section, we go beyond the human-
annotated data considered in the previous section.
We restrict our experiments to the highest qual-
ity paraphrases in the PPDB: dataset S. We also
only consider long paraphrases (where one of the
phrases has at least six tokens), and paraphrases
that have no syntactic placeholders (a subset of the
PPDB contains general syntactic symbols, such as
wishes to be [VP/NP]). From this set, we
randomly sample 4,000 paraphrases. Our sample
yields 22,751 aligned same words, 25,973 aligned
different words, 2,782 unaligned same words, and
163,474 unaligned different words. We randomly
sample 2,500 words from each category. For the
aligned words, we only use cases where there is a
1-1 alignment.

To generate word-level embeddings, we run each
phrase through a set of transformer models and for
each pair of words, we take the cosine similarity
between the embeddings of the two words.

3.2.1 Results

Figure 3 shows the distributions of similarity scores
for all four sets of words for several models. Same,
aligned words consistently have the highest sim-
ilarity. The other categories tend to overlap. Be-
cause we are using paraphrases, we would hope
that aligned different words would have higher sim-
ilarity, but that is not consistently the case.
Comparing the models, there are some notable
variations. Between BERT base and BERT large,
the biggest shift is that unaligned words that are the
same have much lower similarity in BERT large,
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Figure 3: Distributions of cosine similarities for several
models for same and different aligned and unaligned
words (best seen in color). Cosine similarity is binned
into bins of width 0.05. Note that the bottom two
graphs use a log scale because the peak at 1.0 makes
it hard to see variations otherwise.

though there is also a new peak for aligned words
around 0.2. Comparing the two BERT models with
BART and GPT-2, there is a much sharper peak for

BART and GPT-2 for same aligned words, which
is consistent with prior work (Ethayarajh, 2019).

BART is the only model to have a substantial
number of negatively correlated word pairs. Many
of these involve function words or punctuation. For
the unaligned cases, negative cosine similarity is
fine because the words should not have the same
meaning. For the 26 cases of aligned pairs, it
is unclear why the representations are so differ-
ent. For example, the plays the same role in
( , the commission considered and ,
the commission had before it. Simi-
larly, a im and view should be very similar in aim
of improving theandwith a view to
improving the.

Qualitatively looking at examples, we notice
that when a token appears in a different position
in the paraphrase, the similarity tends to be on
the lower end of the distribution (e.g., action
in the phrases plans of action for the
implementation and action plan for
the implementation has a similarity of
0.28). To explore this, we consider 2,181 aligned
same words. We measured the cosine similarity of
the last layer of BERT broken down by the variation
in position (plotted in Figure 7 in the Appendices).
Spearman’s p = —0.29 (p-value < 10e — 42), indi-
cating that similarity decreases for larger changes
in position. This supports observations in prior
work (Mickus et al., 2020), but now with the knowl-
edge that the overall context has the same meaning.
This is not intuitive behavior; because these words
are aligned in a paraphrase, we would expect that
the position of the word would not substantially
affect its representation. This may indicate that
the representations are encoding some information
about syntactic structure, which can vary without
changing semantics.

Conclusions: (1) Contextual word embedding
methods consistently handle aligned words in para-
phrases, but with substantial variations across mod-
els in how peaked the distributions of same-aligned
words are. (2) Even when controlling for the mean-
ing of the context, BERT represents words differ-
ently depending on their position.

3.2.2 Punctuation

Punctuation is a core part of language that func-
tions quite unlike words; punctuation groups words
together or separates them, and contributes to the
overall structure and meaning of a phrase or sen-
tence. Punctuation plays an important role in dis-
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Figure 4: Distribution of cosine similarities using the
last layer of BERT for aligned same words, broken
down by punctuation mark.

tinguishing between different types of text, such
as texts by different authors (Soler-Company and
Wanner, 2017) or texts produced by different Twit-
ter communities (Tatman and Paullada, 2017). Em-
beddings are used to generate punctuation for text
that is lacking punctuation, such as recorded tran-
scripts (Yi and Tao, 2019). To explore how BERT
handles punctuation, we consider the cosine simi-
larity distribution for different sets of punctuation
tokens for the last layer of BERT. We find that
punctuation has a broader distribution of cosine
similarities than other tokens, indicating that punc-
tuation embeddings vary widely dependent on the
surrounding context.

Phrases Cos. Sim.
(Last Layer)

it is important , however , 0.08

however , it should be

okay , 1 ’m sorry 0.84

oh, i am so sorry

well , it ’s true . 0.19

this is true .

, that ’s all right . 0.15

, this is good .

where have you come from ? 0.94

where are you from ?

news - politics - world - 0.71

news - international politics -

Table 5: Examples of aligned punctuation marks with
varying cosine similarities. The aligned tokens are un-
derlined.

In Figure 4, we break these trends down by indi-
vidual punctuation marks, focusing only on aligned
same words. We look at the most common punc-
tuation marks. Of these punctuation marks, the
comma and period show the widest distributions.
Even when they play the same role in the para-
phrase, they can be given very different embed-
dings, indicating how highly contextualized these
punctuation marks are. The question mark and
dash are less contextualized; this is most likely be-
cause these punctuation marks are used in more
prescribed circumstances. In this dataset, in all but
one example, the question mark is the last token;
the dash is the first token in all but two examples.

Table 5 shows examples in context of each of
these punctuation marks. Looking at the low simi-
larity cases, one common pattern is that the phrase
contains a contraction that is expanded in one
phrase (e.g., “it is” and “it’s”).

Conclusion: BERT’s representation of punctua-
tion is surprisingly context sensitive, with substan-
tial variation even when we control for meaning.

3.2.3 Polysemy

Previous work has shown that BERT embeddings
form clusters based on word senses (Wiedemann
et al., 2019). In the context of aligned words in a
paraphrase, we would expect even a highly polyse-
mous word to have similar embeddings in the two
phrases.
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Figure 5: Distributions of cosine similarity for aligned
(left) and unaligned (right) same words from the last
layer of BERT grouped by the number of senses each
word has.

To measure polysemy, we consider the number
of WordNet synsets of a word, focusing on same
aligned and same unaligned words. In order to have
enough data to make a good comparison, we use
the 4,000 sampled paraphrases from Section 3.2,
as well as an additional random sample of long
paraphrases with at least one unaligned same word.
We then downsample the aligned same words to
get 1,597 instances of both unaligned and aligned
same words that are present in WordNet, with up
to 52 synsets. '’

In Figure 5, we show the cosine similarity distri-

%We look up WordNet synsets using the Python NLTK
library (Bird et al., 2009).

8 9 10 11 12

12 3 456 7
BERT Layer

---- Aligned Same Unaligned Same
—e— Aligned Different - Unaligned Different

Figure 6: Cosine similarity for different groups of
words in the PPDB across all layers of BERT. Decreas-
ing cosine similarity indicates increasing contextualiza-
tion, and vice versa.

butions for both aligned and unaligned words with
different levels of polysemy across the last layer of
BERT. There is not a substantial difference between
words with different synsets, which supports our
conclusion that BERT successfully captures the se-
mantics of aligned same words in paraphrases. We
do see a difference between aligned and unaligned
words. Aligned words peak at a high cosine similar-
ity, while unaligned words roughly follow a normal
distribution centered around 0.5. Note that for un-
aligned words with two or three synsets, there is
not enough data to draw conclusions about the co-
sine similarity distributions. Overall, these plots
show that even highly polysemous aligned same
words have very similar embeddings in the context
of a paraphrase.

Conclusion: How polysemous a word is does not
substantially impact BERT’s ability to consistently
represent it.

3.3 Contextualization in BERT Layers

In this section, we consider how context-specific
the embeddings in a paraphrase are. Ethayarajh
(2019) showed that BERT word embeddings are
more context-specific in higher layers. They mea-
sure this using the self-similarity of words, defined
as the average cosine similarity between a word’s
contextualized representations across its unique
contexts, and show that self-similarity consistently
decreases with higher layers of BERT, indicating
that the contextualization of words is increasing.
We compare this observation to the paraphrase
setting that we have been exploring in this paper.
Because there are only two phrases in a paraphrase,
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we cannot implement the full self-similarity metric.
Instead, we measure the cosine similarity between
two words aligned in a paraphrase, shown in Fig-
ure 6. This revised metric measures is similar to
self-similarity.

We see two trends in Figure 6. The first, de-
creasing cosine similarity, is seen with same words,
whether aligned or unaligned, and is similar to
what Ethayarajh (2019) report with decreasing self-
similarity scores. This trend is stronger with un-
aligned words than with aligned words, indicating
the model is capturing the fact that while these
words have the same form, they are being used
differently. The second trend that we see is the
opposite, increasing cosine similarity, and we see
this trend with different words, both aligned and
unaligned. This indicates decreasing contextualiza-
tion.

Conclusion: As seen in prior work, the standard
way of using vectors from BERT’s layers does not
capture the same level of contextualization in all
layers. However, in contrast to prior work, when
controlling for semantics of the context, it seems
that later layers are capturing more of the context,
appropriately making words less similar when they
are being used in different ways.

4 Conclusion

Paraphrases with word alignments are a useful tool
for studying the behavior of contextual language
models. In this paper, we used them to study sev-
eral contextual models, with a particular focus on
BERT. Where possible, we compared our results
with prior work, finding patterns that are consis-
tent with the literature. Specifically, our results
confirm that BERT consistently represents para-
phrases, even for cases with polysemous words,
but that individual word representations are overly
sensitive to position, particularly for punctuation.
One exception is that we found that words in a
sentence are more similar to each other in later lay-
ers of BERT, in contrast to prior work that did not
control for meaning using paraphrases.

The analysis method we introduced opens up
new opportunities, such as the comparison of
aligned and unaligned, same and different words,
which shows the sensitivity of these models to the
specific word used. Paraphrases have the poten-
tial to inform exploration of other representation
methods, showing which way of using the output
of language models most accurately captures se-

mantics consistently. We hope our findings will
inform future work on contextualized models, and
the applications that rely on them.
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A Extra breakdowns of results

Table 6 presents an expanded version of Table 3,
with results for each layer of BERT. All layers
perform better with longer paraphrases, but the
improvement is largest for the last layer

Figure 7 shows the specific values for similar-
ity broken down by distance apart of words in the
phrases. This shows the pattern of decreasing simi-
larity as words are further away.

Average Length All
Method 1-25 254 4-6
BERT Layer 1 0.18 035 047 0.34
BERT Layer 2 0.18 035 049 0.33
BERT Layer 3 0.18 0.37 0.48 0.31
BERT Layer 4 0.18 0.38 048 0.3
BERT Layer 5 0.18 0.39 0.48 0.3
BERT Layer 6 0.19 039 049 0.29
BERT Layer 7 0.2 04 049 0.3
BERT Layer 8 0.21 0.4 0.5 0.28
BERT Layer 9 0.21 0.4 0.5 0.28
BERT Layer 10 0.22 038 048 0.29
BERT Layer 11 0.22 036 0.46 0.29
BERT Layer 12 0.1 035 051 0.16
BERT Concat. 0.2 0.4 0.51 0.31
w2v Average 0.35 0.32 0.41 0.43
PPDB model 0.41 050 0.51 0.50
Num. phrases 17,517 5,349 2,870 25,736
Avg. human 2.40 2.94 3.26 2.60

Table 6: This is a version of Table 3 with per-layer re-
sults. Spearman’s p between human-annotated PPDB
paraphrases and different embedding methods (BERT
and w2v), broken down by average paraphrase length
(the average number of words in each of the two
phrases in the paraphrase). At the bottom of the ta-
ble, we include the length distribution of the human-
annotated paraphrases, as well as the average human
annotation for each set of grouped lengths.
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Figure 7: Cosine similarity using the last layer of BERT
for aligned same words broken down by the number of
words apart the words are in the two phrases (shown in
bar plot and left y-axis). Error bars indicate confidence
intervals. The line graph and the right y-axis show how
many examples we have for each category.
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