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Abstract

Emotions are an inherent part of human inter-
actions, and consequently, it is imperative to
develop AI systems that understand and rec-
ognize human emotions. During a conversa-
tion involving various people, a person’s emo-
tions are influenced by the other speaker’s ut-
terances and their own emotional state over the
utterances. In this paper, we propose COntex-
tualized Graph Neural Network based Multi-
modal Emotion recognitioN (COGMEN) sys-
tem that leverages local information (i.e., in-
ter/intra dependency between speakers) and
global information (context). The proposed
model uses Graph Neural Network (GNN)
based architecture to model the complex de-
pendencies (local and global information) in
a conversation. Our model gives state-of-the-
art (SOTA) results on IEMOCAP and MOSEI
datasets, and detailed ablation experiments
show the importance of modeling information
at both levels.

1 Introduction

Emotions are intrinsic to humans and guide their be-
havior and are indicative of the underlying thought
process (Minsky, 2007). Consequently, understand-
ing and recognizing emotions is vital for develop-
ing AI technologies (e.g., personal digital assis-
tants) that interact directly with humans. During a
conversation between a number of people, there is
a constant ebb and flow of emotions experienced
and expressed by each person. The task of multi-
modal emotion recognition addresses the problem
of monitoring the emotions expressed (via various
modalities, e.g., video (face), audio (speech)) by
individuals in different settings such as conversa-
tions.

Emotions are physiological, behavioral, and
communicative reactions to cognitively processed
stimuli (Planalp et al., 2018). Emotions are of-
ten a result of internal physiological changes, and

It's a relief too. I mean I was thinking I was going to have to
pack up all of my stuff but yeah. Hooray for U.S.C.

Yeah. Big time.

Mmhmm. Mmhmm. Yay. So what major? What are you doing?

Yeah. I'm not sure.

I know. We should throw a party.

A rapper party ho. Yeah. Okay.

I am just- Yeah. I'm sticking around, I'm just doing my thing. I'm
living here. I'm so glad you're going to stay, I'm so glad you're

going to be here. Yeah. Woo.

Umm...P.h.D. [LAUGHTER]

That's good. Don't you have to like teach a class, too, when you do that?

Speaker-1 Speaker-2
Conversation Instance taken from

IEMOCAP Dataset

Is this a Masters or a P.h.D.? Or can you...? Nice

Excited

Excited

Excited

Excited

Excited

Excited

Happy

Excited

Neutral

Neutral

Figure 1: An example conversation between two speak-
ers, with corresponding emotions evoked for each utter-
ance.

these physiological reactions may not be notice-
able by others and are therefore intra-personal. For
example, in a conversational setting, an emotion
may be a communicative reaction that has its ori-
gin in a sentence spoken by another person, acting
as a stimulus. The emotional states expressed in
utterances correlate with the context directly; for
example, if the underlying context is about a happy
topic like celebrating a festival or description of
a vacation, there will be more positive emotions
like joy and surprise. Consider the example shown
in Figure 1, where the context depicts an excit-
ing conversation. Speaker-1 being excited about
his admission affects the flow of emotions in the
entire context. The emotion states of Speaker-2
show the dependency on Speaker-1 in U2,U4 and
U6, and maintains intra-personal state depicted in
U8 and U10 by being curious about the responses
of Speaker-1. The example conversation portrays
the effect of global information as well as inter
and intra dependency of speakers on the emotional
states of the utterances. Moreover, emotions are a
multimodal phenomenon; a person takes cues from
different modalities (e.g., audio, video) to infer
the emotions of others, since, very often, the in-
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formation in different modalities complement each
other. In this paper, we leverage these intuitions
and propose COGMEN: COntextualized Graph
neural network based Multimodal Emotion recog-
nitioN architecture that addresses both, the effects
of context on the utterances and inter and intra de-
pendency for predicting the per-utterance emotion
of each speaker during the conversation. There has
been a lot of work on unimodal (using text only)
prediction, but our focus is on multimodal emotion
prediction. As is done in literature on multimodal
emotion prediction, we do not focus on comparison
with unimodal models. As shown via experiments
and ablation studies, our model leverages both the
sources (i.e., local and global) of information to
give state-of-the-art (SOTA) results on the mul-
timodal emotion recognition datasets IEMOCAP
and MOSEI. In a nutshell, we make the following
contributions in this paper:

• We propose a Contextualized Graph Neural
Network (GNN) based Multimodal Emotion
Recognition architecture for predicting per
utterance per speaker emotion in a conver-
sation. Our model leverages both local and
global information in a conversation. We use
GraphTransformers (Shi et al., 2021) for mod-
eling speaker relations in multimodal emotion
recognition systems.

• Our model gives SOTA results on the multi-
modal Emotion recognition datasets of IEMO-
CAP and MOSEI.

• We perform a thorough analysis of the model
and its different components to show the
importance of local and global information
along with the importance of the GNN com-
ponent. We release the code for mod-
els and experiments: https://github.
com/Exploration-Lab/COGMEN

2 Related Work

Emotion recognition is an actively researched prob-
lem in NLP (Sharma and Dhall, 2021; Sebe et al.,
2005). The broad applications ranging from emo-
tion understanding systems, opinion mining from
a corpus to emotion generation have attracted
active research interest in recent years (Dhuheir
et al., 2021; Franzen et al., 2021; Vinola and Vi-
maladevi, 2015; Kołakowska et al., 2014; Colombo
et al., 2019; Janghorbani et al., 2019; Goswamy
et al., 2020; Singh et al., 2021a; Agarwal et al.,
2021; Singh et al., 2021b). Availability of bench-

mark multimodal datasets, such as CMU-MOSEI
(Zadeh et al., 2018b), and IEMOCAP (Busso et al.,
2008), have accelerated the progress in the area.
Broadly speaking, most of the existing work in
this area can be categorized mainly into two areas:
unimodal approaches and multimodal approaches.
Unimodal approaches tend to consider the text as a
prominent mode of communication and solve the
emotion recognition task using only text modal-
ity. In contrast, multimodal approaches are more
naturalistic and consider multiple modalities (au-
dio+video+text) and fuse them to recognize emo-
tions. In this paper, we propose a multimodal ap-
proach to emotion recognition. Nevertheless, we
briefly outline some of the prominent unimodal ap-
proaches as some of the techniques are applicable
to our setting.

Unimodal Approaches: COSMIC (Yu et al.,
2019) performs text only emotion classification
problem by leveraging commonsense knowledge.
DialogXL (Shen et al., 2021a) uses XLnet (Yang
et al., 2019) as architecture in dialogue feature
extraction. CESTa (Wang et al., 2020) captures
the emotional consistency in the utterances using
Conditional Random Fields (Lafferty et al., 2001)
for boosting the performance of emotion classifi-
cation. Other popular approaches parallel to our
work use graph-based neural networks as their base-
line and solve the context propagation issues in
RNN-based architectures, including DialogueGCN
(Ghosal et al., 2019), RGAT (Ishiwatari et al.,
2020), ConGCN (Zhang et al., 2019), and SumAgg-
Gin (Sheng et al., 2020). Some of the recent ap-
proaches like DAG-ERC (Shen et al., 2021b) com-
bine the strengths of conventional graph-based neu-
ral models and recurrence-based neural models.

Multimodal Approaches: Due to the high corre-
lation between emotion and facial cues (Ekman,
1993), fusing modalities to improve emotion recog-
nition has drawn considerable interest (Sebe et al.,
2005). Some of the initial approaches include
Datcu and Rothkrantz (2014), who fused acoustic
information with visual cues for emotion recog-
nition. Wollmer et al. (2010) use contextual in-
formation for emotion recognition in a multimodal
setting. In the past decade, the growth of deep learn-
ing has motivated a wide range of approaches in
multimodal settings. The Memory Fusion network
(MFN) (Zadeh et al., 2018a) proposes synchroniz-
ing multimodal sequences using multi-view gated
memory storing intra-view and cross-view interac-
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tions through time. Graph-MFN (Bagher Zadeh
et al., 2018) extends the idea of MFN and intro-
duces Dynamic Fusion Graph (DFG), which learns
to model the n-modal interactions and alter its struc-
ture dynamically to choose a fusion graph based
on the importance of each n-modal dynamics dur-
ing inference. Conversational memory network
(CMN) (Hazarika et al., 2018b) leverages contex-
tual information from the conversation history and
uses gated recurrent units to model past utterances
of each speaker into memories. Tensor fusion Net-
work (TFN) (Zadeh et al., 2017) uses an outer prod-
uct of the modalities. Other popular approaches
include DialogueRNN (Majumder et al., 2019) that
proposes an attention mechanism over the different
utterances and models emotional dynamics by its
party GRU and global GRU. B2+B4 (Kumar and
Vepa, 2020), use a conditional gating mechanism
to learn cross-modal information. bc-LSTM (Po-
ria et al., 2017) proposes an LSTM-based model
that captures contextual information from the sur-
rounding utterances. Multilogue-Net (Shenoy and
Sardana, 2020) proposes a solution based on a
context-aware RNN and uses pairwise attention as
a fusion mechanism for all three modalities (audio,
video, and text). Recently, Delbrouck et al. (2020)
proposed TBJE, a transformer-based architecture
with modular co-attention (Yu et al., 2019) to en-
code multiple modalities jointly. CONSK-GCN
(Fu et al., 2021) uses graph convolutional network
(GCN) with knowledge graphs. Lian et al. (2020)
use GNN based architecture for Emotion Recog-
nition using text and speech modalities. Af-CAN
(Wang et al., 2021a) proposes RNN based on con-
textual attention for modeling the transaction and
dependence between speakers.

3 Proposed Model

In a conversation involving different speakers, there
is a continuous ebb and flow in the emotions of
each of the speakers, usually triggered by the con-
text and reactions of other speakers. Inspired by
this intuition, we propose a multimodal emotion
prediction model that leverages contextual informa-
tion, inter-speaker and intra-speaker relations in a
conversation.

In our model, we leverage both the context of
dialogue and the effect of nearby utterances. We
model these two sources of information via two
means: 1) Global Information: How to capture
the impact of underlying context on the emotional

state of an utterance? 2) Local information: How
to establish relations between the nearby utterances
that preserve both inter-speaker and intra-speaker
dependence on utterances in a dialogue?
Global Information: We want to have a unified
model that can capture the underlying context and
handle its effect on each utterance present in the
dialogue. A transformer encoder (Vaswani et al.,
2017) architecture is a suitable choice for this goal.
Instead of following the conventional sequential en-
coding by adding positional encodings to the input,
in our approach, a simple transformer encoder with-
out any positional encodings leverages the entire
context to generate distributed representations (fea-
tures) efficiently corresponding to each utterance.
The transformer facilitates the flow of information
from all utterances when predicting emotion for a
particular utterance.
Local Information: The emotion expressed in an
utterance is often triggered by the information in
neighboring utterances. We establish relations be-
tween the nearby utterances in a way that is capable
of capturing both inter-speaker and intra-speaker ef-
fects of stimulus over the emotion state of an utter-
ance. Our approach comes close to DialogueGCN
(Ghosal et al., 2019), and we define a graph where
each utterance is a node, and directed edges repre-
sent various relations. We define relations (directed
edges) between nodes Rij = ui → uj , where
the direction of the arrow represents the spoken
order of utterances. We categorize the directed re-
lations into two types, for self-dependent relations
between the utterances spoken by the same speaker
Rintra, and interrelations between the utterances
spoken by different speakers Rinter. We propose
to use Relational GCN (Schlichtkrull et al., 2018)
followed by a GraphTransformer (Shi et al., 2021)
to capture dependency defined by the relations.

3.1 Overall Architecture

Figure 2 shows the detailed architecture. The in-
put utterances go as input to the Context Extrac-
tor module, which is responsible for capturing the
global context. The features extracted for each ut-
terance by the context extractor form a graph based
on interactions between the speakers. The graph
goes as input to a Relational GCN, followed by
GraphTransformer, which uses the formed graph
to capture the inter and intra-relations between the
utterances. Finally, two linear layers acting as an
emotion classifier use the features obtained for all
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Figure 2: The proposed model (COGMEN) architecture.

the utterances to predict the corresponding emo-
tions.
Context Extractor: Context Extractor takes con-
catenated features of multiple modalities (audio,
video, text) as input for each dialogue utterance
(ui; i = 1, . . . , n) and captures the context using
a transformer encoder. The feature vector for an
utterance ui with the input features corresponding
to available modalities, audio (u(a)i ∈ Rda), text
(u(t)i ∈ Rdt) and video (u(v)i ∈ Rdv ) is:

x
(atv)
i = [u

(a)
i ⊕ u

(t)
i ⊕ u

(v)
i ] ∈ Rd

where d = da + dt + dv. The combined features
matrix for all utterances in a dialogue is given by:

X = x(atv) = [x
(atv)
1 ,x

(atv)
2 . . . ,x(atv)

n ]T

We define a Query, a Key, and a Value vector for
encoding the input features X ∈ Rn×d as follows:

Q(h) = XWh,q,

K(h) = XWh,k,

V (h) = XWh,v,

where, Wh,q,Wh,k,Wh,v ∈ Rd×k

The attention mechanism captures the interac-
tion between the Key and Query vectors to output
an attention map α(h), where σj denotes the soft-
max function over the row vectors indexed by j:

α(h) = σj

(
Q(h)(K(h))T√

k

)

where α(h) ∈ Rn×n represents the attention
weights for a single attention head (h). The ob-
tained attention map is used to compute a weighted
sum of the values for each utterance:

head(h) = α(h)(V (h)) ∈ Rn×k

U
′

= [head(1) ⊕ head(2) ⊕ . . . head(H)]W o

where, W o ∈ RkH×d and H represents the total
number of heads in multi-head attention. Note
U
′ ∈ Rn×d. We add residual connection X and

apply LayerNorm, followed by a feed forward and
Add & Norm layer:

U = LayerNorm
(
X + U′; γ1, β1

)
;

Z′ = ReLU (UW1)W2;

Z = LayerNorm
(
U + Z′; γ2, β2

)
;

where, γ1, β1 ∈ Rd, W1 ∈ Rd×m,W2 ∈ Rm×d,
and γ2, β2 ∈ Rd. The transformer encoder pro-
vides features corresponding to every utterance in
a dialogue ([z1, z2, . . . , zn]T = Z ∈ Rn×d).
Graph Formation: A graph captures inter and
intra-speaker dependency between utterances. Ev-
ery utterance acts as a node of a graph that
is connected using directed relations (past and
future relations). We define relation types as
speaker to speaker. Formally, consider a con-
versation between M speakers defined as a dia-
logue D = {US1 ,US2 , . . . ,USM }, where US1 =

{u(S1)
1 , u

(S1)
2 , . . . , u

(S1)
n } represent the set of utter-

ances spoken by speaker-1. We define intra rela-
tions between the utterances spoken by the same
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speaker, Rintra ∈ {USi → USi}, and inter rela-
tions between the utterances spoken by different
speakers, Rinter ∈ {USi → USj}i 6=j . We further
consider a window size and use P and F as hy-
perparameters to form relations between the past
P utterances and future F utterances for every ut-
terance in a dialogue. For instance, Rintra and
Rinter for utterance u(S1)

i (spoken by speaker-1)
are defined as:

Rintra(u
(S1)
i ) = { u(S1)

i ← u
(S1)
i−P . . . u

(S1)
i ← u

(S1)
i−1 ,

u
(S1)
i ← u

(S1)
i , u

(S1)
i → u

(S1)
i+1 . . . u

(S1)
i → u

(S1)
i+F }

Rinter(u
(S1)
i ) = { u(S1)

i ← u
(S2)
i−P , . . . , u

(S1)
i ← u

(S2)
i−1 ,

u
(S1)
i → u

(S2)
i+1 , . . . , u

(S1)
i → u

(S2)
i+F }

where← and→ represent the past and future rela-
tion type respectively (example in Appendix F).
Relational Graph Convolutional Network
(RGCN): The vanilla RGCN (Schlichtkrull
et al., 2018) helps accumulate relation-specific
transformations of neighboring nodes depending
on the type and direction of edges present in the
graph through a normalized sum. In our case,
it captures the inter-speaker and intra-speaker
dependency on the connected utterances.

x′i = Θroot · zi +
∑

r∈R

∑

j∈Nr(i)

1

|Nr(i)|
Θr · zj

where Nr(i) denotes the set of neighbor indices of
node i under relation r ∈ R, Θroot and Θr denote
the learnable parameters of RGCN, |Nr(i)| is the
normalization constant and zj is the utterance level
feature coming from the transformer.
GraphTransformer: For extracting rich represen-
tation from the node features, we use a GraphTrans-
former (Shi et al., 2021). GraphTransformer adopts
the vanilla multi-head attention into graph learning
by taking into account nodes connected via edges.
Given node features H = x′1,x

′
2, . . . ,x

′
n obtained

from RGCN,

h′i = W1x
′
i +

∑

j∈N (i)

αi,jW2x
′
j

where the attention coefficients αi,j are computed
via multi-head dot product attention:

αi,j = softmax




(W3x
′
i)
>
(
W4x

′
j

)

√
d




Dataset Number of dialogues [utterances]
train valid test

IEMOCAP 120 [5810 (5146+664)] 31 [1623]
MOSEI 2249 [16327] 300 [1871] 646 [4662]

Table 1: Dataset Statistics.

Emotion Classifier: A linear layer over the fea-
tures extracted by GraphTransformer (h′i) predicts
the emotion corresponding to the utterance.

hi = ReLU(W1h
′
i + b1)

Pi = softmax(W2hi + b2)

ŷi = arg max(Pi)
where ŷi is the emotion label predicted for the ut-
terance ui.

4 Experiments

We experiment for the Emotion Recognition task
on the two widely used datasets: IEMOCAP
(Busso et al., 2008) and MOSEI (Zadeh et al.,
2018b). The dataset statistics are given in Table 1.
IEMOCAP is a dyadic multimodal emotion recog-
nition dataset where each utterance in a dialogue
is labeled with one of the six emotion categories:
anger, excited, sadness, happiness, frustrated, and
neutral. In literature, two IEMOCAP settings are
used for testing, one with 4 emotions (anger, sad-
ness, happiness, neutral) and one with 6 emotions.
We experiment with both of these settings. MOSEI
is a multimodal emotion recognition dataset anno-
tated with 7 sentiments (-3 (highly negative) to +3
(highly positive)) and 6 emotion labels (happiness,
sadness, disgust, fear, surprise, and anger). Note
that the emotion labels differ across the datasets.
We use weighted F1-score and Accuracy as evalua-
tion metrics (details in Appendix C).
Implementation Details: For IEMOCAP, audio
features (size 100) are extracted using OpenS-
mile (Eyben et al., 2010), video features (size
512) are taken from Baltrusaitis et al. (2018),
and text features (size 768) are extracted using
sBERT (Reimers and Gurevych, 2019). Audio
features for the MOSEI dataset were taken from
Delbrouck et al. (2020), which are extracted us-
ing librosa (McFee et al., 2015) with 80 filter
banks, making the feature vector size of 80. The
video features (size 35) are taken from Zadeh
et al. (2018b). The textual features (size 768) are
obtained using sBERT. The textual features are
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Models IEMOCAP: Emotion Categories
Happy Sad Neutral Angry Excited Frustrated Avg.
F1 (%) F1 (%) F1 (%) F1 (%) F1 (%) F1 (%) Acc. (%) F1 (%)

bc-LSTM 35.6 69.2 53.5 66.3 61.1 62.4 59.8 59.0

memnet 33.0 69.3 55.0 66.1 62.3 63.0 59.9 59.5

TFN 33.7 68.6 55.1 64.2 62.4 61.2 58.8 58.5

MFN 34.1 70.5 52.1 66.8 62.1 62.5 60.1 59.9

CMN 32.6 72.9 56.2 64.6 67.9 63.1 61.9 61.4

ICON 32.8 74.4 60.6 68.2 68.4 66.2 64.0 63.5

DialogueRNN 32.8 78.0 59.1 63.3 73.6 59.4 63.3 62.8

CAN 31.8 71.9 60.4 66.7 68.5 66.1 63.2 62.4

Af-CAN 37.0 72.1 60.7 67.3 66.5 66.1 64.6 63.7

COGMEN 51.9 81.7 68.6 66.0 75.3 58.2 68.2 67.6

Table 2: Results on IEMOCAP (6-way) multimodal (A+T+V) setting. Avg. denotes weighted average.

sentence-level static features. For Audio and Vi-
sual modalities, we use sentence/utterance level
features by averaging all the token level features.
We fuse the features of all the available modalities
(A(audio)+T(text)+V(video): ATV) via concatena-
tion. We also explored other fusion mechanisms
(Appendix G.1). However, concatenation gave the
best performance. We conduct a hyper-parameter
search for our proposed model using Bayesian op-
timization techniques (details in Appendix A).
Baselines: We do a comprehensive evaluation of
COGMEN by comparing it with a number of
baseline models. For IEMOCAP, we compare
our model with the existing multimodal frame-
works (Table 2), which includes DialogueRNN
(Majumder et al., 2019), bc-LSTM (Poria et al.,
2017), CHFusion (Majumder et al., 2018), mem-
net (Sukhbaatar et al., 2015), TFN (Zadeh et al.,
2017), MFN (Zadeh et al., 2018a), CMN (Haz-
arika et al., 2018b), ICON (Hazarika et al., 2018a),
and Af-CAN (Wang et al., 2021b). For MOSEI,
COGMEN is compared (Table 4) with multimodal
models, including Multilogue-Net (Shenoy and Sar-
dana, 2020) and TBJE (Delbrouck et al., 2020)
(details and analysis of baselines in §6).

Model F1-score (%)

bc-LSTM 75.13
CHFusion 76.80

COGMEN 84.50

Table 3: Results on IEMOCAP dataset for 4 emotion
classes in multimodal setting (weighted F1-score).

5 Results and Analysis

IEMOCAP: Table 2 shows the results for IEMO-
CAP (6-way) multimodal setting. Overall, COG-

MEN performs better than all the previous base-
lines as measured using accuracy and F1-score. We
also see an improvement in the class-wise F1 for
happy, sad, neutral, and excited emotions. This im-
provement is possibly due to the GNN architecture
(described in analysis later) that we are using in our
model, and none of the previous multimodal base-
lines uses GNN in their architecture. Results for
IEMOCAP (4-way) setting are in Table 3. In this
setting, COGMEN achieves 7.7% improvement
over the previous SOTA model.

MOSEI: For emotion classification across 6 emo-
tion classes, we used two settings (as done in pre-
vious works): Binary Classification across each
emotion label where a separate model is trained for
every emotion class, and Multi-label Classification
in which the sentence is tagged with more than 1
emotion and single model predicts multiple classes.
The reason for doing this was that Multilogue-Net
provides results on binary classification setting and
TBJE provides results on Multi-label setting. We
ran both models on these settings. For a fair com-
parison, we use the same utterance level textual fea-
tures similar to our setting (extracted from sBERT)
and train Multilogue-Net architecture on both the
settings. Originally, Multilogue-Net used GloVe
embeddings (Pennington et al., 2014) for textual
features, and actual results in the paper are differ-
ent than reported here. For TBJE, we use the fea-
tures provided by the paper as it uses token-level
features. COGMEN outperforms (Table 4) the
baseline models in most of the cases. For 2 class
sentiment classification, COGMEN outperforms
the previous baselines with the highest accuracy
score of 85% for A+T. For 7 class, our model
shows comparable performance. All the multi-
modal approaches tend to perform poorly when
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Sentiment Class

Accuracy(%)

Emotion Class

(weighted) F1-score (%)

Multi-label Emotion Class

(weighted) F1-score (%)

Model 2 Class 7 Class Happiness Sadness Angry Fear Disgust Surprise Happiness Sadness Angry Fear Disgust Surprise

Multilogue-Net T + A + V 82.88 44.83 67.84 65.34 67.03 87.79 74.91 86.05 70.6 70.7 74.4 86.0 83.4 87.8

TBJE

T 81.9 44.2 - - - - - - 63.4 65.8 75.3 84.0 84.5 81.4

A + T 82.4 43.91 65.91 70.78 70.86 87.79 82.57 86.04 65.5 67.9 76.0 87.2 84.5 86.1

T + A + V 81.5 44.4 - - - - - - 64.0 67.9 74.7 84.0 83.6 86.1

COGMEN

T 84.42 43.50 69.28 70.49 73.04 87.80 83.69 85.83 69.92 72.16 77.34 86.39 86.00 88.27

A + T 85.00 44.31 68.39 73.28 74.98 88.08 83.90 85.35 69.62 72.67 76.93 86.39 85.35 88.21

T + A + V 84.34 43.90 70.42 72.31 76.20 88.17 83.69 85.28 72.74 73.90 78.04 86.71 85.48 88.37

Table 4: Results on MOSEI dataset. For emotion classification, a weighted F1-score is used. For Sentiment
Classification, the results are reported using accuracy. 2 class sentiment consists of only positive and negative
sentiment. 7 class sentiment consists of sentiments from highly negative (-3) to highly positive (+3). For the cells
showing ‘-’, the results were not provided in the paper, and we were not able to reproduce the results since TBJE
used token level features, and we are using sentence-level features.

# Utterances in Context F1-score (%)

All Utterances in a dialogue 84.50

10 Utterances in a dialogue 77.43 (↓7.07)

3 Utterances in a dialogue 75.39 (↓9.11)

Table 5: Importance of Context in a dialogue. Experi-
ment performed on IEMOCAP (4-way).

Modalities T A+T A+T+V

(6 way)
Actual 66.00 65.42 67.63

w/o GNN 64.34 (↓1.66) 61.69 (↓3.73) 62.96 (↓4.14)
w/o Relations 60.49 (↓5.51) 65.32 (↓0.10) 62.13 (↓5.50)

(4 way)
Actual 81.55 81.59 84.50

w/o GNN 81.18 (↓0.37) 80.16 (↓1.43) 80.28 (↓4.22)
w/o Relations 76.76 (↓4.79) 80.27 (↓1.32) 79.61 (↓4.88)

Table 6: Ablation study on IEMOCAP dataset. All val-
ues are F1-score (%). The results shows the importance
of GCN layer.

adding visual modality, possibly because of noise
present in the visual modality and lack of alignment
with respect to other modalities. In contrast, our
model can capture rich relations across the modal-
ities and show a performance boost while adding
visual modality.
We conducted further analysis on our model. Al-
though due to space limitations, the results below
mainly describe experiments over IEMOCAP, sim-
ilar trends were observed for MOSEI as well.
Effect of Local and Global Info.: We test our ar-
chitecture in two information utilization settings:
global and local. To test the importance of context
in our architecture, we create a sub-dataset using
the IEMOCAP (4-way) setting by splitting each
dialogue into n utterances and training our archi-
tecture. Table 5 shows the decrease in performance

Model Modality F1-score (%)
4-way

DialogueGCN T 71.58

DialogXL T 73.02

DAG-ERC T 78.08

COGMEN
T 81.55

A+T+V 84.50
6-way

EmoBERTa T 68.57
DAG-ERC T 68.03

CESTa T 67.10

SumAggGIN T 66.61

DialogueCRN T 66.20

DialogXL T 65.94

DialogueGCN T 64.18

COGMEN
T 66.00

A+T+V 67.63

Table 7: Comparison with unimodal architectures on
IEMOCAP dataset.

with number of utterances present in a dialogue
(more details on effect of window size in Appendix
G.2). This experiment helps understand the im-
portance of context in a dialogue. Moreover, it
points towards challenges in developing a real-time
system (details in §6). We test the local informa-
tion hypothesis by removing the GNN module and
directly passing the context extracted features to
the emotion classifier. Table 6 shows the drop in
performance across modalities when the GNN com-
ponent is removed from the architecture, making
our local information hypothesis more concrete.

Effect of Relation Types: We also test the effect
of inter and intra-relations in the dialogue graph by
making all relations of the same type and training
the architecture. We observe a drop in performance
(Table 6) when the relations are kept the same in the
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graph formation step. The explicit relation forma-
tion helps capture the local dependencies present
in the dialogue.
Effect of Modalities: The focus of this work is
multimodal emotion recognition. However, just
for the purpose of comparison, we also compare
with unimodal (text only) approaches. We com-
pare (Table 7) with EmoBERTa (Kim and Vossen,
2021), DAG-ERC (Shen et al., 2021b), CESTa
(Wang et al., 2020), SumAggGIN (Sheng et al.,
2020), DialogueCRN (Hu et al., 2021), DialogXL
(Shen et al., 2021a) and DialogueGCN (Ghosal
et al., 2019). Text-based models are specifically op-
timized for text modalities and incorporate changes
to architectures to cater to text. It is not fair to com-
pare with our multimodal approach from that per-
spective. As shown in results, COGMEN, being
a fairly generic architecture, still gives better (for
IEMOCAP (4-way)) or comparable performance
with respect to the SOTA unimodal architectures.
In the case of our model, adding more information
via other modalities helps to improve the perfor-
mance. Results on different modality combinations
are in Appendix D.
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Figure 3: Confusion Matrix for IEMOCAP (6-way)

Error Analysis: After analysing the predictions
made across the datasets, we find that our model
falls short in distinguishing between similar emo-
tions, such as happiness vs excited and anger vs
frustration (Figure 3). This issue also exists in pre-
vious methods as reported in Shen et al. (2021b),
and Ghosal et al. (2019). We also find that our
model misclassifies the other emotion labels as
neutral because of a more significant proportion of
neutral labeled examples. Moreover, we observe
the accuracy of our model when classifying exam-
ples having emotion shift is 53.6% compared to
74.2% when the emotion remains the same (more
details in Appendix B).
Efficacy of the GNN Layer: For observing the

Before After

Happiness
Sadness
Neutral
Anger

Figure 4: UMAP (Becht et al., 2019) representation of
IEMOCAP (4-way) features before and after GNN.

effect of the GNN component in our architecture,
we also visualize the features before and after the
GNN component. Figure 4 clearly shows the better
formation of emotion clusters depicting the im-
portance of capturing local dependency in utter-
ances for better performance in emotion recogni-
tion (more in Appendix E and Appendix Figure-9).
Importance of utterances: To verify the effect of
utterances and their importance in a prediction for
a dialogue, we infer the trained model on dialogues
by masking one utterance at a time and calculat-
ing the F1-score for prediction. Figure 5 shows
the obtained results for a dialogue (Appendix Ta-
ble 10) instance taken randomly from IEMOCAP
(4-way) (more in Appendix E). For the first 4 ut-
terances, emotions state being neutral, the effect of
masking the utterances is significantly less. In con-
trast, masking the utterances with emotion shift (9,
10, 11) completely drops the dialogue’s F1-score,
showing that our architecture captures the effects
of emotions present in the utterances.
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Figure 5: Importance of utterances in IEMOCAP (4-
way). Performance drop is observed while masking
9th, 10th and 11th utterances during inference.
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6 Discussion

Comparison with Baselines: Emotion recogni-
tion in a multimodal conversation setting comes
with two broadly portrayed research challenges
(Poria et al., 2019), first, the ability of a model to
capture global and local context present in the di-
alogues, and second, the ability to maintain self
and interpersonal dependencies among the speak-
ers. All the popular baselines like Dialogue-GCN
(Ghosal et al., 2019), DialogueRNN (Majumder
et al., 2019), bc-LSTM (Poria et al., 2017) Af-
CAN (Wang et al., 2021a), etc., try to address
these challenges by proposing various architectures.
bc-LSTM (bi-directional contextual LSTM (Poria
et al., 2017)) uses LSTM to capture the contextual
information and maintain long relations between
the utterances from the past and future. Another
contemporary architecture Af-CAN (Wang et al.,
2021a) utilizes recurrent neural networks based on
contextual attention to model the interaction and de-
pendence between speakers and uses bi-directional
GRU units to capture the global features from past
and future. We propose to address these issues us-
ing a unified architecture that captures the effect of
context on utterances while maintaining the states
for self and interpersonal dependencies. We make
use of transformers for encoding the global context
and make use of GraphTransformers to capture the
self and interpersonal dependencies. Our way of
forming relational graphs between the utterances
comes close to DialogueGCN (unimodal architec-
ture). We further use a shared Emotion classifier for
predicting emotions from all the obtained utterance
level features. Moreover, our unified architecture
handles multiple modalities effectively and shows
an increase in performance after adding informa-
tion from other modalities.
Limitations (Offline Setting): A noteworthy lim-
itation of all the proposed Emotion Recognition
approaches (including the current one) is that they
use global context from past and future utterances
to predict emotions. However, baseline systems
compared in this paper are also offline systems.
For example, bc-LSTM (bi-directional contextual
LSTM) and Af-CAN use utterances from the past
and future to predict emotions. Other popular base-
lines like DialogueGCN and DialogueRNN (BiDi-
alogueRNN) also peek into the future, assuming
the presence of all the utterances during inference
(offline setting). All such systems that depend on
future information can only be used in an offline

setting to process and tag the dialogue. An Emotion
Recognition system that could work in an online
setting exhibits another line of future work worth
exploring due to its vast use cases in live telecast-
ing and telecommunication. A possible approach
to maintain the context in an online setting would
be to take a buffer of smaller context size, where
the model can predict emotions taking not the com-
plete dialogue but a smaller subset of it as input in
real-time. We tried exploring this setting for our
architecture with an online buffer of maintaining a
smaller context window. For experimenting with
it, we created a sub-dataset using the IEMOCAP
(4-way) setting by splitting each dialogue into n
utterances and training our architecture. Our re-
sults in Table 5 show the decrease in performance
with the number of utterances present in a dialogue
depicting the importance of context in a conversa-
tion. Performance improvements in these settings
where the system can work in real-time are worth
exploring and are an interesting direction for future
research.

7 Conclusion and Future Work

We present a novel approach of using GNNs
for multimodal emotion recognition and propose
COGMEN: COntextualized GNN based Multi-
modal Emotion recognitioN. We test COGMEN
on two widely known multimodal emotion recogni-
tion datasets, IEMOCAP and MOSEI. COGMEN
outperforms the existing state-of-the-art methods
in multimodal emotion recognition by a significant
margin (i.e., 7.7% F1-score increase for IEMO-
CAP (4-way)). By comprehensive analysis and
ablation studies over COGMEN, we show the im-
portance of different modules. COGMEN fuses
information effectively from multiple modalities
to improve the performance of emotion prediction
tasks. We perform a detailed error analysis and
observe that the misclassifications are mainly be-
tween the similar classes and emotion shift cases.
We plan to address this in future work, where the
focus will be to incorporate a component for cap-
turing the emotional shifts for fine-grained emotion
prediction.
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Appendix

A Hyperparameter Setting

Hyperparameters used to train our model are de-
scribed in Table 8 for IEMOCAP (4-way and 6-
way) and Table 9 for MOSEI dataset.

Dropout GNNHead SeqContext ILR

0.1 7 4 1e-4

Table 8: Hyperparameter values for our model on
IEMOCAP dataset. ILR: Initial learning rate.

Modalities Dropout GNNHead SeqContext ILR

T 0.399 3 5 3.3e-3

A+T 0.103 1 2 6.9e-3

A+T+V 0.337 2 1 1.1e-3

Table 9: Hyperparameter value on MOSEI dataset.
ILR: Initial learning rate.

We use PyTorch (Paszke et al., 2019) for train-
ing our architecture and PyG (PyTorch Geometric)
(Fey and Lenssen, 2019) for the GNN component
in our architecture. We use comet (Comet.ML,
2021) for logging all our experiments and its
Bayesian optimizer for hyperparameter tuning. Our
architecture trained on the IEMOCAP dataset has
55,932,052 parameters and takes around 7 minutes
to train for 50 epochs on the NVIDIA Tesla K80
GPU. Comparison of the model with baselines in
terms of the number of parameters is challenging,
as the baselines parameters vary depending on the
hyperparameter setting. Moreover, many baselines
do not provide information about the number of
parameters.

B Dataset Analysis

We study IEMOCAP dataset in detail for error anal-
ysis of our model. We observe the emotion transi-
tion at Utterance level (Figure 6) and Speaker level
(Figure 7). We find a high percentage of transitions
between similar emotions, causing the models to
confuse between the similar classes of emotion.
Considering the emotion transition between states
that are opposite, like from happy to sad, we de-
duce the poor performance of emotion recognition
architectures for such cases. We plan to address this
issue in future work where we target a model which
performs better in fine-grained emotion recognition
and is robust towards the shifts in emotions.
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Figure 6: Utterance-level Emotion transition for IEMO-
CAP. These are emotions transitions in consecutive ut-
terances across speakers.
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Figure 7: Speaker-level Emotion transition for IEMO-
CAP. These are emotions transitions in the consecutive
utterances of the same speaker.

C Evaluation Metrics

Weighted F1 Score: The F1 score can be inter-
preted as a harmonic mean of the precision and
recall, where an F1 score reaches its best value at 1
and worst score at 0. The relative contribution of
precision and recall to the F1 score are equal. The
formula for the F1 score is:

F1 = 2 ∗ (precision ∗ recall)
(precision+ recall)

For weighted F1 score, we calculate metrics for
each label, and find their average weighted by sup-
port (the number of true instances for each label).
Accuracy: It is defined as the percentage of correct
predictions in the test set.

D Results on Modality Combinations

Table 11 shows results on the IEMOCAP dataset
for all the modality combinations for our architec-
tures. Figure 8 shows the confusion matrix for
prediction on IEMOCAP 4-way dataset.

4161



Speaker Utterance Text Emotion
M ’Why does that bother you?’ neutral
F "She’s been in New York three and a half years. Why all of the sudden?" neutral
M ’Well maybe. Maybe she just wanted to see her again.’ neutral

F
"What did you mean? He lived next door to the girl all of his life,
why wouldn’t he want to see her again? Don’t look at me like that,
he didn’t tell me any more than he told you."

neutral

M "She’s not his girl. She knows she’s not." angry
F "I want you to pretend like he’s coming back!" angry
M "Because if he’s not coming back, then I’ll kill myself." angry

F
’Laugh. Laugh at me, but what happens the night that she goes to sleep in his bed,
and his memorial breaks in pieces?"

angry

M
’Only last week, another boy turned up in Detroit,
been missing longer than Larry,
you read it yourself, ’

angry

F "You’ve got to believe. You’ve got to–" sad
M "What do you mean me above all? Look at you. You’re shaking!" angry
F "I can’t help it!" angry
M ’What have I got to hide? What the hell is the matter with you, Kate?’ angry

Table 10: Dialogue utterances corresponding to plot shown in Figure 5.

Modalities IEMOCAP-4way IEMOCAP-6way
F1 Score (%) F1 Score (%)

a 63.58 47.57
t 81.55 66.00
v 43.85 37.58
at 81.59 65.42
av 64.48 52.20
tv 81.52 62.19

atv 84.50 67.63

Table 11: Results on IEMOCAP-4way and IEMOCAP-
6way datasets
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Figure 8: Confusion Matrix for IEMOCAP 4-Way clas-
sification

E Additional Analysis

Efficacy of the GNN Layer: We observe the ef-
ficacy of the GNN component in our architecture
and visualize the features before GNN and after the
GNN component (Figure 9) explained in section 5.
Importance of utterances: Figure 10 shows the
obtained results for a dialogue instance taken ran-
domly from IEMOCAP 4-way. For the first 15
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Frustrated

Figure 9: UMAP (Becht et al., 2019) representation of
IEMOCAP 6-way features before and after GNN.
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Figure 10: Importance of utterances in IEMOCAP clas-
sification.

utterances, emotions state being sadness, the ef-
fect of masking the utterances is more negligible
for the first 5 utterances. This drop depicts the
importance of utterances 5-15 that affect future ut-
terances. Further, masking the utterances with high
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Relations with Past Utterances Relations with Future Utterances

Figure 11: Graph formation process in (COGMEN) architecture.
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Table 12: Relations for each instance of Figure 11, where relations with past utterances are denoted by (←) and
relations with future utterances are denoted by (→)

Relation Type Node A Node B Relation Causality Relation

1 u(S1) u(S1) Past u(S1) ← u(S1)

2 u(S1) u(S2) Past u(S1) ← u(S2)

3 u(S2) u(S1) Past u(S2) ← u(S1)

4 u(S2) u(S2) Past u(S2) ← u(S2)

5 u(S1) u(S1) Future u(S1) → u(S1)

6 u(S1) u(S2) Future u(S1) → u(S2)

7 u(S2) u(S1) Future u(S2) → u(S1)

8 u(S2) u(S2) Future u(S2) → u(S2)

Table 13: Unique Relation types for a conversation be-
tween two speakers

emotion shift (15 to 30) drops the F1 score of the di-
alogue, showing the importance of fluctuations for
predicting the emotion states for other utterances.

F Graph Formation

To give a clear picture of the graph formation proce-
dure, we describe the process for utterances spoken
in a dialogue. As an illustration, let’s consider
two speakers, S1 and S2, present in a conversa-
tion of 7 utterances. Features corresponding to
each utterance is shown as a node in Figure 11.
Speaker 1 speaks utterances ui−3, ui−1, ui+1, ui+3

and Speaker 2 speaks ui−2, ui, ui+2. After creat-
ing the graphs with relations, the constructed graph
would look like shown in Figure 11, and the corre-
sponding relations for each instance would be as
shown in Table 12. Since there are two speakers
in the conversation (SN = 2), the total number of

unique relations would be:

number of relations = 2× (SN )2

= 2× (2)2

= 8

Table 13 shows the number of possible unique
relations for a conversation between two speakers.

G Discussion

G.1 Modality Fusing Mechanisms

While experimenting with the model architec-
ture, we explored various mechanisms for mix-
ing information from multiple modalities. Some
of the mechanisms include pairwise attention in-
spired from Ghosal et al. (2018), bimodal attention
present in Multilogue-Net (Shenoy and Sardana,
2020), and crossAttention layer proposed in HKT
(Hasan et al., 2021). However, in our case, none
of these fusing mechanisms shows significant per-
formance improvement over simple concatenation.
Moreover, all these fusing mechanisms require ex-
tra computation steps for fusing information. In
contrast, a simple concatenation of modality fea-
tures works well with no additional computational
overhead.
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G.2 Effect of window size in Graph
Formation

To explore the effect of window size in the Graph
Formation module of our architecture, we conduct
experiments with multiple window sizes. The ob-
tained results are present in Table 14. The window
size can be treated as a hyperparameter that could
be adjusted while training our architecture. More-
over, the freedom of setting the window size makes
our architecture more flexible in terms of usage. A
larger window size would result in better perfor-
mance for cases where the inter and intra speaker
dependencies are maintained for longer sequences.
In contrast, setting a lower window size would
be better in a use case where the topic frequently
changes in dialogues and speakers are less affected
by another speaker. In the future, we plan to ex-
plore a dynamic and automatic selection of window
size depending on the dialogue instance.

Modalities Window Past Window future F1 Score (%)

atv 1 1 81.72

atv 2 2 83.21

atv 4 4 84.08

atv 5 5 83.19

atv 6 6 82.49

atv 7 7 82.28

atv 9 9 82.77

atv 10 10 84.50

atv 11 11 83.93

atv 15 15 83.78

Table 14: Results for various window sizes for graph
formation on the IEMOCAP (4-way) dataset.
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