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Abstract

Question Answering (QA) is a longstanding
challenge in natural language processing. Ex-
isting QA works mostly focus on specific ques-
tion types, knowledge domains, or reasoning
skills. The specialty in QA research hinders sys-
tems from modeling commonalities between
tasks and generalization for wider applications.
To address this issue, we present ProQA, a
unified QA paradigm that solves various tasks
through a single model. ProQA takes a unified
structural prompt as the bridge and improves
the QA-centric ability by structural prompt-
based pre-training. Through a structurally de-
signed prompt-based input schema, ProQA
concurrently models the knowledge generaliza-
tion for all QA tasks while keeping the knowl-
edge customization for every specific QA task.
Furthermore, ProQA is pre-trained with struc-
tural prompt-formatted large-scale synthesized
corpus, which empowers the model with the
commonly-required QA ability. Experimen-
tal results on 11 QA benchmarks demonstrate
that ProQA consistently boosts performance
on both full data fine-tuning, few-shot learning,
and zero-shot testing scenarios. Furthermore,
ProQA exhibits strong ability in both contin-
ual learning and transfer learning by taking the
advantages of the structural prompt.1

1 Introduction

Question Answering has long been an inspirational
challenge in NLP research, and is viewed as the
next-generation search engine and an essential tool
for human beings to obtain knowledge (Etzioni,
2011). Many distinct datasets (Rajpurkar et al.,
2016; Lai et al., 2017; Kwiatkowski et al., 2019;
Gao et al., 2021) have been proposed along with
the research trend on QA, involving very diverse

∗ Indicates equal contribution
1The code is available at https://github.com/

zhongwanjun/ProQA.

question types (e.g., extractive QA, abstractive QA,
multiple-choice QA), domains (e.g., finance, daily
events), and answer types (e.g., free-formed text, se-
lected option). The majority of previous works fo-
cus on tasks with specific question types (Lai et al.,
2017; Yang et al., 2018; Gao et al., 2020) or spe-
cific domains (Trischler et al., 2017; Kwiatkowski
et al., 2019). Recent research on large pre-trained
language models (Brown et al., 2020; Bommasani
et al., 2021) indicates that there may be tight con-
nections among various tasks, which sheds light on
a unified paradigm that can be potentially applied
to solve various QA tasks to model their common-
ality.

This observation motivates us to develop a
unified QA model, which can model both the
commonly-required QA ability and the difference
between various QA tasks within a same paradigm.
To achieve this goal, there are several key chal-
lenges needed to be addressed: (1) How to model
commonalities and enhance transferability among
different QA tasks in various domains/formats
while reducing the conflict between them? (2)
How to construct large-scale QA corpus as the high-
quality QA-centric data is scarce for pre-training?

In light of this, we conceive ProQA, a unified
QA paradigm, which builds up a general model
to solve different QA tasks utilizing a structural
prompt and improves commonly-required QA abil-
ity via structural prompt-based pre-training.

Firstly, to model the commonalities and dis-
tinguish task differences, we adopt a structural
prompt to organize the inputs with a unified struc-
turally designed input schema. As illustrated in
Fig. 1, given the complex components (e.g., “Do-
main", “Format", “Task", “Question", “Passage")
as inputs, ProQA divides components into multi-
ple key-value pairs, in which a specific component
like “Question" denotes a key, and the specific in-
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[Task]: <SQuAD>
[Domain]: <Wikipedia>

[Format]: <Extractive QA>

[Question]: In what Country is 
Normandy located?

[Passage]: The Normans, were the 
people who in the 10th and 11th 
centuries gave their name to 
Normandy, a region in France.

[Task]: <Social IQA>
[Format]: <MultiChoice QA>

[Question]: How would Others 
feel as a result?
[Passage]: Cameron decided to 
have a barbecue and gathered her 
friends together.

[Task]: <NarrativeQA>
[Format]: <Abstractive  QA>

[Question]: How is Oscar related 
to Dana?
[Passage]: Dana continues digging 
in her purse while Frank makes 
funny faces at the baby Oscar, a 
very cute nine-month-old boy. 
Frank: That's a good-looking kid 
you got here, Dana.

[Candidates]: (A) like staying 
home (B) like attending (C) a good 
friend to have

Format

Task

Domain Wikipedia Medical Social Event Literature

SQuADBoolQ

Extractive QA MultiChoice QA Abstractive QA

BiologyChemistry

Social IQA Narrative QARACE DROP

Instance 1 Instance 2 Instance 3

[Domain]: <Social Event> [Domain]: <Literature>

Pro QA

Answer: France Answer: like attending Answer: her son

Figure 1: Approach overview of ProQA. Each box represents a specific instance formulated with the structural
prompt, and ProQA is pre-trained with structural prompt-based pre-training. [ ] indicates special key indicator,
< > denotes hard prompt, and colored squares denote continuous learnable soft prompts.

stance in this component is taken as the value. In
this way, the model can discriminate different input
components by key indicators and model the spe-
ciality of each task via task-specific values (learn-
able prompts).

Secondly, to alleviate data sparsity problem and
empower the model with transferability to the adap-
tation of new tasks, we conduct structural prompt-
based pre-training. We first build a large-scale
synthetic QA corpus automatically from Wikipedia,
utilizing only a few seed datasets as the prior su-
pervisions for pre-training corpus construction and
finally covering primary QA formats. Then we
format the pre-training data with the structural
prompt, and teach the model to learn the general
purpose QA-centric ability and the functionality
of each component in the structural prompt via
pre-training.

We evaluate the effectiveness of ProQA on
11 downstream QA benchmarks, and the results
show that our system achieves consistent perfor-
mance boost in full data fine-tuning, few-shot learn-
ing, and zero-shot learning settings. Experiments
demonstrate that ProQA can better mitigate the

catastrophic forgetting issue during continual learn-
ing by restoring the task-specific soft prompts re-
siding in the structural prompt. Further analyses
illustrate that our model has better transferability
as it can be more quickly adapted to a newly in-
volved task. Ablation studies verify the effective-
ness of both the soft prompt and prompt-based
pre-training.

The contributions are summarized as follows:
• We propose ProQA, a unified QA frame-

work for solving various tasks within a single
paradigm, taking an extensible and learnable
structural prompt as the bridge.

• We enhance general QA-centric capabilities via
structural prompt-based pre-training.

• Comprehensive experiments show that our
model consistently improves the performance
on 11 QA tasks especially in low-resource set-
tings and exhibits better effectiveness in contin-
ual learning and few-shot transfer learning.

2 Related Work

Unifying QA formats. Despite vast diversity of
current QA tasks in question type, answer type, an-
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swer source, and data domain (Zeng et al., 2020),
there have been efforts in exploring a unified format
for various QA tasks. Some pioneered to demon-
strate the generalization and transferability among
different QA tasks (Talmor and Berant, 2019; Dua
et al., 2019a; Fisch et al., 2019). Another line of
works investigate multi-task learning for QA (Mc-
Cann et al., 2018; Shen et al., 2019; Deng et al.,
2019) by jointly training a single encoder to pro-
mote knowledge sharing. However, these meth-
ods typically require deploying distinct prediction
heads for different tasks, which lead to poor scala-
bility and flexibility when confronted with emerg-
ing QA tasks of new types.

To this end, inspired by the success of cast-
ing multiple tasks into the same text-to-text for-
mat (Lewis et al., 2020; Raffel et al., 2020), re-
searchers propose to learn a single model to unify
various QA formats, alleviating the labor of task-
specific designs (Khashabi et al., 2020b; Tafjord
and Clark, 2021). However, these models (1) do
not explicitly model the task or component char-
acteristics, thus failing to properly disentangle the
difference among QA tasks; and (2) overly rely on
supervised data from specific tasks, which may not
be available under data-scarce scenarios.

QA-centric pre-training. Numerous efforts
have been spent on improving PLMs’ reasoning
abilities with an intermediate pre-training stage be-
fore fine-tuning on target QA tasks, including (1)
language modeling adaptation with salient span
masking, which trains PLMs to recover randomly
chosen (Guu et al., 2020; Wang et al., 2021) or
machine-generated (Kang et al., 2020) masked
named entities in the raw corpus; (2) training data
augmentation (Zhong et al., 2022) with synthetic
question-answer-context triples, such as generat-
ing (a) pseudo questions through adversarial train-
ing (Hosking and Riedel, 2019; Li et al., 2019),
knowledge bases (Hu et al., 2021) or machine
translation (Lewis et al., 2019; Li et al., 2020), (b)
pseudo answers exploiting recurring spans (Ram
et al., 2021) or rules based on heuristics (Bian et al.,
2021) and (c) pseudo contexts via information re-
trieval (Glass et al., 2020). Nevertheless, these
works largely target at improving a certain reason-
ing ability for PLMs, and thus cannot be easily
generalized to other QA tasks.

Prompts for PLMs. To effectively stimulate the
knowledge acquired through pre-training, prompt-

oriented fine-tuning is receiving increasing atten-
tion (Liu et al., 2021; Ding et al., 2021), which
re-formulates the objective of downstream tasks
similar to that of pre-training by inserting manually
designed (Schick and Schütze, 2021a,b) or automat-
ically searched (Jiang et al., 2020; Shin et al., 2020)
hard prompt tokens into the input text. Consider-
ing that discrete prompts may not be an optimal
solution in the continuous embedding space, re-
cent works (Li and Liang, 2021; Hambardzumyan
et al., 2021) proposed tunable soft prompts. It
achieves satisfying performance especially when
the model size grows extremely large (Lester et al.,
2021). Compared with the cumbersome parameters
in PLMs, soft prompts are lightweight and plug-
gable, which paves the way for our goal of flexible
adaptation to a new QA task.

3 ProQA

In this section, we detailedly describe the whole
framework of ProQA for general purpose QA,
which solves various QA tasks within the same
paradigm.

3.1 Overview

As shown in Fig. 2, we organize the inputs of var-
ious QA tasks with a unified structural prompt
(§ 3.2), and adopt a unified model for question
answering. Then, to enhance the model in learn-
ing the QA-centric ability and the semantics of the
structural prompt, we conduct structural prompt-
based pre-training with synthetic pre-training cor-
pus formatted with the structural prompt (§ 3.3).

Inspired by Khashabi et al. (2020b) and T5 (Raf-
fel et al., 2020), we solve all downstream QA tasks
with a unified text-to-text model. In this work, we
mainly adopt T5 as the model backbone. Taking the
structural prompt-based model input, the unified
model generates the answer of the question.

3.2 Structural Prompt

Here we detailedly illustrate the design of the struc-
tural prompt and its formatted input to the model.

Definition. We organize complex QA task in-
puts with the structural prompt. As shown in
Fig. 2, the structural prompt consists of multi-
ple {key : value} pairs, where the key repre-
sents a specific component2 (e.g., “Task", “Format",

2It is worth noting that “Format" key denotes the format
type (e.g., “MultiChoice QA") of the task while the “Task" key
denotes a specific dataset (e.g., “SQuAD").
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[Task]: <Task Prompt>

[Domain]: <Domain Prompt>

[Format]: <Format Prompt>

[Question]: Question Text

[Passage]: Passage Text

[Key ]: Valuei i
…

[Key ]: Valuek k

[Task]: <Task Prompt>

[Domain]: <Domain Prompt>

[Format]: <Format Prompt>

[Question]: Question Text

[Passage]: Passage Text

[Key ]: Valuei i
…

[Key ]: Valuek k

Figure 2: An illustration of the structural prompt. [ ]
indicates special key indicator, < > denotes hard
prompt, and grey squares indicate continuous soft
prompts.

“Question", etc.), and the value has two possible
types: (1) textual content (e.g., question, passage,
options) of the data instance; (2) task attributes
(e.g., format, domain) represented as the combi-
nation of a discrete hard prompt and continuous
soft prompts. The hard prompt is a predefined dis-
crete description (we adopt a special token here),
and the soft prompts are lightweight learnable and
pluggable continuous embeddings that are proven
to be parameter-effective in task adaptation (Lester
et al., 2021). The structural prompt-formatted ex-
amples are illustrated in Fig. 1. In the case of
the SQuAD dataset, “⟨Format Prompt⟩”, “⟨Task
Prompt⟩”, “⟨Domain Prompt⟩” will be “⟨Extractive
QA⟩”, “⟨SQuAD⟩”, “⟨Wikipedia⟩”, respectively.

To enhance the model in discriminating the func-
tional difference between components, we adopt a
special key indicator with learnable representation
to represent each key. Furthermore, to model the
difference between several tasks/domains/formats,
we also adopt learnable and storable specific soft
prompts as the value to represent their customized
characteristics, which makes the model more flexi-
ble for task adaptation.

As a result, the structural prompt can empower
the model in the following aspects: (1) modeling
knowledge generalization of various tasks utilizing
a unified input schema; (2) discriminating different
components with the special key indicator; (3) cus-
tomizing the speciality of each task/format/domain
with learnable and storable soft prompts as the
value under corresponding keys.

Input Representation. Specifically, given a
structural prompt-formatted instance, we describe

the specific representation of the model input. We
firstly translate kth key to a key indicator Dk (a spe-
cial token), which is attached by the tokens Vk of
the specific value to form a token sequence. It is fur-
ther represented as Ek = Embedding([Dk;Vk]).
The representation of Dk is initialized and up-
dated during training. Since we use soft prompts
Ptask/Pformat/Pdomain as the value of the correspond-
ing key and they are commonly required for all the
tasks, we prepend them to the input for convenience
and concatenate all the Ek to form the final model
input X:

X = [Pdomain;Pformat;Ptask;E1; ...;Ek] (1)

It is also worth noting that the representations D
of key indicators and the soft prompts P are jointly
trained with the main model parameters during pre-
training for learning the semantics of the structural
prompt. Moreover, after being tuned by various
tasks, the soft prompts P can be stored to record
the customized task-specific characteristics.

3.3 Structural Prompt-based Pre-training

In this part, we introduce how we conduct struc-
tural prompt-based pre-training to help the model in
learning commonly-required QA ability and the se-
mantics of the structural prompt during pre-training
to facilitate the adaption of the structural prompt to
downstream tasks.

Task Formulation. Along with the structural
prompt-based paradigm, we manifest various exem-
plary QA format types (i.e., Extractive QA, Abstrac-
tive QA, Multiple-choice QA and Yes/No QA) for
pre-training to inject the general QA-centric abil-
ity. Given the multi-format QA pre-training corpus,
we transform all QA formats according to the pro-
posed structural prompt, which enables joint pre-
training while keeping the differences among vari-
ous formats. Taking a structural prompt-formatted
instance as the input and a free-form answer as the
output, the task is further tailored to a QA task with
the encoder-decoder model.

Pre-training Corpus Construction. When we
prepare the QA pre-training corpus, data sparsity
problem is extremely severe because (1) it is im-
practical and laborious to obtain a large-scale high-
quality annotated data for pre-training and (2) it is
hard to generate QA-centric self-supervised data
using rule-based methods (e.g., token masking
or sentence reordering). In this work, inspired
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by Lewis et al. (2021), we adopt a generation-
filtering based corpus construction method to
synthesize a large-scale pre-training corpus, based
on a large-scale unlabeled Wikipedia corpus with
almost 6 million passages.

Typically, the general generation-filtering pro-
cess consists of the following components:
1. A QA-pair generation model gqa(q, a|c): Given

a passage c as input, gqa(q, a|c) generates
q [SEP] a as the output sequence including
a pair of question q and its answer a.

2. A filtering QA language model f(a|q, c) for
filtering the generated QA-pairs to ensure the
quality and consistency of the question and the
answer. f(a|q, c) is a conditional-probability-
based approach to filter out QA pairs softly. It
scores a QA pair (q, a) with the likelihood of
the answer a conditioned on the passage c and
question q. The QA-pairs with scores higher
than a threshold will be kept for pre-training.

We adopt the same text-to-text pre-trained model
T5 described in § 3.1 as the model backbone of
both the generation and filtering model.

To ensure the reliability of the generation and
filtering models, we inevitably select a few seed
datasets (typically one for each QA format type)
as the prior supervisions to train these models. It
is worth mentioning that, we avoid using more su-
pervised data for corpus construction, because we
expect the whole paradigm to have better expand-
ability. In other words, if we want to extend the
paradigm for a newly-involved QA format type but
with limited supervised data, we can utilize these
data to automatically create a synthetic large-scale
pre-training corpus.

More specifically, the construction method has
little variance for different formats according to
their input components. For Extractive QA and
Abstractive QA, we adopt the aforementioned gen-
eral method to synthesize QA-pairs. We also tried
to first extract answers using rule-based method
(extracted named-entities or key phrases), and only
generate questions. We empirically find that this
method performs much worse as it involves sim-
ple bias of the rule-based method. As the inputs
for Multiple-Choice QA involve a new component
“Candidate Answers", we adopt a distractor (neg-
ative options) generation model gneg(o|c, q, a) to
generate three negative options o. For Yes/No QA,
we simply generate questions by taking True/False
as the corresponding answers. Further details are

Format Dataset #Train #Dev QA Skills

Extractive QA

SQuAD∗ 87k 10k Word Matching
Quoref 22k 2k Coreference Reasoning

NewsQA 76k 4k Word Matching

Abstractive QA

NarQA∗ 65k 21k Story Understanding
DROP 77k 9k Discrete Reasoning

NQOpen 79k 3.6k Multi-passage Understanding

MultiChoice QA

RACE∗ 87k 4k Multi-sentence Reasoning
DREAM 6k 2k Dialog Reasoning
MCTest 1.4k 320 Multi-sentence Reasoning
OBQA 4k 501 Common Knowledge
SIQA 33.4k 2.2k Commonsense Reasoning

Table 1: Dataset statistics and required language under-
standing skills. Datasets with * denote seed datasets for
preparing pretraining data.

described in Appendix A.

4 Experimental Setup

4.1 Datasets and Evaluation Metrics

We consider three formats of QA datasets in our
experiments: Extractive QA, Abstractive QA and
Multiple-Choice QA3. For each QA format, we se-
lect one seed dataset for preparing the large-scale
pre-training data. The seed dataset is used to train
the question-answer generation and filtering mod-
els in the process of pre-training corpus construc-
tion. In total, the experiments are conducted on 11
QA datasets with three different formats and vari-
ous language understanding abilities. An overview
of datasets used in the experiments and their re-
quired QA skills are summarized in Table 1.

Extractive QA. We take SQuAD 1.1 (Rajpurkar
et al., 2016) as the seed dataset for extractive style
QA. In addition, we consider NewsQA (Trischler
et al., 2017) and Quoref (Dasigi et al., 2019) to eval-
uate the generalization ability of models. The EM
(Exact Match) score between the extracted span
and the gold answer span is used as the evaluation
metric for extractive QA.

Abstractive QA. Narrative QA (NarQA)
(Kočiský et al., 2018) is taken as the seed dataset
for Abstractive QA. DROP (Dua et al., 2019b)
and the open-domain version of NaturalQuestions
(NQOpen) (Kwiatkowski et al., 2019) are also con-
sidered. Passages for each question in NQOpen are
retrieved by the dense passage retriever (Karpukhin
et al., 2020) and are concatenated into a sequence.

3We also include Yes/No QA in our pilot study. We do
not consider it in our main experiments because datasets in
this format are extremely rare. Results on this QA formats are
shown in Appendix B.
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Setting Dataset
ExtractiveQA AbstractiveQA MultiChoiceQA

AvgSQuAD Quoref NewsQA NarQA DROP NQOpen RACE DREAM MCTest OBQA SIQA

Full-Data

T5 83.4 64.9 45.2 49.3 45.0 42.3 67.9 54.8 44.4 49.6 64.1 55.5
UnifiedQA 84.4 74.8 45.3 49.6 45.1 42.5 71.6 67.6 83.1 57.6 64.9 62.4
ProQA (qapair) 84.9 76.6 50.8 49.8 55.0 43.2 73.6 72.9 85.0 61.6 67.5 65.5
ProQA (paq) 85.3 76.8 50.4 50.1 52.5 43.9 73.2 73.3 85.9 61.4 67.2 65.5

Few-Shot

T5 6.7 14.6 20.5 3.4 5.8 11.9 26.2 34.7 38.1 29.0 32.4 20.3
UnifiedQA 82.0 38.2 34.2 49.1 22.2 31.6 53.0 57.4 73.8 41.2 42.8 48.1
ProQA (qapair) 82.9 44.2 41.1 49.1 24.9 33.3 63.4 64.5 82.5 46.2 49.1 52.8
ProQA (paq) 84.4 52.2 42.1 49.2 27.1 36.0 66.5 66.0 84.1 44.8 49.4 54.7

Zero-Shot

T5 0.0 0.0 0.0 3.5 2.0 1.5 24.1 34.2 27.5 21.9 33.2 13.5
UnifiedQA 80.7 27.9 31.4 48.3 18.0 30.9 53.0 57.0 73.4 35.9 40.3 45.2
ProQA (qapair) 80.4 30.5 30.7 48.1 17.0 33.0 62.6 64.3 81.3 36.0 47.2 48.3
ProQA (paq) 81.3 42.1 31.8 48.4 19.7 36.0 65.9 65.2 81.3 38.6 46.7 50.6

Table 2: Main results on 11 downstream QA datasets under full-data fine-tuning, few-show learning, and zero-shot
learning settings. Since the supervisions of seeds datasets are used in the pre-training corpus construction which
may introduce bias in few-shot and zero-shot settings, results on these corresponding entries are underlined.

We use ROUGE-L (Lin, 2004) metric for NarQA
and F1 score for DROP and NQOpen.

Multiple-Choice QA. For multiple choice QA,
the following datasets are considered: RACE (Lai
et al., 2017) (seed dataset), DREAM (Sun et al.,
2019), MCTest (Richardson et al., 2013), Open-
BookQA (OBQA) (Mihaylov et al., 2018), Social
IQa (SIQA) (Sap et al., 2019). OBQA does not
have contexts (reading comprehension passages).
The context for DREAM is in the dialogue style
and we concatenate them into a sequence as the
passage input. We select the option with the high-
est textual similarity with the generated answer as
the final answer. We compute the accuracy of the
correct options for all multiple choice QA datasets.

4.2 Approaches

T5 (Raffel et al., 2020) is a unified text-
to-text pre-training framework that covers
all text-based language problems. We use
google/t5-v1_1-base from HuggingFace
Transformers (Wolf et al., 2020) that is only
pre-trained on C4 excluding any supervised
training dataset (e.g., QA datasets).

UnifiedQA (Khashabi et al., 2020b) crosses the
format boundaries of different QA tasks by for-
mulating them into text-to-text tasks under T5. It
directly concatenates all inputs via \n into a se-
quence and feeds it into T5 for predicting the an-
swer. We train our own UnifiedQA model on the
combination of three aforementioned seed datasets,
namely SQuAD, NarQA, and RACE.

ProQA is our proposed structural prompt-based
pre-training approach. ProQA is pre-trained

jointly on three formats of pre-training corpus: Ex-
tractive QA, Abstractive QA, and Multiple-Choice
QA. This approach using corpus prepared from
QA-pair generation-filtering model described in
§ 3.3 is named as ProQA (qapair). Additionally,
we leverage the off-the-shelf large-scale QA pairs
from Probably-Asked Questions/PAQ (Lewis et al.,
2021), and replace our extractive QA pre-training
corpus by a subset of PAQ (abstractive QA and
multiple-choice QA corpus remains unchanged).
PAQ provides a refined pipeline that introduces
learned models on every step of QA pair genera-
tion, i.e., passage selection, answer identification,
question generation, and filtering. We name this
variant as ProQA (paq).

For every downstream QA dataset, we start from
the above pre-trained models and conduct experi-
ments under full-data fine-tuning, few-shot learn-
ing, and zero-shot learning settings. For few-shot
learning, we randomly sample 32 instances from
the training set.

5 Results and Analyses

5.1 Main Results

Main results are shown in Table 2, and we have the
following observations:

• QA-centric pre-trained models, namely Uni-
fiedQA and ProQA, outperform T5 by a large
margin on both seed datasets and non-seed
datasets. This is because there is some trans-
ferable knowledge across different QA tasks.
Once the model is pre-trained by any QA task,
the learned knowledge can be generalized to
any other datasets.

• ProQA demonstrates better knowledge cus-
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Methods
Task A→Task B

EX→EX EX→AB EX→MC AB→EX AB→AB AB→MC MC→EX MC→AB MC→MC Avg

Task B Model 20.5% 26.2% 13.0% 8.9% 6.3% 6.5% 4.6% 4.9% 0.9% 9.9%
Task B Model (w/ Task A Prompt) 17.1% 10.6% 6.7% 3.1% 3.1% 2.2% 0.4% 0.7% -0.5% 4.3%

Table 3: Continual learning results for averaged performance drops compared with the original task A results under
different task learning orders (lower is better). Negative number means the performance improves compared with
the original task A results. EX: Extractive QA; AB: Abstractive QA; MC: Multiple-chioce QA.

tomization ability than UnifiedQA – ProQA
beats UnifiedQA by a large margin in few-shot
and zero-shot settings. This is because (1) the
hard and soft prompts in the structural prompt
enable better knowledge customization for ev-
ery QA task, especially the “Task” key-value
pair that is different for every QA task; (2)
structural prompt-based pretraining empowers
ProQA to adapt faster (§ 5.3) and better (Ta-
ble 2) to these non-seed datasets.

• Comparing ProQA (qapair) and ProQA (paq),
we find that ProQA (paq) performs better in
most scenarios. Presumably, PAQ provides high
quality pre-training corpus through its pipelined
approach – there are in total four BERT-sized
models to be prepared for generating PAQ cor-
pus. Instead, our proposed QA pair generation
approach is simple and can be applied to not
only Extractive QA but also Abstractive QA and
Multiple-choice QA in the pre-training corpus
construction process.

5.2 Continual Learning via Soft Prompt

One benefit of introducing soft prompt in ProQA
is that it can potentially mitigate the catastrophic
forgetting issue when adapting to a new task. If
ProQA is sequentially fine-tuned on task A and
task B under few-shot setting, it can load task A
soft prompt back when it is evaluated again on the
task A. The plug-in flexibility of ProQA brings
huge improvements compared with its counterpart
that keeps the task B soft prompt.

We conduct continual learning by setting task
A and B as different combinations among datasets
with formats4: Extractive QA (EX), Abstractive
QA (AB), and Multiple-choice QA (MC). Formally,
we first adapt ProQA to task A by few-shot learn-
ing to obtain the model A: fA

θ with performance sA.
Then we sequentially adapt fA

θ to task B and re-
ceive task B model fAB

θ . We evaluate performance

4Note that we consider two tasks in continual learning
because we also want to directly investigate the task adaptation
to-and-fro the same format (e.g., MC → MC) or different
formats (e.g., AB → EX).

EM
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Figure 3: The few-shot learning curves of EM scores on
the validation set of the NewsQA task.

of the model fAB
θ on task A under two settings: (1)

direct testing (task-B prompt) (2) first restoring the
learned task-A prompt from fA

θ to the model fAB
θ

and then testing. Performance of the two settings
are denoted as sAB and sAB′

, respectively. We
evaluate the continual learning performance under
these two settings with the percentage of the per-
formance drop on the task A: “Task B Model”=
sA−sAB

sA
, and “Task B Model (w/ Task A Prompt)”

= sA−sAB′

sA
.

As shown in Table 3, the catastrophic forget-
ting issue does exist when evaluating task A with
task B model (“Task B Model”) directly. The per-
formance drops as large as 26.2% for EX→AB.
However, restoring task A prompt brings huge im-
provements across all task combinations (“Task B
Model w/ Task A Prompt”). It is surprising to see
that restoring task A prompt could sometimes even
improve task A performance (MC→MC = −0.5%).
Presumably, sequential learning two tasks under
the same question format (MC) makes the model
learn the transferable knowledge while restoring
task A prompt brings task-specific knowledge. De-
tailed experimental results on the 33 combinations
of datasets can be found in Appendix C.

5.3 Convergence Analysis

We investigate the effectiveness of pre-training by
compare the step-wise performance under few-shot
learning setting. The learning curves of EM scores
on the validation set of the NewsQA task is shown
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Setting Model NewsQA DROP DREAM

Full-Data

ProQA 50.4 52.5 73.3
w/o soft prompt 48.6 51.2 69.9

w/o pretraining 48.1 44.5 68.4
UnifiedQA + Pre-train Corpus 46.8 50.3 69.4

Few-Shot

ProQA 42.1 27.1 66.0
w/o soft prompt 38.5 24.3 64.5

w/o pretraining 20.5 4.8 35.1
UnifiedQA + Pre-train Corpus 37.3 23.5 59.6

Zero-Shot

ProQA 31.8 19.7 65.2
w/o soft prompt 29.8 19.0 63.5

w/o pretraining 0.0 0.2 32.6
UnifiedQA + Pre-train Corpus 26.0 18.1 58.0

Table 4: Ablation study results on three non-seed
datasets under different QA formats (extractive, abstrac-
tive, multiple-choice).

in Figure 3. Out of the three models, T5 con-
vergences slowest because it does not have any
QA-centric knowledge while our proposed ProQA
adapts fastest and best. Moreover, we find that Uni-
fiedQA EM score rapidly saturates and eventually
degrades slightly, suggesting that the model overfits
under the few-shot setting. On the counterpart, our
ProQA continues to improve and never degrades
because the hard and soft prompt inside the struc-
tural prompt balance the knowledge generalization
and knowledge customization well.

5.4 Ablation Study

An ablation study is conducted to unveil the effec-
tiveness of every component in ProQA. We con-
sider three variants of ProQA: (1) ProQA without
the soft prompt in its structural prompt; (2) ProQA
further without prompt-based pre-training. (3) Uni-
fiedQA + Pre-train Corpus is the UnifiedQA model
pre-trained on our prepared large-scale synthetic
QA corpus. Results on three non-seed datasets un-
der different QA formats are shown in Table 4. We
find that removing the soft prompt from the model
disables the task-specific knowledge learned dur-
ing pre-training. Moreover, removing the prompt-
based pretraining drastically hurts the performance
as the equivalent model (T5 + hard structural
prompt) does not have any QA knowledge. Finally,
UnifiedQA + Pre-train Corpus could not compete
with ProQA, showing that our proposed structural
prompt earns better balance between knowledge
generalization and knowledge customization than
UnifiedQA.

6 Discussion

In this section, we discuss on how to extend the
ProQA to a new task even with a new schema, and

sheds light on potential future directions.
1) Task Adaptation with Structural Prompt: The

design of structural prompt empowers ProQA with
better expandability. In our main experiments, we
adopt 3 format types and 11 QA tasks. In the
future, we can adapt ProQA to more tasks, for-
mats, domains, and new input schema. Intuitively,
when being adapted to a new task with unseen for-
mat/domain, ProQA can initialize the specific soft
prompts and learn the characteristic of the new do-
main/task through model training. Moreover, if
we encounter a new input schema that involves
new keys (e.g., “extracted entities or commonsense
knowledge"), we can add a new key-value pair in
the input schema and learns the functionality of the
new key indicator through training.

2) Unified QA Systems: We think further studies
on unified QA systems could target on a better
pre-training schema for general purpose QA, or
optimizing the modeling strategy for the structural
prompt to process more complex input, or output
formats (e.g., adding extracted entities or retrieved
knowledge).

3) Unification with Structural Prompt: The appli-
cation of the structural prompt is not limited only
on the QA task. Intuitively, task inputs/outputs
with various formats or components can also be or-
ganized with the structural prompt, like sentiment
analysis (Zhong et al., 2021), style transfer (Li
et al., 2022). In this way, we can integrate multiple
tasks with carefully organized structural input, and
improve the uniformity and expandability of the
whole paradigm.

7 Conclusion

We introduce ProQA, a unified QA paradigm that
adopts a single model for solving various QA tasks
with the bridge of a structural prompt. Structural
prompt simultaneously models the common ability
required for various tasks and keeps the speciality
of each task, through a structurally designed learn-
able input schema. We further conduct structural
prompt-based pre-training, seeking to empower the
model with general QA-centric ability and injects
the semantic knowledge of the structural prompt
into the pre-training model. Experimental results
on 11 QA benchmarks demonstrate that ProQA
can significantly boost performance on all settings.
Further analyses show that our method can better
mitigate the catastrophic forgetting issue during
continual learning, and our method can be adapted
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to a newly involved task more quickly, by taking
the advantages of the structural prompt. In the
future, we hope our analysis could inspire more
explorations on the unified QA methods, or the
unification of distinct tasks with complex inputs
modeling by the structural prompt. We also hope
structural prompt can be further utilized into the
unification of more tasks with complex inputs.
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A Implementation Details

A.1 Corpus Preparation

In this part, we describe the details of corpus con-
struction.

The current pre-training corpus contains almost
4 million pre-training instances formulated with
the structural prompt, including 1 million Multiple-
choice QA instances, 2 million Extractive QA in-
stances, and 2 million Abstractive QA instances.
When generating questions and answers, we take
the context as the input, and the sequence “question
[SEP] answer" as the output. In order to train the
filtering model, we take the context and question
as the inputs, and the answer as the output. During
the inference process of QA-pairs filtering, we take
the context and the generated question as the model
input of the QA model and set generated answer
as the label. Then we compute the final soft score
with the cross-entropy loss between the label and
the answer generated by the QA model, Next, we
rerank all the generated QA-pairs according to the
soft scores in an ascending order to select the most
consistent QA-pairs as the pre-training instances.

Specifically, we employ AdamW as the opti-
mizer for model training. We adopt T5-Large as
the model backbone and the seed datasets as su-
pervisions for training both the question-answer
pairs generation, and the filtering QA model. We
set learning rate as 1e-5, warmup step as 0, batch
size as 2 per GPU, and training epochs as 10.

A.2 Details on Pre-training and Task
Adaptation.

Pre-training. During pre-training, we jointly
train the main model parameters with the repre-
sentations of the special key indicators and the
task/format-specific soft prompts.

Initially, we don’t have any specific tasks dur-
ing pre-training, so we take the three pre-training
corpus (i.e., “MultiChoiceQA, Extractive QA, and
Abstractive QA" ) as the three initial tasks, and ran-
domly initialize the task and format specific soft
prompts.

Specifically, we use T5-Base as the model back-
bone, and set learning rate as 1e-4, batch size as
8 per GPU and gradient accumulation steps as 10.
We adopt 8 V100 GPUs for pre-training.

Fine-tuning. During fine-tuning, we need to ini-
tialize the task/format-specific soft prompts for a
specific downstream task. If the task corresponds

Setting Dataset BoolQ

Full-Data
T5 62.2
Pro QA 80.6

Few-Shot
T5 0.0
Pro QA 55.4

Zero-Shot
T5 0.0
Pro QA 62.1

Table 5: Result on two Yes/No QA tasks under full-data
fine-tuning, few-shot learning, and zero-shot learning
settings.

to a specific format participating in the pre-training
stage, we use the corresponding soft prompts of
this format type to initialize the soft prompts for
the current tasks to transfer the learned knowledge.
If the task corresponds to a new format, we can
randomly initialize the task/format prompts.

Specifically, we use T5-Base as the model back-
bone, and set learning rate as 1e-4, batch size as
2 per GPU, gradient accumulation steps as 2, and
training epochs as 5. We adopt 8 V100 GPUs for
fine-tuning.

Few-shot Learning. We adopt a similar way to
initialize the task-specific soft prompts for few-
shot learning. We use the standard setting which
utilizes 32 randomly selected instances for few-
shot learning. Specifically, we adopt T5-Base as
the model backbone, and set learning rate as 1e-5,
batch size as 1 per GPU, gradient accumulation
steps as 1, and training steps as 800 for few-shot
learning.

Zero-shot Learning Since zero-shot learning
does not involve training stage, we just need to
initialize the task-specific prompt for inference.
Therefore, we initialize the task-specific prompt
with the pre-trained task prompts of its correspond-
ing format type.

B Results on Yes/No Pre-training

During our pilot study, we take the BoolQ (Clark
et al., 2019) as the seed dataset to construct a large-
scale pre-training corpus, and test the full-data, few-
shot, zero-shot on top of the pre-trained ProQA.
We also take the naturally-perturbed version of this
dataset BoolQ-NP (Khashabi et al., 2020a) into
account for evaluation. Results are shown in Ta-
ble 5. We find that the ProQA significantly out-
performs T5 baseline on all settings. Note that we
take a strict evaluation towards the model’s output.
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Task A Task A Model
(Few-Shot Results)

Task B Task B Model
(Evaluation on Task A)

Task B Model (w/ Task A Prompt)
(Evaluation on Task A)

EX/NewsQA (EM) 42.1

EX/Quoref (EM) 33.7 35.3
AB/DROP (F1) 31.3 33.7

AB/NQOpen (F1) 27.6 34.2
MC/DREAM (Acc) 35.2 37.9
MC/MCTest (Acc) 34.5 36.8
MC/OBQA (Acc) 34.4 35.9

EX/Quoref (EM) 52.2

EX/NewsQA (EM) 41.1 42.8
AB/DROP (F1) 43.0 51.4

AB/NQOpen (F1) 38.0 51.0
MC/DREAM (Acc) 47.2 51.3
MC/MCTest (Acc) 47.8 52.0
MC/OBQA (Acc) 48.5 51.6

AB/NQOpen (F1) 36.0

EX/NewsQA (EM) 32.8 33.9
EX/Quoref (EM) 36.2 35.4
AB/DROP (F1) 34.3 35.8

AB/DROP (F1) 27.1

EX/NewsQA (EM) 22.8 26.3
EX/Quoref (EM) 24.0 26.6
AB/NQOpen (F1) 25.0 25.6

MC/DREAM (Acc) 25.1 26.2
MC/MCTest (Acc) 25.4 26.7
MC/OBQA (Acc) 25.6 26.7

MC/MCTest (Acc) 84.1

EX/NewsQA (EM) 81.6 83.1
AB/DROP (F1) 82.8 83.8

MC/DREAM (Acc) 83.2 83.8
MC/OBQA (Acc) 82.2 82.5

MC/DREAM (Acc) 66.0

EX/NewsQA (EM) 64.0 65.4
AB/DROP (F1) 63.5 65.7

MC/MCTest (Acc) 65.5 65.8
MC/OBQA (Acc) 65.2 65.5

MC/OBQA (Acc) 44.8

EX/NewsQA (EM) 41.4 45.2
AB/DROP (F1) 40.6 44.2

MC/MCTest (Acc) 44.8 45.8
MC/DREAM (Acc) 44.2 46.8

Table 6: Full results on continual learning. For each task, we provide the task format (EX, AB, MC) and its
evaluation metrics (EM, F1, Acc). EX: Extractive QA; AB: Abstractive QA; MC: Multiple-Choice QA.

In other words, if the output is not any format of
“yes”, “no”, “true”, “false”, that prediction will be
classified as wrong.

C Details on Continual Learning

Table 6 provides the full results for the continual
learning experiment. The model is firstly trained on
task A under few-shot setting, and then fine-tuned
on task B. Afterwards, we evaluate the trained
“Task B Model” and “Task B Model (w/ Task A
Prompt)” on task A to test its continual learning
capability. Detailed results on every Task A/Task B
combination (33 reported in total) are shown in Ta-
ble 6. Note that we consider two tasks in continual
learning because we also want to investigate the
task adaptation to-and-fro the same format (e.g.,
MC → MC) or different formats (e.g., AB → EX).
The results shed light on how could we arrange the
order of training on tasks to achieve the best overall

performance when a bunch of tasks arrive.
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