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Abstract

The performance of Reinforcement Learning
(RL) for natural language tasks including Ma-
chine Translation (MT) is crucially depen-
dent on the reward formulation. This is
due to the intrinsic difficulty of the task in
the high-dimensional discrete action space as
well as the sparseness of the standard reward
functions defined for limited set of ground-
truth sequences biased towards singular lexi-
cal choices. To address this issue, we formu-
late SURF, a maximally dense semantic-level
unsupervised reward function which mimics
human evaluation by considering both sen-
tence fluency and semantic similarity. We
demonstrate the strong potential of SURF to
leverage a family of Actor-Critic Transformer-
based Architectures with synchronous and
asynchronous multi-agent variants. To tackle
the problem of large action-state spaces, each
agent is equipped with unique exploration
strategies, promoting diversity during its ex-
ploration of the hypothesis space. When
BLEU scores are compared, our dense un-
supervised reward outperforms the standard
sparse reward by 2% on average for in- and
out-of-domain settings.

1 Introduction

Reinforcement Learning (RL) has shown promise
in the field of text generation. This is mainly
due to the fact that it allows the usage of non-
differentiable evaluation functions fit for the dis-
crete natural language tasks. It also serves as a
solution for bridging the gap between training and
inference time regimes (“exposure bias”) that arises
from the fact that the model is never exposed to its
own errors as only ground-truth labels are used to
condition the generation during training (Wang and
Sennrich, 2020). One of the essential components
of the RL framework is the reward function, which
is used to provide agents with indicative signals in
terms of the effectiveness of chosen actions.

The usage of RL in Neural Machine Transla-
tion (NMT) and language generation however has
been doubted largely due to the difficulty of ex-
ploration in the high-dimensional discrete action
space combined with the sparse reward signal. The
latter comes from the typical metrics used as re-
wards (e.g., BLEU (Papineni et al., 2002)). These
rewards evaluate text in a shallow way by mea-
suring the string similarity between generated and
ground-truth sequences, making them extremely
sparse and biased towards singular lexical choices.
As the RL policy is usually initialised with some
pre-trained distribution over words, suspicion has
been raised that in this situation, those words al-
ready most likely gain probability mass regardless
of the rewards (Choshen et al., 2020). Thus, the
current sparse rewards are not beneficial for rigor-
ous exploration of different words during training.
Recent studies suggest that the main benefit for
NMT from RL is in performing domain adaptation
when using proper hypothesis space exploration
along with special emphasis on reward scaling and
normalisation (Kiegeland and Kreutzer, 2021).

To address the problem posed by sparse or bi-
ased rewards, we propose SURF, a formulation of
the unsupervised reward function that evaluates
machine-generated texts in the semantic space by
factoring in different qualitative aspects. Further-
more, we introduce an additional scaling and nor-
malisation mechanism which ensures fairness and
uniformity of the reward function regardless of the
complexity of the natural language task.

Our main contributions are thus threefold: (a)
the proposal of SURF, an unsupervised dense re-
ward assessing both sentence fluency and adequacy
(Section 4). We demonstrate this reward leads to
a translation quality favourably comparable to the
traditional sparse BLEU reward both in automatic
and human evaluation; (b) the proposal of an addi-
tional normalisation using reward shaping mecha-
nisms for the unsupervised reward; (c) demonstra-
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tion of the strong potential of the proposed reward
to elicit benefits of various RL architectures. We
experiment with multi-agent synchronous and asyn-
chronous Actor-Critic (AC) architectures as applied
to the problem of MT (Section 3.3). Each of the par-
allel agents in those architectures is trained using
different segments of the training dataset which has
their own unique exploration strategy. When BLEU
scores are compared, our dense unsupervised re-
ward outperforms the standard sparse reward by 2%
on average for both in- and out-of-domain settings.
To the best of our knowledge, this formulation of
the unsupervised reward for a range of multi-agent
architectures is the first of its kind for MT.

Our datasets and settings are described in Sec-
tion 5, and results of our experiments are described
in Section 6.

2 Related Work

The following section describes the work related
to ours in the subfields of Machine Translation and
RL for language generation.

Reinforcement Learning Algorithms for Neural
Machine Translation REINFORCE (Williams,
1992) algorithm and its variants have so far been the
most widely used RL algorithms in MT (Ranzato
et al., 2015; Rennie et al., 2017; Paulus et al., 2018;
Hu et al., 2018). The fact that REINFORCE-based
approaches suffer from high variance in general
and in MT in particular has stimulated attempts to
apply Actor-Critic (AC) models to the task. The
first attempt of the kind was the one of Bahdanau
et al. (2016). More advanced AC models with
Q-Learning are rarely applied to language genera-
tion problems. However, there are exceptions (e.g.,
entropy-regularised AC models that promote explo-
ration of actions (Dai et al., 2018; Ive et al., 2021)).
This could be explained by the difficulty of approx-
imating the Q-function for large action space. In
this work we explore a series of multi-agent AC
architectures which to the best of our knowledge
have never been applied to MT before.

Unsupervised Rewards for Language Genera-
tion Tasks Recent work on unsupervised rewards
in NLP has explored both dynamic (Ive et al., 2021)
and static rewards (Gao et al., 2020; Garg et al.,
2021). For example, Ive et al. (2021) introduces a
dynamic distribution over latent frequency classes
as a reward signal. This distribution is shaped to
promote more rare words in the policy search space.

Static rewards are very often designed to assess
generated text in terms of its fluency and adequacy.
Fluency judgment assesses how a hypothesis sat-
isfies the grammatical norms of a language. Ad-
equacy judgment assesses how well a hypothesis
conveys the meaning of the source sentence. The
recent research performs both evaluations as se-
mantic similarity assessments using the pre-trained
contextualised embeddings such as BERT (Zhang
et al., 2020; Mathur et al., 2019). For MT, semantic
similarity assessment could be carried out using
monolingual pre-trained embeddings against a ref-
erence, as in Gao et al. (2020), or using multilin-
gual pre-trained embeddings in the unsupervised
reference-less approach by considering the seman-
tic similarity to source sentences (Wei et al., 2019;
Song et al., 2021). We adopt the latter approach to
measure adequacy.

3 Methodology

We start by formulating MT using RL, then intro-
duce the Actor-Critic architectures and the reward
functions used.

3.1 Neural Machine Translation (NMT)
A typical Neural Machine Translation (NMT) sys-
tem is a Seq2Seq architecture (Sutskever et al.,
2014; Bahdanau et al., 2014), where each source
sentence (X) is encoded by the encoder into a
sequence of hidden states. At each decoding
step t, a target word yt is generated according to
p(yt|y<t,X) conditioned on the input sequence X
and decoded sequence y<t = (y1, · · · , yt−1) up to
the t-th time step:

Lmle = log p (yt|y<t,X) (1)

3.2 Reinforcement Learning for NMT
In the RL framework, a Seq2Seq model is viewed
as an agent and its parameters define the agent’s
policy (π). At each timestep (t), the agent observes
the current state (st) of the environment, which is
essentially the sequence of generated words from
previous timesteps (ŷ1:t−1). Then, the agent’s pol-
icy, which is based on the conditional probability
p (ŷt|ŷ1:t−1,X), is used to select an action (at) at
each timestep. In this context, an action is the can-
didate word (ŷt) chosen from the vocabulary. Sub-
sequently, the environment adds the chosen word to
the generated sequence, transitioning it to the next
state (ŷ1:t). It also returns a reward (rt+1) to the
agent as an indication of how effective the chosen
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word is. Hence, one possible training objective of
the policy is to maximise the discounted sum of
expected rewards from all timesteps:

π∗ = max
π

T∑

t=1

γt−1 E
ŷt∼π(·|ŷ1:t−1,X)

[rt+1] (2)

where π∗ denotes the optimal policy and γ is a
constant discount factor. Under the policy π, one
can formulate two functions: the state value func-
tion (Vπ(st)) and the state-action value function
(Qπ(st, at)). The former, Vπ(st), determines the
effectiveness of the agent being in a particular state
while the latter, Qπ(st, at), indicates the effective-
ness of selecting a certain action in that state:

Vπ(st) = E
ŷt∼π

[Qπ(st = ŷ1:t−1, at = ŷt)] (3)

Qπ(st, at) = E
π

[
T−t∑

k=1

γk−1rt+k|st, at
]

(4)

Hence the definition of the advantage function
is:

Aπ(st, at) = Qπ(st, at)− Vπ(st) (5)

A training objective can aim to maximise the
advantage function maxaAπ(st, at).

Alternatively, considering the definition of
Aπ(st, at) in Equation (5), it implies that we can
directly maximise the Q function:

max
a

Aπ(st, at)→ max
a

Qπ(st, at) (6)

The first objective (Equation (2)) has been used
in REINFORCE-based methods (Sutton et al.,
2000) such as the MIXER architecture (Ranzato
et al., 2015). These methods sample trajectories,
series of consecutive states, actions and rewards,
and use their true returns to update the policy. As
they use the true returns, they are considered to
be unbiased. However, as an action in a certain
state can be part of many trajectories with differ-
ent returns, these methods are considered to have
high variance (Sutton and Barto, 2014). To address
this issue, Actor-Critic algorithms (Konda and Tsit-
siklis, 2001) adopt the Temporal Difference (TD)
learning method which performs bootstrapping by
using only the immediate reward and estimated val-
ues to guide future action selection. The training
objective used is Equation (6).

3.3 Actor-Critic Architectures

3.3.1 Actor-Critic with Q-Learning (ACQ)
Model

An Actor-Critic model usually consists of an actor
and a critic (Konda and Tsitsiklis, 2001). The
two networks are neural networks parameterised
by θ and φ, respectively. The actor acts as the
policy of the model while the critic is a function
approximation network. One simple variant (ACQ)
of the AC architecture is trained by maximising the
Q function. In this variant, the critic is defined as a
Q network approximating the true Q function.

The actor’s training objective is to maximise the
probability of actions that yield high Q values. Us-
ing Q value estimates (Qφ(ŷ1:t−1,i, w)) computed
by the main critic, the actor’s policy loss (Lpolicy)
at each training timestep can be expressed as fol-
lows:

Lpolicy = −[
1

N

N∑

i=1

∑

t

∑

w∈W
πθ(w|ŷ1:t−1,i)Qφ(ŷ1:t−1,i, w)]

(7)

where N denotes the training batch size. The loss
is calculated by summing over all the possible ac-
tions (w) in the entire vocabulary (W). Follow-
ing (Bahdanau et al., 2017), to avoid early policy
determination and gradient vanishing issues, the
final actor loss (LACQ−actor) consists of the policy
loss (Lpolicy) and the Maximum Likelihood Estima-
tion (MLE) loss (Lmle) from cross-entropy training
(XENT) (weighted by λmle). In other words, the
addition of XENT is to address the problem of
training collapse1, commonly encountered when
applying RL in language tasks.

LACQ−actor = Lpolicy + λmleLmle (8)

The TD learning method, as mentioned previ-
ously, is used to train the critic network. It adopts
the bootstrapping methodology which performs
estimation based on other known estimates. The
critic’s training objective is to minimise the mean
squared difference, called TD error, between all
estimated Q values and their corresponding target
values in each timestep. Intuitively, the critic is
trained to be as good of a Q function approximator

1As pointed out by (Bahdanau et al., 2017), the MLE loss
can help prevent early policy determination and vanishing
gradient problems.
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as possible:

LTD =
1

N

N∑

i=1

∑

t

(Qφ(ŷ1:t−1,i, ŷt)−

Q̂φ̄(ŷ1:t−1,i, ŷt))
2

(9)

Each target Q̂φ̄(ŷ1:t−1,i, ŷt), expressed below, is
defined as the sum of the immediate reward after
generating ŷt and the expected Q value of the pro-
ceeding timestep, which is computed using another
Q network named the target critic:

Q̂φ̄(ŷ1:t−1,i, ŷt) = rt+1+
∑

w∈W
πθ(w|ŷ1:t,i)Qφ̄(ŷ1:t,i, w) (10)

To ensure stability, the weights of the target critic
(φ̄) are updated more slowly than the main critic
with the linear interpolation between the current
weights of the main and target critics. Also, fol-
lowing (Bahdanau et al., 2017), in addition to the
TD error, the critic’s loss (LACQ−critic) contains
an additional term, weighted by λvar, which aims
to minimise the variance in Q value estimation.

LACQ−critic = LTD + λvar
1

N

N∑

i=1

∑

w∈W(
Qφ(ŷ1:t−1,i, w)− Q̄φ(ŷ1:t−1,i)

)2
(11)

Q̄φ(ŷ1:t−1,i) =
1

|W|
∑

w′∈W
Qφ(ŷ1:t−1,i, w

′)

(12)

Figure 1: High-level structure of the Asynchronous
Actor-Critic with Q-Learning Model (Async-ACQ)
and the Asynchronous Advantage Actor-Critic (A3C)
Model: multiple parallel agents and critics are trained
independently. Their weights are used to update the
weights of the global agent one by one.

Synchronous and Asynchronous ACQ Both
the asynchronous and synchronous versions of the

ACQ model can be easily constructed by deploy-
ing N actors with respective N critics on multiple
threads. Each of the parallel actors is trained us-
ing different segments of the training dataset. For
the synchronous variant, the weights of each of
the actors are averaged to update the weights of
the global agent. For the asynchronous variant, the
global agent is updated by the local weights of each
agent one by one. That is, during training, each
thread-specific agent generates output sequences
by sampling from its policy. Then, it performs
loss computation and gradient accumulation un-
til it reaches the pre-defined number of timesteps,
in which it transfers the accumulated gradients to
the global model. The global model subsequently
performs an update on its parameters. As the last
step of the asynchronous update, the parameters of
the thread-specific agent invoking the update are
synced with the parameters of the global model.

3.3.2 Advantage Actor-Critic (A2C) Model
Another variant of the AC model is the Advantage
Actor-Critic (A2C) architecture (Konda and Tsit-
siklis, 2001). In this model, the critic is defined as a
function approximator, parameterised by ψ, of the
true V function. Compared to the first variant, the
A2C model applies a different training objective to
ACQ (Equation (6)).

Given the state space in language tasks is mas-
sive, calculating the expectation term would be
computationally expensive or even impossible.
Therefore, the advantage function can be approxi-
mated by sampling once.

Aπ(st, at) ≈ rt+1 + γVπ(st+1)− Vπ(st) (13)

The actor network in the A2C model is trained
in a similar fashion to that of ACQ. Here, the critic
estimates the state values (i.e., Vψ(ŷ1:t−1,i) and
Vψ(ŷ1:t,i)) which are used by the actor to calcu-
late the advantage value. The actor loss function
(LA2C−actor) can be outlined as follows:

Lpolicy = −[
1

N

N∑

i=1

∑

t

log

πθ(ŷt|ŷ1:t−1,i)Aψ(ŷ1:t−1,i, ŷt)]

(14)

Aψ(ŷ1:t−1,i, ŷt) = rt+1 + γVψ(ŷ1:t,i)−
Vψ(ŷ1:t−1,i)

(15)

LA2C−actor = Lpolicy + λmleLmle (16)
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Furthermore, compared to the first variant, the
A2C critic is trained to minimise the TD error be-
tween its estimation and ground-truth data. The
ground-truth data is essentially the true discounted
reward-to-go (vt).

LA2C−critic =
1

N

N∑

i=1

∑

t

(Vψ(ŷ1:t−1,i)− vt)2

(17)

Synchronous and Asynchronous A2C The
model setups for the synchronous and asyn-
chronous A2C variants are analogous to the ACQ
variants, in which N pairs of actors and critics are
deployed.

In the asynchronous A2C architecture
(A3C) (Mnih et al., 2016), the model also employs
n-step TD Learning which uses the true returns
from multiple steps in the advantage function to
reduce the model bias (Sutton and Barto, 2014).
The term n defines the number of steps to use
the real rewards before bootstrapping (using the
critic). The standard TD Learning would just use
the immediate reward (1-step TD).

Aψ′(ŷ1:t−1,i, ŷt) =
n−1∑

τ=0

γτrt+τ+

γnVψ′(ŷ1:t+n−1,i)− Vψ′(ŷ1:t−1,i)

(18)

where θ′ and ψ′ represent the thread-specific pa-
rameters of each actor and critic, respectively.

4 Semantic-level Unsupervised Reward
Function (SURF)

Our semantic-level unsupervised reward, SURF,
is based on two scores: Sentence Fluency and
Sentence-level Semantic Similarity (SLSS) (Song
et al., 2021). Each score assesses translation quality
of generated sequences from different aspects and
is computed using a pre-trained model. To prevent
reward sparsity, the reward function introduces a
score normalisation mechanism which normalises
scores of a generated sequence (from all timesteps)
with respect to the score of its full target sequence.
This subsequently yields an unsupervised reward
function that is maximally dense. The Sentence
Fluency score (F (ŷ1:t)) is defined as the average
log-likelihood of the generated sequence tokens
(ŷ1:t) as defined by a pre-trained large LM.

The SLSS score measures the overall semantic
similarity between the entire generated sequence

and its source sequence calculated as the cosine
similarity between the two sentence cross-lingual
embeddings.

Score Normalisation From the RL perspective,
the MT task does not define the environment com-
ponent that the agent operates in. That is, unlike
the classical RL setting where the environment is
relatively fixed, the ‘environment’ in the MT task is
mostly dependent on the source sequence, in terms
of its sophistication, structure, length, etc. As a
result, a valid and good translation of a source se-
quence would receive a relatively high score but
is not directly comparable to other sequences due
to the difference in source sentence complexity.
Therefore, it is important to ensure that the re-
ward function is uniform and generalised across
all source sentences.

In order to do this for each source sequence,
the reward function uses the corresponding target
sequence as a ‘soft’ upper bound for what a
machine-generated sequence could achieve. That
is, for each of the two score metrics outlined
above, the scores from all timesteps received by
a generated sequence is normalised to the range
0 to 1 with respect to the score of the full target
sequence. To demonstrate the normalisation
method, let us consider the formulation below
which uses the Sentence Fluency score metric as
an example. Given a pair of source (X) and target
(Y) sequences and a candidate sequence (ŷ1:t), the
fluency scores from all timesteps of ŷ1:t would be
{F (ŷ1), F (ŷ1:2), ..., F (ŷ1:t−1), F (ŷ1:t)} while
the fluency score for the entire reference target
sequence (Y) would be F (Y). Using the fluency
scores of the candidate and that of the reference,
the normalised candidate scores can be calculated
as follows:

Fnorm(ŷ1:i) =

{
F (ŷ1:i)−min
max−min if max 6= min

0.5 if max = min,

(19)
where

max = max({F (ŷ1), ..., F (ŷ1:t), F (Y)}) (20)

min = min({F (ŷ1), ..., F (ŷ1:t), F (Y)}) (21)

Considering the example formulation above, one
can observe that the normalisation with respect to
the reference score is considered as a ‘soft’ upper
bound as it allows for candidate scores to be higher
than the reference score (i.e., allowing the possi-
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bility that candidate sequences can be better than
their references).

The Pay-off Function and Reward Shaping
Given a generated sequence ŷ1:t at timestep t, its
quality can be formulated as the Pay-off Function
(PO(ŷ1:t,X)). The Pay-off Function, as expressed
below, is based on the Sentence Fluency and SLSS
scores described above.

PO(ŷ1:t,X) = wF×eF (ŷ1:t)+wS×eSLSS(ŷ1:t,X)

(22)
where, for simplicity, F (ŷ1:t) and SLSS(ŷ1:t,X)
denote the normalised Sentence Fluency and SLSS
scores respectively. The termswF andwS are fixed
weights controlling the relative importance of Sen-
tence Fluency and SLSS, respectively. It is impor-
tant to emphasise that the exponential function is
applied to each score since linearly adding each
score leads to high variance and lower correlation
with human scores (Song et al., 2021).

Using the Pay-off Function to determine the ef-
fectiveness of generating a token (ŷt) at timestep
t, the final reward function is defined using reward
shaping as the difference between the current Pay-
off and the Pay-off of the previous timestep.

R(ŷt) = PO([ŷ1:t−1, ŷt],X)− PO(ŷ1:t−1,X)
(23)

5 Experimental Settings

5.1 Data
In our experiments, we used the German-English
OpenSubtitles corpus (Lison and Tiedemann,
2016). There are approximately 14 million se-
quence pairs in this dataset extracted from subtitles
of movies and TV shows, making it very diverse.
The dataset was then divided into training, vali-
dation and test sets. The training set has approxi-
mately 13 million sentence pairs while each of the
validation and test sets has roughly 5,000 sentence
pairs.

The trained models were also tested on translat-
ing the IWSLT 2014 German-English test dataset,
a popular dataset to benchmark RL-based meth-
ods. This dataset contains a parallel corpora with
one reference per source sequence, obtained from
TED talks (Cettolo et al., 2015). The test dataset
contains approximately 6,000 pairs, with each se-
quence containing a few sentences of text. See
Appendix A.2 for justification for treating the two
datasets as coming from different domains.

5.2 Training
Following (Bahdanau et al., 2016), to ensure good
initialisation of the model, the actor network is
first pre-trained using XENT and the teacher forc-
ing method. After that, the critic is pre-trained
using TD Learning with the fixed pre-trained actor
weights. At the last step, we train the actor and the
critic jointly.

Generally, the actor architecture follows the
OpenNMT Transformer architecture (Klein et al.,
2017), with a few enhancements to enable step-
wise decoding during training (i.e., action selec-
tion based on the model’s previous outputs) and
diversity in each agent’s exploration strategy (see
Appendix A.3 for more details). During training
the actor selects a token at each timestep using
the Top-K sampling method (Fan et al., 2018), in
which a token is sampled from K tokens with the
highest probabilities.

The critic architecture follows the Transformer
architecture (Vaswani et al., 2017), with two major
differences (see Appendix A.3.2 for detailed expla-
nation). There are also two critic types, namely
Q-critic and V-critic. The first critic type, Q-critic,
is used in model variants with Q-Learning while
the second type, V-critic, is used in other variants
utilising the A2C architecture.

Multi-GPU Training When training syn-
chronously in a multi-GPU environment, the
model is deployed on a one-model-per-device
basis to reduce training time. Each model has its
own optimiser (we used Adam (Kingma and Ba,
2014)). During every update, the gradients are
reduced and re-scaled across all devices to ensure
that they are consistent across the models.

However, when training asynchronously, the
global agent resides on one GPU device while three
parallel agents are deployed on the remaining GPU
devices. Instead of using one optimiser per agent,
only a global optimiser is used. On every asyn-
chronous update, the global optimiser updates the
global model by using the gradients transferred
from the parallel agent which invoked the update.
The global optimiser used (SharedAdam) is a stan-
dard Adam optimiser modified to support multi-
GPU communication.

Our formulation of the unsupervised reward
uses the pre-trained OpenAI GPT Language Model
from Hugging Face (Wolf et al., 2020). It also
uses the Sentence Transformers tool (Reimers
and Gurevych, 2020) with the XLM RoBERTa
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model (Conneau et al., 2020) to generate the sen-
tence embeddings. We do not expect the perfor-
mance to change drastically by using other models.

During the joint actor-critic training, it took ap-
proximately one day to train each of the BLEU
variants while the training time for SURF variants
ranges from 3 to 5 days (see Appendix A.5 for
the computational resource used). The increase in
training time is mainly due to the usage of the large
pre-trained models by SURF. We expect this time
to reduce if a smaller language model is used. We
leave this investigation to future work.

More details on the implementation and hyper-
parameters are given in Appendix A.3 and A.4.

Model configurations. We experimented using
the nine configurations listed below:

• Transformer baseline (MLE, no RL) - state-
of-the-art (SOTA) model;

• Synchronous ACQ RL architecture with the
standard BLEU reward (ACQ-BLEU) and
with our SURF (ACQ);

• Asynchronous ACQ RL architecture with the
standard BLEU reward (Async-ACQ-BLEU)
and with our SURF (Async-ACQ);

• Synchronous A2C RL architecture with the
standard BLEU reward (A2C-BLEU) and
with our SURF (A2C);

• Asynchronous A2C RL architecture with the
standard BLEU reward (A3Q-BLEU) and
with our SURF (A3C).

Each model was trained on the OpenSubti-
tles dataset and tested on both OpenSubtitles (in-
domain) and IWSLT (out-of-domain) test sets.

By choosing this selection of models we are able
to do the following: (a) generate the benchmark
result using the Transformer baseline; (b) exhibit
the advantage of SURF over the BLEU reward;
and finally (c) explore the performance of SURF
within the family of the multi-agent models (ACQ,
Async-ACQ, A2C and A3C).

We used the standard set of MT evaluation
metrics: BLEU (Papineni et al., 2002) and ME-
TEOR (Denkowski and Lavie, 2014). We per-
formed significance testing via bootstrap resam-
pling using the Multeval tool (Clark et al.,
2011).

6 Results

6.1 Performance on Automatic Evaluation
Metrics

Results for the OpenSubtitles test set are in Table
1. They show that all of our model variants outper-
form the Transformer benchmark (+1.5 BLEU on
average) with the A3C model performing the best
(+2.5 BLEU vs. Transformer) while the Async-
ACQ model is the second best performing vari-
ant being (+1.2 BLEU vs. Transformer). Mostly,
our unsupervised reward contributes around +0.5
BLEU to the performance of each model when
trained with the BLEU reward. Especially high
improvement of +7.5 BLEU is observed for A3C.
We attribute this result to the BLEU reward spar-
sity and hence impossibility to properly learn the
relative improvement over the average for the ac-
tions as modelled by the advantage function. Note
that Q-learning learns the absolute reward which is
easier to model in this sparsity condition. This spar-
sity is particularly detrimental in the asynchronous
setting, where the updates of parallel agents seem
to exhibit too much variance to be useful. Those
observations in the Advantage learning setting em-
phasise the important potential of our dense reward
to elicit the benefits of different RL architectures.

Model B M B M
Transformer 33.3 29.9

BLEU SURF
ACQ 34.6? 30.7? 35.2?† 31.0?†

Async-ACQ 35.0? 30.9? 35.5?† 31.1?†

A2C 32.9? 29.9? 33.4?† 29.9?

A3C (Async-A2C) 28.3? 27.9? 35.8?† 31.2?†

Table 1: Results for the OpenSubtitles German-English
test set. We report BLEU (B) and METEOR (M) scores.
The symbol ? indicates statically significant changes (p-
value ≤ 0.05) as compared to the Transformer model
while † indicates statically significant changes (p-value
≤ 0.05) as compared to the BLEU variant of the same
RL-based architecture. The best result is highlighted in
bold.

To probe the generalisation capacity of our mod-
els in the out-of-domain scenario, we have applied
our models to the IWSLT test set. As shown in
Table 2, the performance drop for the Transformer
model is much higher than for our RL models (-6
BLEU vs. -2.4 BLEU on average). The Async-
ACQ is the best-performing model on both met-
rics with the ACQ model being the second best
(+6.3 BLEU and +5.8 BLEU vs. Transformer, re-
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Model B M B M
MIXER‡ (Ranzato et al., 2015) 20.7 - - -
AC‡ (Bahdanau et al., 2016) 28.5 - - -
ERAC‡ (Dai et al., 2018) 29.0 30.6 - -
SAC-BLEU‡ (Ive et al., 2021) 29.6 31.0 - -
SAC-Unsuper‡ (Ive et al., 2021) 29.8 31.2 - -
Transformer 27.3 29.5 - -

BLEU SURF
ACQ 32.4? 32.7? 33.1?† 33.1?†

Async-ACQ 32.8? 32.7? 33.6?† 33.3?†

A2C 29.4? 31.0? 30.2?† 31.0?

A3C (Async-A2C) 22.2? 27.6? 32.8?† 32.8?†

Table 2: Results for the IWSLT 2014 German-English test set. We report BLEU (B) and METEOR (M) scores.
The symbol ? indicates statically significant changes (p-value≤ 0.05) as compared to the Transformer model while
† indicates statically significant changes (p-value ≤ 0.05) as compared to the BLEU variant of the same RL-based
architecture. The best result is highlighted in bold.

spectively). Mostly, our unsupervised reward con-
tributes around +0.8 BLEU to the performance of
each model. Especially high improvement of +10
BLEU is again observed for A3C showing the po-
tential of SURF.

By way of offering a guideline of our model per-
formance, we also report the scores of the previous
SOTA on the IWSLT test set. Though those results
are not directly comparable to our results as the
pre-processing conditions are different: previous
models have mainly applied a cut-off vocabulary
implying the presence of unknown words in the
training data while we are using the subword units
that dispense us of the unknown words.

Note that, on both test sets, the asynchronous
variants (Async-ACQ and A3C) performed better
than their corresponding synchronous counterparts
(ACQ and A2C respectively). We emphasise the
potential of asynchronicity with our dense reward
to positively influence performance.

Additionally, regarding the usage of Q- or V-
critics: both Q-version Async-ACQ and V-version
A3C have shown comparable performance on the
OpenSubtitles dataset. However, the Q-version
Async-ACQ has achieved better performance on
the IWSLT test set. We hypothesise that this may
be due to the fact that the Q-critic network in the
ACQ architecture outputs the state-action values of
the entire vocabulary at each timestep rather than
a single state value (as in the V-critic network).
Hence it performs a more fine-grained policy evalu-
ation with lower variance in the critic outputs, lead-
ing to a more stable model overall. A more thor-
ough investigation would lead to better insights.

6.2 Performance on Semantic-level
Evaluation Metrics

As with the automatic evaluation results, similar
conclusions could be drawn from the results of the
assessment with the three semantic metrics used in
the reward formulation: Sentence Fluency, Token-
level Semantic Similarity (TLSS) and Sentence-
level Semantic Similarity (SLSS) scores (See Ap-
pendix A.6 for the description of the TLSS score).

For the IWSLT test set, as shown on Table 4,
there is a noticeable increase in the Fluency score
across our models (in comparison to the Trans-
former). ACQ and Async-ACQ are also able to
achieve distinctly better TLSS ans SLSS scores
than the Transformer model. We observe that vari-
ants of ACQ and Async-ACQ models achieve sim-
ilar performance. When comparing the BLEU and
SURF variants, the BLEU variants of A2C and
A3C models obtain higher Fluency scores but score
less on TLSS and SLSS. This can be explained by
fact that BLEU RL sentences are prone to be more
verbose, repeating the same meaning in different
words. The results for OpenSubtitles show similar
tendencies (see Appendix A.7).

6.3 Human Evaluation

Finally, to gain deeper insights, we performed hu-
man evaluation on the translations of the OpenSub-
titles and IWSLT 2014 test sets by the Transformer,
Async-ACQ-BLEU and the best performing SURF
variants (A3C for OpenSubtitles and Async-ACQ
for IWSLT).

For this human analysis, we randomly selected
50 test samples from each test set. A rank of quality
is assigned by the human evaluator (second author,
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Source all dies wurzelt in der mythologischen vergangenheit . das eigenartige an diesen großen häusern ,
in denen aufgrund der mischehen sechs oder sieben sprachen gesprochen werden , ist jedoch , dass
man niemals jemanden hört , der eine sprache lernt .

Target and this is all rooted in the mythological past , yet the curious thing is in these long houses , where
there are six or seven languages spoken because of intermarriage , you never hear anyone practicing
a language .

Transformer all this mythology in the mythological context , which is curious about these great houses , judging
by the patter of six or seven languages , however , you never hear anyone learning a language .

Async-ACQ-BLEU the strange thing about these big houses where they speak six or seven languages , is that you never
hear anyone who learns a language .

Async-ACQ all this rambling in the mythological past , the curious thing about these big houses where they speak
six or seven languages based on the basic language is that you never hear anyone who learns a
language.

Table 3: Examples of translation generated by Transformer, ACQ-BLEU and Async-ACQ. We also report the
original source sequence (SOURCE) and its reference (TARGET). The best translation is highlighted in italics.

Model Fluency TLSS SLSS Fluency TLSS SLSS
Transformer 1.024 2.454 2.339 - - -

BLEU SURF
ACQ 1.029? 2.456? 2.350? 1.029?† 2.457?† 2.357?†

Async-ACQ 1.032? 2.455? 2.350? 1.029?† 2.456?† 2.350?†

A2C 1.035? 2.451? 2.300? 1.027?† 2.454?† 2.339?†

A3C (Async-A2C) 1.047? 2.422? 2.267? 1.027?† 2.454?† 2.342?†

Table 4: Results for the IWSLT 2014 German-English test set. We report Sentence Fluency, Token-level Seman-
tic Similarity and Sentence-level Semantic Similarity scores. Also, the symbol ? indicates statically significant
changes (p-value ≤ 0.05) as compared to the scores of Transformer model while † indicates statically significant
changes (p-value ≤ 0.05) as compared to the BLEU variant of the same RL-based architecture. The best result is
highlighted in bold. Note that some of the improvements are beyond the displayed precision of 3 decimal points.

Test Set Transformer BLEU SURF
OS 0.10 0.08 0.20
IW 0.06 0.48 0.60

Table 5: Human ranking results comparing the Open-
Subtitles (OS) test outputs for Async-ACQ-BLEU and
A3C and the IWSLT 2014 (IW) test outputs for Async-
ACQ-BLEU and Async-ACQ. The best result is high-
lighted in bold.

fluent speaker of both English and German) from
1 to 3, allowing ties. Following the common prac-
tice in MT, each system was then assigned a score
which reflects how often on average it was judged
to be better or equal to other systems (Bojar et al.,
2017). Table 5 shows that most of our variants
have higher evaluation scores than the Transformer
model. In particular, on the IWSLT test set, both
Async-ACQ variants outperform the Transformer
by a large margin. As compared to the best BLEU
model, the A3C and Async-ACQ models perform
significantly better on both the OpenSubtitles and
the IWSLT test sets (+0.12 point). Table 3 shows
translations generated by the three models on the
IWSLT test set. Note that Async-ACQ demon-
strates the best fluency and adequacy.

7 Conclusion

We have presented SURF, a new unsupervised
semantic-level reward function, efficiently address-
ing the reward sparsity issue and mimicking human
evaluation by considering both sentence fluency
and semantic similarity. We have explored this re-
ward for a new family of Actor-Critic Transformer-
based Architectures with synchronous and asyn-
chronous variants that promote the exploration of
the search space. We demonstrate that SURF shows
strong potential to elicit the benefits of various
RL architectures. Our results show that it outper-
forms the traditional sparse BLEU reward for the
same architectures in the automatic, semantic-level
and human evaluation. Our code is available at
https://github.com/AtomAnu/SURF.

There are several directions to take our work fur-
ther: we can investigate the utility of our reward for
other architectures and we can also explore differ-
ent sampling strategies for each of the agents of our
multi-agent models. Finally, we have investigated
only two datasets to ensure comparability to the ex-
isting benchmarks. A more thorough investigation
with more datasets and language pairs is needed to
fully assess the scope of our contribution.

4516

https://github.com/AtomAnu/SURF


References
Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu,

Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron
Courville, and Yoshua Bengio. 2016. An actor-critic
algorithm for sequence prediction. arXiv preprint
arXiv:1607.07086.

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu,
Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron
Courville, and Yoshua Bengio. 2017. An actor-critic
algorithm for sequence prediction.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. Cite
arxiv:1409.0473Comment: Accepted at ICLR 2015
as oral presentation.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? . FAccT ’21, page 610–623, New York,
NY, USA. Association for Computing Machinery.
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A Appendix

A.1 Ethics Considerations

We are aware of the discussions around the risks
related to unintended harmful effects and uses, en-
vironmental consequences, fairness and privacy
considerations of large language models in gen-
eral (Bender et al., 2021), and machine translation
models specifically (Wang et al., 2021). We note
here that our models constitute a primarily theo-
retical contribution and were trained and tested
on standard datasets. Before deployment in a pro-
duction setting our methodology is subject to re-
training with data pre-processed in the appropriate
way (as our model is not equipped with relevant
security, privacy and fairness mechanisms), system-
atic debugging, extensive simulation, testing and
validation under the supervision of experts.

A.2 Domain Distance

To justify that the IWSLT test set is indeed con-
sidered out-of-domain, we have trained a German
language model using the source sentences (in Ger-
man) from the OpenSubtitles training set. For this
we used the fairseq toolkit (Ott et al., 2019). The
resulting difference in language model perplex-
ity values for the OpenSubtitles and IWSLT test
sets (45.52 and 555.71, respectively) is important
enough to justify that IWSLT is considered out-of-
domain.

A.3 Implementation Details

A.3.1 The Actor
OpenNMT Transformer Implementation In
the OpenNMT framework (Klein et al., 2017),
the Transformer architecture is implemented
slightly differently from the original architecture in

(Vaswani et al., 2017). Its implementation follows
the up-to-date implementation of the tensor2tensor
framework (Vaswani et al., 2018), created by the
authors of (Vaswani et al., 2017). The main differ-
ence lies in the normalisation technique used in the
Transformer. That is, pre-normalisation is applied
in each sub-layer of the encoder and the decoder
instead of post-normalisation. The output of each
sub-layer with pre-normalisation can be expressed
as follows:

x+ Sublayer(LayerNorm(x)) (24)

In the original architecture where post-
normalisation is used, layer normalisation
(LayerNorm) is applied after the summation
(x+ Sublayer(x)), as shown below:

LayerNorm(x+ Sublayer(x)) (25)

Step-wise Decoding and Exploration Strategies
During the joint AC training, instead of just com-
puting the policy distributions as the output, the
actor would perform step-wise decoding by select-
ing a token to generate at each timestep, given the
encoded source sequence and the previously gener-
ated tokens. As mentioned before, this is done to
ensure that there would be no exposure bias during
inference as the model is trained to condition the
generation process using its own outputs.

To allow each agent to be diverse in their ex-
ploration strategies, the actor can operate in two
possible main modes of token selection. In the first
mode, the actor selects a token at each timestep us-
ing the Top-K sampling method (Fan et al., 2018),
in which a token is sampled from K tokens with
the highest probabilities. In the second mode of
operation, the actor performs token selection based
on Nucleus sampling (Holtzman et al., 2020). In
the Nucleus sampling method, a token is chosen
from the smallest possible set of tokens that has
an accumulated probability equal or higher than a
pre-defined probability value (p). For instance, if
p is set to 1, the actor would perform token selec-
tion from the entire vocabulary. Similarly, if the
value of K for Top-K sampling is set to the vocab-
ulary size, the actor would sample from the entire
vocabulary as well.

The actor also incorporates the notion of Tem-
perature to further increase the diversity of explo-
ration strategies. A pre-defined value of Tempera-
ture (temp) is used to increase the probability of
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probable tokens while reducing others that are not
probable.

p(wi|ŷ1:t−1) =
exp (li/temp)∑
j exp (lj/temp)

(26)

where li is the logit of the token wi. One can
observe that, as temp decreases, the probability of
probable tokens would increase. If temp is set to 1,
the above expression would simplify to the normal
softmax operation.

We have empirically found that the sampling
Temperature should not be applied in conjunction
with Top-K or Nucleus sampling as it leads to
highly greedy policies, especially when K or p
is already low. It should be applied on when the
agent samples from the entire vocabulary. After
experimenting with different configurations of ex-
ploration strategies, we found that Top-K sampling
was the most effective.

A.3.2 The Critic
The critic architecture follows the Transformer ar-
chitecture, with two major differences.

Reference Encoding The first difference be-
tween the actor and the critic is that the encoder of
the critic encodes the reference sequences instead
of the source sequences. The reason is to allow
to critic to evaluate each generated sequence by
comparing with its reference sequence.

Output Layer The second difference is the out-
put layer used in the critic. In the Q-critic model,
its output layer is a one-layer feed-forward network
with the output dimension equal to the vocabulary
size of the target language. This is because the
Q-critic model outputs the state-action value (i.e.,
Q-value) for every word in the vocabulary.

For the V-critic model, its output layer also con-
tains a one-layer feed-forward network with the
output size of 1. Given a generated sequence, the
critic outputs the state value (i.e., V-value) for each
token in that sequence.

A.4 Hyper-parameters

A.4.1 Actor Pre-training
Table 6 lists all the hyper-parameters used during
actor pre-training.

A.4.2 Critic Pre-training
Table 7 lists all the hyper-parameters used during
critic pre-training.

Hyper-parameter Value
Optimizer Adam
Adam Beta 1 0.9
Adam Beta 2 0.998
Learning Rate 2
LR Decay Method noam
Warmup Steps 6000
Batch Size 4096
Gradient Accumulation Steps 3
Source Vocabulary Size 100000
Target Vocabulary Size 100000
Word Embedding Size 512
Hidden Layers Size 512
Encoder Layers 6
Decoder Layers 6
Attention Heads 8

Table 6: List of the hyper-parameters used during the
actor pre-training stage.

Hyper-parameter Value
Optimizer Adam
Adam Beta 1 0.9
Adam Beta 2 0.998
Learning Rate 0.001
LR Decay Rate 0.9
LR Decay Steps 1000
Batch Size 4096
Gradient Accumulation Steps 3
Source Vocabulary Size 100000
Target Vocabulary Size 100000
Word Embedding Size 512
Hidden Layers Size 512
Encoder Layers 6
Decoder Layers 6
Attention Heads 8
γ (Discount Factor) 0.99
λvar (Q-critic) 0.25
Multi-step Return (V-critic) 5
wF (Sentence Fluency Weight) 1
wS (SLSS Weight) 1

Table 7: List of the hyper-parameters used during the
critic pre-training stage.

A.4.3 Joint Actor-Critic Training
Table 8 lists all the hyper-parameters used during
synchronous and asynchronous joint Actor-Critic
training.

A.5 Computational Resource

Each of our models was trained on a GPU-
accelerated instance with four NVIDIA V-100
SXM2 GPUs.

A.6 Token-level Semantic Similarity

The Token-level Semantic Similarity (TLSS) score
is used as one of the semantic-level evaluation met-
rics. It can be used as an additional score metric
in the reward function as well. TLSS measures the
semantic similarity between tokens in the gener-
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Hyper-parameter Value
Training Mode Sync Async
Optimizer Adam SharedAdam
Adam Beta 1 0.9 0.9
Adam Beta 2 0.998 0.998
Actor LR 0.000001 0.000001
Critic LR 0.00001 0.00001
LR Decay Rate 0.9 0.9
LR Decay Steps 1000 1000
Batch Size 2000 2000
Grad. Accum. 1 1
γ 0.99 0.99
λxent 0.01 0.01
λvar 0.25 0.25
Multi-step Return 5 5
wF 1 1
wS 1 1
K 300 [100,200,500]
ε 0.2 -

Table 8: List of listing the hyper-parameters used dur-
ing synchronous and asynchronous joint Actor-Critic
training stage.

ated sequence and its source sequence. Following
the methodology adopted in the SentSim evalua-
tion metric (Song et al., 2021), each token in the
source and generated sequences is passed to a cross-
lingual language model to obtain its cross-lingual
embedding. Then, each token in the source se-
quence (xi) is matched to a token in the generated
sequence (ŷj) with the highest cosine similarity
value to compute the recall. Similarly, the preci-
sion value is computed by matching each token
in the generated sequence to a token in the source
sequence based on cosine similarity. As a results,
the recall and precision of a generated sequence
can be expressed as follows:

R(ŷ1:t,X) =
1

|X|
∑

xi∈X
max
ŷj∈ŷ1:t

xnxei · ŷnxej (27)

P (ŷ1:t,X) =
1

|ŷ1:t|
∑

ŷj∈ŷ1:t

max
xi∈X

xnxei · ŷnxej

(28)
where xnxei and ŷnxej denote the pre-normalised

(i.e., xnxei =
xxe
i

||xxe
i ||

) cross-lingual embeddings of
xi and ŷj , respectively. Using the precision and
recall, the final TLSS score is defined as the F1
measure.

TLSS(ŷ1:t,X) = F (ŷ1:t,X) (29)

= 2
P (ŷ1:t,X) ·R(ŷ1:t,X)

P (ŷ1:t,X) +R(ŷ1:t,X)
(30)

The TLSS scores are computed using the
BERTScore tool (Zhang et al., 2020).

A.7 Semantic-level Evaluation on the
OpenSubtitles Test Set

For the OpenSubtitles test set, as shown in Ta-
ble 9, there is a slight increase in the Fluency
scores for all our model as compared to the Trans-
former. There are more apparent increases in the
TLSS and SLSS scores. Among all the variants,
the ACQ model achieves the highest on all three
scores. The Async-ACQ model is the second best
with its scores being very close to the scores of the
ACQ model. When comparing the reward func-
tions, the BLEU and SURF variants of the ACQ
and Async-ACQ models achieve similar perfor-
mance. However, for the A2C and A3C models,
the BLEU variants achieve higher Fluency scores
than the SURF variants but their SLSS scores are
noticeably lower than that of SURF. This can be ex-
plained by fact that BLEU RL sentences are prone
to be more verbose, repeating the same content.
This was observed during human evaluation (See
Subsection 6.3).

4521



Model Fluency TLSS SLSS Fluency TLSS SLSS
Transformer 1.036 2.450 2.360 - - -

BLEU SURF
ACQ 1.037? 2.455? 2.384? 1.037?† 2.456?† 2.386?†

Async-ACQ 1.037? 2.455? 2.387? 1.037?† 2.455?† 2.385?†

A2C 1.039? 2.455? 2.377? 1.037?† 2.454?† 2.379?†

A3C (Async-A2C) 1.043? 2.443? 2.347? 1.037?† 2.454?† 2.383?†

Table 9: Results for the OpenSubtitles German-English test set. We report Sentence Fluency, Token-level Seman-
tic Similarity and Sentence-level Semantic Similarity scores. Also, the symbol ? indicates statically significant
changes (p-value ≤ 0.05) as compared to the scores of Transformer model while † indicates statically significant
changes (p-value ≤ 0.05) as compared to the BLEU variant of the same RL-based architecture. The best result is
highlighted in bold. Note that some of the improvements are beyond the displayed precision of 3 decimal points.
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