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Abstract

Distillation efforts have led to language mod-
els that are more compact and efficient without
serious drops in performance. The standard
approach to distillation trains a student model
against two objectives: a task-specific objec-
tive (e.g., language modeling) and an imitation
objective that encourages the hidden states of
the student model to be similar to those of the
larger teacher model. In this paper, we show
that it is beneficial to augment distillation with
a third objective that encourages the student
to imitate the causal dynamics of the teacher
through a distillation interchange intervention
training objective (DIITO). DIITO pushes the
student model to become a causal abstrac-
tion of the teacher model – a faithful model
with simpler causal structure. DIITO is fully
differentiable, easily implemented, and com-
bines flexibly with other objectives. Compared
against standard distillation with the same set-
ting, DIITO results in lower perplexity on the
WikiText-103M corpus (masked language mod-
eling) and marked improvements on the GLUE
benchmark (natural language understanding),
SQuAD (question answering), and CoNLL-
2003 (named entity recognition).

1 Introduction

Large pretrained language models have improved
performance across a wide range of NLP tasks, but
can be costly due to their large size. Distillation
seeks to reduce these costs while maintaining per-
formance by training a simpler student model from
a larger teacher model (Hinton et al., 2015; Sun
et al., 2019; Sanh et al., 2019; Jiao et al., 2019).

Hinton et al. (2015) propose model distillation
with an objective that encourages the student to
produce output logits similar to those of the teacher
while also supervising with a task-specific objec-
tive (e.g., sequence classification). Sanh et al.
(2019), Sun et al. (2019), and Jiao et al. (2019)

∗Equal contribution. ¶Correspondence authors.

adapt this method, strengthening it with additional
supervision to align internal representations be-
tween the two models. However, these approaches
may push the student model to match all aspects
of internal states of the teacher model irrespective
of their causal role in the network’s computation.
This motivates us to develop a method that focuses
on aligning the causal role of representations in the
student and teacher models.

We propose augmenting standard distillation
with a new objective that pushes the student to
become a causal abstraction (Beckers and Halpern,
2019; Beckers et al., 2020; Geiger et al., 2021a)
of the teacher model: the simpler student will
faithfully model the causal effect of teacher rep-
resentations on output. To achieve this, we employ
the interchange intervention training (IIT) method
of Geiger et al. (2021b). The distillation inter-
change intervention training objective (DIITO)
aligns a high-level student model with a low-level
teacher model and performs interchange interven-
tions (swapping of aligned internal states); during
training the high-level model is pushed to conform
to the causal dynamics of the low-level model.

Figure 1 shows a schematic example of this pro-
cess. Here, hidden layer 2 of the student model
(bottom) is aligned with layers 3 and 4 of the
teacher model. The figure depicts a single inter-
change intervention replacing aligned states in the
left-hand models with those from the right-hand
models. This results in a new network evolution
that is shaped both by the original input and the
interchanged hidden states. It can be interpreted as
a certain kind of counterfactual as shown in Fig-
ure 1: what would the output be for the sentence
“I ate some ⟨MASK⟩.” if the activation values for the
second token at the middle two layers were set
to the values they have for the input “The water
⟨MASK⟩ solid.”? DIITO then pushes the student
model to output the same logits as the teacher, i.e.,
matching the teacher’s output distribution under
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Figure 1: An IIT update in the context of masked language modelling (MLM). The teacher network (top) has 6
layers and the student (bottom) has 3 layers, and we align layer 2 in the student with layers 3–4 in the teacher.
Solid lines are feed-forward connections, red lines show the flow of backpropagation, and dashed lines indicate
interchange interventions. In this case, the student originally predicted the token “salad” under the interchange
intervention, while the teacher predicted the token “pizza” under an aligned interchange intervention. DIITO trains
the student to minimize the divergence between the student logits and the teacher logits under the interchange
intervention. This updates the student to conform to causal dynamics of the teacher.

the counterfactual setup.
To assess the contribution of distillation with

DIITO, we begin with BERTBASE (Devlin et al.,
2019) and distill it under various alignments be-
tween student and teacher while pretraining on the
WikiText-103M corpus (Merity et al., 2016) achiev-
ing −2.24 perplexity on the MLM task compared to
standard DistilBERT trained on the same data. We
then fine-tune the best performing distilled mod-
els and find consistent performance improvements
compared to standard DistilBERT trained with the
same setting on the GLUE benchmark (+1.77%),
CoNLL-2003 name-entity recognition (+0.38% on
F1 score), and SQuAD v1.1 (+2.46% on EM score).

2 Related Work

Distillation was first introduced in the context of
computer vision (Hinton et al., 2015) and has since
been widely explored for language models (Sun
et al., 2019; Sanh et al., 2019; Jiao et al., 2019).
For example, Sanh et al. (2019) propose to extract
information not only from output probabilities of
the last layer in the teacher model, but also from in-

termediate layers in the fine-tuning stage. Recently,
Rotman et al. (2021) adapt causal analysis methods
to estimate the effects of inputs on predictions to
compress models for better domain adaptation. In
contrast, we focus on imbuing the student with the
causal structure of the teacher.

Interventions on neural networks were originally
used as a structural analysis method aimed at il-
luminating neural representations and their role
in network behavior (Feder et al., 2021; Pryzant
et al., 2021; Vig et al., 2020; Elazar et al., 2021;
Giulianelli et al., 2020; Geiger et al., 2020, 2021a).
Geiger et al. (2021b) extend these methods to net-
work optimization. We contribute to this existing
research by adapting intervention-based optimiza-
tion to the task of language model distillation.

3 Causal Distillation

Here, we define our distillation training procedure.
See Algorithm 1 for a summary.

GETVALS. The GETVALS operator is an
activation-value retriever for a neural model. Given
a neural model M containing a set of neurons N
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Algorithm 1 Causal Distillation via Interchange
Intervention Training

Require: Student model S, teacher model T ,
student output neurons Ny

S , alignment Π, shuf-
fled training dataset D.
1: S.train()
2: T .eval()
3: D′ = random.shuffle(D)
4: Ny

T = Π(Ny
S)

5: while not converged do
6: for {x1,y1}, {x2,y2} in iter(D, D′) do
7: NS = sample_student_neurons()
8: NT = Π(NS)
9: with no_grad:
10: Ta = SETVALS(
11: T ,NT , GETVALS(T ,x1,NT ))
12: oT = GETVALS(Ta,x2,N

y
T )

13: Sa = SETVALS(
14: S,NS , GETVALS(S,x1,NS))
15: oS = GETVALS(Sa,x2,N

y
S)

16: LDIITO = get_loss(oT , oS)
17: Calculate LMLM, LCE, LCos
18: L = LMLM + LCE + LCos + LDIITO

19: L.backward()
20: Step optimizer
21: end while

(an internal representations) and an appropriate in-
put x, GETVALS(M,x,N) is the set of values
that N takes on when processing x. In the case
that N represents the neurons corresponding to the
final output, GETVALS(M,x,N) is the output of
model M when processing x (i.e., output from a
standard forward call of a neural model).

SETVALS. The SETVALS operator is a function
generator that defines a new neural model with a
computation graph that specifies an intervention
on the original model M (Pearl, 2009; Spirtes
et al., 2001). SETVALS(M,N,v) is the new neu-
ral model where the neurons N are set to constant
values v. Because we overwrite neurons with v
in-place, gradients can back-propagate through v.

Interchange Intervention. An interchange in-
tervention combines GETVALS and SETVALS op-
erations. First, we randomly sample a pair of exam-
ples from a training dataset (x1,y1), (x2,y2) ∈ D.
Next, where N is the set of neurons that we are
targeting for intervention, we define Mx1

N to abbre-
viate the new neural model as follows:

SETVALS
(
M,N, GETVALS(M,x1,N)

)
(1)

This is the version of M obtained from setting the
values of N to be those we get from processing
input x1. The interchange intervention targeting
N with x1 as the source input and x2 as the base
input is then defined as follows:

INTINV(M,N,x1,x2)
def
=

GETVALS(Mx1
N ,x2,N

y) (2)

where Ny are the output neurons. In other words,
INTINV(M,N,x1,x2) is the output state we get
from M for input x2 but with the neurons N set to
the values obtained when processing input x1.

DIITO. DIITO employs T as the teacher
model, S as the student model, D as the training
inputs to both models, and Π as an alignment that
maps sets of student neurons to sets of teacher neu-
rons. For each set of student neurons NS in the
domain of Π, we define DIITO loss as:

LDIITO
CE

def
=

∑

x1,x2∈D
CES

(
INTINV(S,NS ,x1,x2),

INTINV(T ,Π(NS),x1,x2)
)

(3)

where CES is the smoothed cross-entropy loss mea-
suring the divergences of predictions, under inter-
change, between the teacher and the student model.

Distillation Objectives. We adopt the standard
distillation objectives from DistilBERT (Sanh et al.,
2019) (defined formally in Appendix A.1): LMLM
for the task-specific loss for the student model, LCE
for the loss measuring the divergence between the
student and teacher outputs on masked tokens, and
LCos for the loss measuring the divergence between
the student and teacher contextualized representa-
tions on masked tokens in the last layer. Our final
training objective for the student is a linear com-
bination of the four training objectives reviewed
above: LMLM, LCE, LCos, and LDIITO

CE . In a further
experiment, we introduce a fifth objective LDIITO

Cos
which is identical to LCos, except the teacher and
student are undergoing interchange interventions
(see Appendix A.2 for details).

4 Experimental Set-up

We adapt the open-source Hugging Face implemen-
tation for model distillation (Wolf et al., 2020).1

We distill our models on the MLM pretraining
task (Devlin et al., 2019). We use large gradient

1https://github.com/huggingface/transformers
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Pretraining WikiText GLUE CoNLL-2003 SQuAD v1.1
Model Layers Tokens Perplexity Score acc F1 EM F1

BERTBASE (Devlin et al., 2019) 12 3.3B 10.27 (–)† 82.75 (–) 96.40 (–) 92.40 (–) 80.80 (–) 88.50 (–)
(Wikipedia+BookCorpus)
DistilBERT (Sanh et al., 2019) 6 3.3B 17.48 (–)† 79.59 (–) 98.39 (–)† 93.10 (–)† 77.70 (–) 85.80 (–)
(Wikipedia+BookCorpus)

DistilBERT (WikiText) 3 0.1B 29.51 (0.32) 67.42 (1.10) 97.88 (0.04) 88.89 (0.29) 26.04 (0.93) 68.38 (0.77)
DIITOMIDDLE (WikiText) 3 0.1B 26.04 (0.93) 69.30 (1.08) 98.03 (0.04) 89.69 (0.18) 58.74 (0.69) 70.23 (0.57)
DIITOLATE (WikiText) 3 0.1B 25.97 (0.63) 69.01 (1.69) 98.03 (0.03) 89.82 (0.18) 58.75 (0.49) 70.21 (0.41)
DIITOFULL (WikiText) 3 0.1B 24.85 (0.58) 69.36 (0.87) 98.02 (0.03) 89.67 (0.16) 58.72 (0.67) 70.50 (0.56)

DistilBERT (WikiText) 6 0.1B 15.69 (1.51) 75.80 (0.42) 98.48 (0.03) 92.12 (0.23) 70.23 (0.75) 79.99 (0.55)
DIITOMIDDLE (WikiText) 6 0.1B 14.32 (0.12) 76.71 (0.47) 98.56 (0.04) 92.47 (0.19) 71.93 (0.31) 81.32 (0.23)
DIITOLATE (WikiText) 6 0.1B 14.93 (0.23) 76.80 (0.34) 98.51 (0.02) 92.36 (0.27) 71.47 (0.28) 81.01 (0.23)
DIITOFULL (WikiText) 6 0.1B 13.59 (0.25) 76.67 (0.21) 98.53 (0.04) 92.35 (0.24) 71.96 (0.29) 81.33 (0.25)

DIITOFULL+Random (WikiText) 6 0.1B 13.95 (0.18) 76.84 (0.29) 98.54 (0.03) 92.41 (0.24) 71.90 (0.54) 81.27 (0.39)
DIITOFULL+Masked (WikiText) 6 0.1B 13.99 (0.16) 76.80 (0.32) 98.55 (0.03) 92.45 (0.18) 71.77 (0.59) 81.09 (0.42)
DIITOFULL+LDIITO

Cos (WikiText) 6 0.1B 13.45 (0.19) 77.14 (0.37) 98.54 (0.04) 92.35 (0.24) 71.94 (0.31) 81.35 (0.23)

Table 1: Performance on the development sets of the WikiText, GLUE benchmark, CoNLL-2003 corpus for
the name-entity recognition task, and SQuAD v1.1 for the question answering task. The score is the averaged
performance scores with standard deviation (SD) for all tasks across 15 distinct runs. †Numbers are imputed from
released models on Hugging Face (Wolf et al., 2020).

accumulations over batches as in Sanh et al. (2019)
for better performance. Specifically, we distill all
models for three epochs for an effective batch size
of 240. In contrast to the setting of 4K per batch in
BERT (Devlin et al., 2019) and DistilBERT (Sanh
et al., 2019), we found that small effective batch
size works better for smaller dataset. We weight
all objectives equally for all experiments. With our
new objectives, the distillation takes approximately
9 hours on 4 NVIDIA A100 GPUs.

Student and Teacher Models. Our two students
have the standard BERT architecture, with 12 heads
with a hidden dimension of 768. The larger student
has 6 layers, the smaller 3 layers. Our pretrained
teacher has the same architecture, except with 12
layers. Following practices introduced by Sanh
et al. (2019), we initialize our student model with
weights from skipped layers (one out of four layers)
in the teacher model. We use WikiText for distilla-
tion to simulate a practical situation with a limited
computation budget. We leave the exploration of
our method on larger datasets for future research.

Alignment. Our teacher and student BERT mod-
els create columns of neural representations above
each token with each row created by the feed-
forward layer of a Transformer block, as in Fig-
ure 1. We define LT and LS to be the number of
layers in the student and teacher, respectively. In
addition, we define Sj

i and T j
i to be the representa-

tions in the ith row and jth column in the student
and teacher, respectively. An alignment Π is a par-
tial function from student representations to sets of

teacher representations. We test three alignments:

FULL Π is defined on all student representations:
Π(Sj

i ) = {T j
4i+k : 0 ≤ k < LT /LS}

MIDDLE Π is defined for the row LS � 2:
Π(Sj

LS�2) = {T j
LT �2}

LATE Π is defined on the student representations
in the first and second rows:
Π(Sj

1) = {T j
LT −2} and Π(Sj

2) = {T j
LT −1}

For each training iteration, we randomly
select one aligned student layer to perform
the interchange intervention, and we randomly
select 30% of token embeddings for align-
ment for each sequence. We experiment
with three conditions with the FULL alignment:
consecutive tokens (DIITOFULL), random to-
kens (DIITOFULL+Random) and masked tokens
(DIITOFULL+Masked). We also include LDIITO

Cos to
the FULL alignment (DIITOFULL+LDIITO

Cos ).

5 Results

Language Modeling. We first evaluate our models
using perplexity on the held-out evaluation data
from WikiText. As shown in Table 1, DIITO
brings performance gains for all alignments. Our
best result is from the FULL alignment with the
LCos (DIITOFULL+LDIITO

Cos ), which has −2.24 per-
plexity compared to standard DistilBERT trained
with the same amount of data.

GLUE. The GLUE benchmark (Wang et al.,
2018) covers different natural language understand-
ing tasks. We report averaged GLUE scores on the
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Figure 2: Perplexity score distribution for the develop-
ment set of WikiText of models trained in a low-resource
setting. The best model is the one with the richest align-
ment structure.

development sets by fine-tuning our distilled mod-
els in Table 1. Individual task performance scores
for each GLUE task are included in Table 2 in the
Appendix. The results suggest that distilled mod-
els with DIITO lead to consistent improvements
over standard DistilBERT trained under the same
setting, with our best result (DIITOFULL+LDIITO

Cos )
being +1.77% higher.

Named Entity Recognition. We also evalu-
ate our models on the CoNLL-2003 Named Entity
Recognition task (Tjong Kim Sang and De Meul-
der, 2003). We report accuracy and Macro-F1
scores on the development sets. We fine-tune our
models for three epochs. Our best performing
model (DIITOMIDDLE) numerically surpasses not
only standard DistilBERT (+0.38% on F1 score)
trained under the same setting, but also its teacher,
BERTBASE (+0.05% on F1 score). Though these
improvements are small, in this case distillation
produces a smaller model with better performance.

Question Answering. Finally, we evaluate on a
question answering task, SQuAD v1.1 (Rajpurkar
et al., 2016). We report Exact Match and Macro-
F1 on the development sets as our evaluation met-
rics. We fine-tune our models for two epochs.
DIITO again yields marked improvements (Ta-
ble 1). Our best result is from the vanilla FULL
alignment (DIITOFULL), with +2.46% on standard
DistilBERT trained under the same setting.

Low-Resource Model Distillation We experi-
ment with an extreme case in a low-resource setting
where we only distill with 15% of WikiText, keep-
ing other experimental details constant. Our results
suggest that DIITO training is also beneficial in
extremely low-resource settings (Figure 2).

Layer-wise Ablation We further study the ef-
fect of DIITO training with respect to the size of
the student model through a layer-wise ablation
experiment. As shown in Figure 3, we compare
GLUE performance for models trained with stan-

Figure 3: GLUE score distribution across 15 distinct
runs of students in different sizes. Following the evalua-
tion for BERT (Devlin et al., 2019). we exclude WNLI
for evaluation.

dard distillation pipeline and with DIITO training
(DIITOFULL). Specifically, we compute the aver-
aged GLUE scores following the same procedure
described in Section A.4. Our results suggest that
DIITO training brings consistent improvements
over GLUE tasks with smaller models booking the
greatest gains.

6 Conclusion

In this paper, we explored distilling a teacher by
training a student to capture the causal dynamics
of its computations. Across a wide range of NLP
tasks, we find that DIITO leads to improvements,
with the largest gains coming from the models
that use the richest alignment between student and
teacher. Our results also demonstrate that DIITO
performs on-par (maintaining 97% of performance
on GLUE tasks) with standard DistilBERT (Sanh
et al., 2019) while consuming 97% less training
data. These findings suggest that DIITO is a
promising tool for effective model distillation.
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A Appendix

A.1 Standard Distillation Objectives
In our setting, our teacher model T is a BERT
model, and our student model S is a shallower
BERT model with fewer layers.

Assume that we randomly draw a training exam-
ple (x1,y1) ∈ D, where x1 is the input to our mod-
els and y1 is the corresponding ground truth (the
token prediction at each masked position). We de-
note the model predictions (output logits) as T (x1)
and S(x1). Additionally, we denote the contextu-
alized representation for tokens for x1 at the last
layer as BERTT (x1) and BERTS(x1).

We adopt the three standard distillation objec-
tives of Sanh et al. (2019):

LMLM The masked language modeling loss of the
student model calculated over all examples
using the cross-entropy loss as follows:

∑

{x1,y1}∈D
CE(S(x1),y1) (4)

LCE Following Hinton et al. (2015), the smoothed
cross-entropy loss measuring the divergence
between the student and teacher outputs as
follows:

∑

x1∈D
CES(S(x1), T (x1)) (5)

LCos The cosine embedding loss defined in terms
of the final hidden states of the teacher and
the student as follows:

∑

x1∈D
COS(BERTS(x1),BERTT (x1)) (6)

As a result, comparing to standard DistilBERT,
DIITO essentially adds a new type of objective
by pushing the student model to become a causal
abstraction of the teacher model.

A.2 Causal Distillation Objectives
In addition to our causal loss LDIITO

CE , we also pro-
pose a new loss LDIITO

Cos which is identical to LCos
with interchange interventions. In this section, we
provide a formal definition for LDIITO

Cos .
We denote our teacher and student models as

T and S respectively. Using the notational con-
ventions from Section 3, we use Ny

T and Ny
S to

represent the neurons corresponding to the final

output for each model. Likewise, we use NLT
T and

NLS
S to represent the neurons representing contex-

tualized representation for each token after the final
BERT layer.

Assuming we randomly sample a pair of exam-
ples from a training dataset (x1,y1), (x2,y2) ∈ D,
we can then rewrite our causal loss LDIITO

CE by rear-
ranging Eqn. 2 and Eqn. 3 as follows:

∑

x1,x2∈D
CES

(
GETVALS(Mx1

S ,x2,N
y
S),

GETVALS(Mx1
T ,x2,N

y
T )

) (7)

where Mxi
S and Mxi

T are derived as in Eqn. 1 for
each model respectively. Crucially, Eqn. 7 can
be regarded as the causal form of the standard
smoothed cross-entropy loss with interchange in-
tervention. Likewise, we can further define the
LDIITO

Cos as:
∑

x1,x2∈D
COS

(
GETVALS(Mx1

S ,x2,N
LS
S ),

GETVALS(Mx1
T ,x2,N

LT
T )

) (8)

with adjusted interchange alignments for NLT
T and

NLS
S .

A.3 Evaluation Set-up
GLUE We fine-tune for 25 epochs for the smaller
datasets (RTE and CoLA) and 3 epochs for the oth-
ers. Following Devlin et al. (2019) and Sanh et al.
(2019), we use Matthew’s Correlation for CoLA, F1
for MRPC and QQP, Spearman correlation for STS-
B, and accuracy for all the other tasks in GLUE.

A.4 Reproducibility
To foster reproduciblity and provide a fair compar-
ison between methods, we distill BERT for each
condition with three distinct random seeds. We
then fine-tune each model with five distinct random
seeds. Consequently, we report results aggregated
from three distinct runs for the language modeling
task, and 15 distinct runs for others.

Named Entity Recognition We follow the ex-
perimental set-up in the Hugging Face (Wolf et al.,
2020) repository for evaluation for the CoNLL-
2003 Named Entity Recognition task (Tjong
Kim Sang and De Meulder, 2003). For fine-tuning,
we set the learning rate to 5e−5 with an effective
batch size of 32 for three epochs.2

2For DistilBERT performance in Table 1 on CoNLL-
2003, we evaluate with a publicly avaliable model
downloaded from https://huggingface.co/delpart/
distilbert-base-uncased-finetuned-ner.
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Pretraining General Language Understanding Evaluation (GLUE)
Model Layers Tokens CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B

BERTBASE (Devlin et al., 2019) 12 3.3B 56.30 84.70 88.60 91.80 89.60 69.30 92.70 89.00
(Wikipedia+BookCorpus)
DistilBERT (Sanh et al., 2019) 6 3.3B 51.30 82.10 87.50 89.20 88.50 59.90 91.30 86.90
(Wikipedia+BookCorpus)

DistilBERT (WikiText) 3 0.1B 22.78 71.55 82.51 82.12 82.16 55.43 86.47 56.33
DIITOMIDDLE (WikiText) 3 0.1B 23.21 72.97 82.81 83.15 82.83 55.98 86.52 66.93
DIITOLATE (WikiText) 3 0.1B 24.12 72.80 82.16 82.88 82.85 57.29 87.31 62.65
DIITOFULL (WikiText) 3 0.1B 25.01 72.85 82.71 83.05 82.85 55.37 86.92 66.15

DistilBERT (WikiText) 6 0.1B 40.43 78.95 87.45 84.76 84.96 60.10 89.38 80.40
DIITOMIDDLE (WikiText) 6 0.1B 43.97 79.47 87.57 85.45 85.21 60.72 89.97 81.33
DIITOLATE (WikiText) 6 0.1B 43.93 79.49 87.70 85.79 85.22 60.14 90.31 81.79
DIITOFULL (WikiText) 6 0.1B 43.43 79.66 88.17 85.57 85.28 59.95 90.01 81.26

DIITOFULL+Random (WikiText) 6 0.1B 44.27 79.70 88.06 85.63 85.34 60.89 89.76 81.08
DIITOFULL+Masked (WikiText) 6 0.1B 43.39 79.63 87.88 85.61 85.30 61.06 89.97 81.58
DIITOFULL+LDIITO

Cos (WikiText) 6 0.1B 45.17 79.68 88.18 85.83 85.31 60.94 90.32 81.69

Table 2: Model performance results on the development sets of the GLUE benchmark. The GLUE score is the
averaged performance scores across 15 distinct runs with precision aligned for a fair comparison. Following the
evaluation for BERT (Devlin et al., 2019), we exclude WNLI for evaluation.

Question Answering We use the experimental
set-up of Sanh et al. (2019) for evaluation on
SQuAD v1.1 (Rajpurkar et al., 2016). For fine-
tuning, we set the learning rate to 3e−5 with an
effective batch size of 48 for two epochs. We set
the stride to 128.
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