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Abstract

Prompt tuning (PT) is a promising parameter-
efficient method to utilize extremely large
pre-trained language models (PLMs), which
can achieve comparable performance to full-
parameter fine-tuning by only tuning a few
soft prompts. However, PT requires much
more training time than fine-tuning. Intu-
itively, knowledge transfer can help to improve
the efficiency. To explore whether we can im-
prove PT via prompt transfer, we empirically
investigate the transferability of soft prompts
across different downstream tasks and PLMs
in this work. We find that (1) in zero-shot
setting, trained soft prompts can effectively
transfer to similar tasks on the same PLM
and also to other PLMs with a cross-model
projector trained on similar tasks; (2) when
used as initialization, trained soft prompts
of similar tasks and projected prompts of
other PLMs can significantly accelerate train-
ing and also improve the performance of PT.
Moreover, to explore what decides prompt
transferability, we investigate various trans-
ferability indicators and find that the over-
lapping rate of activated neurons strongly
reflects the transferability, which suggests
how the prompts stimulate PLMs is essen-
tial. Our findings show that prompt trans-
fer is promising for improving PT, and fur-
ther research shall focus more on prompts’
stimulation to PLMs. The source code can
be obtained from https://github.com/
thunlp/Prompt-Transferability.

1 Introduction

Pre-trained language models (PLMs), such as
BERT (Devlin et al., 2019) and GPT (Radford et al.,
2018) have achieved great performance on vari-
ous natural language processing (NLP) tasks (Han
et al., 2021). Recently, people have found that
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Figure 1: We explore prompt transferring across dif-
ferent tasks (cross-task) and PLMs (cross-model) with
directly reusing prompts and initializing prompt tuning.

extremely large PLMs can achieve remarkable im-
provements, and various large PLMs are continu-
ally developed (Brown et al., 2020; Raffel et al.,
2020; Zhang et al., 2021; Zeng et al., 2021; Wei
et al., 2021; Sun et al., 2021), which contain up to
hundreds of billions of parameters.

Considering the extremely large scale of these
state-of-the-art PLMs, conventional full-parameter
fine-tuning methods become extremely expensive.
Hence, various parameter-efficient tuning meth-
ods (Houlsby et al., 2019; Ben Zaken et al., 2021;
Lester et al., 2021; Li and Liang, 2021; Liu et al.,
2021) are explored, among which prompt tuning
(PT) has attracted broad research attention. PT
prepends some soft prompts, which are essentially
learnable virtual tokens, into the input sequences
and only trains them while keeping all the PLM’s
parameters fixed. The training objective is to gen-
erate desired outputs in the same way as the pre-
training tasks. PT can match the downstream task
performance of fine-tuning with only thousands of
tunable parameters (Lester et al., 2021) when the
PLM has billions of parameters.

Although PT is an effective approach to utiliz-
ing extremely large PLMs, it requires much more
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Figure 2: Validation accuracies against training time of
fine-tuning and PT for RoBERTaLARGE on MNLI. PT
takes much more training time.

training time than fine-tuning to reach the conver-
gence as shown in Figure 2; hence, it is worth-
while to explore how to improve the efficiency of
PT. In this work, we attempt to improve PT via
prompt transfer across different tasks and models.
Knowledge transfer across tasks (Vu et al., 2020)
and models (Qin et al., 2021) have been widely
used to improve the efficiency and effectiveness of
NLP systems. Intuitively, soft prompts are the only
tuned parameters in PT and thus shall concentrate
the knowledge required to solve tasks conditioned
on PLMs. Thus transferring the trained prompts is
promising to accelerate PT.

As shown in Figure 1, we empirically ana-
lyze the transferability of prompts across different
tasks (cross-task transfer setting) and PLMs (cross-
model transfer setting) in this paper. The empirical
analysis is conducted on 17 NLP tasks of 6 types
and two representative PLM series: RoBERTa (Liu
et al., 2019b) and T5 (Raffel et al., 2020). In cross-
task transfer, the prompt transfer can be done by
directly reusing the trained prompts of the source
task on the target task. However, in cross-model
transfer, directly reusing prompts is intractable
since the semantic spaces of different PLMs are
inconsistent; hence, we develop various prompt
projectors to project the soft prompts trained on
the source PLM to the semantic space of the tar-
get PLM. We conduct two lines of experiments:
(1) We investigate the zero-shot transfer perfor-
mance and find that the transferability of prompts
is influenced by task types. In cross-task trans-
fer, the soft prompts can directly transfer to same-
type tasks and achieve non-trivial performance,
but poorly transfer to different-type tasks requir-
ing different language skills. In cross-model trans-
fer, we can successfully train a prompt projector
with PT on a task, but the trained projector also
only well generalizes to the same-type tasks of
the projector-training task. (2) To accelerate PT,

we propose to transfer prompts with initializa-
tion. In cross-task transfer, we start PT with the
trained soft prompts of similar tasks as initializa-
tion. While in cross-model transfer, the initial-
ization is the projected prompts of the same task
trained on the source PLM. The two methods are
dubbed as TPTTASK and TPTMODEL, which are short
for transferable prompt tuning. Experiments show
that they can both accelerate PT to some extent and
also achieve a certain performance improvement.

Furthermore, we explore why can the prompts
transfer and what decides their transferability. To
this end, we design various prompt similarity met-
rics from different perspectives and examine how
well they can serve as transferability indicators,
i.e., how well they correlate with prompt trans-
fer performance. Experiments find that our novel
method of measuring prompt similarity via model
activations in feed-forward layers is better corre-
lated with prompt transferability than prompt em-
bedding distance-based metrics. This suggests the
prompts are essentially stimulating PLM’s inner
ability distributing among neurons to do specific
NLP tasks, and future prompt transfer works should
focus more on how the PLMs respond to different
prompts’ stimulation rather than the prompts’ em-
bedding properties.

To summarize, our contributions are three-fold:
(1) We thoroughly analyze the transferability of
prompts across different tasks and models, and
show that improving PT with prompt transfer is
possible and promising. (2) We propose to trans-
fer prompts with initialization, which enhances
both PT’s efficiency and effectiveness. (3) We
explore the effectiveness of various prompt sim-
ilarity metrics serving as transferability indicators
and demonstrate how the prompts stimulate PLMs
to decide the transferability, which may facilitate
further transferrable PT research.

2 Related Work

Prompt Tuning GPT-3 (Brown et al., 2020)
demonstrates remarkable few-shot performance by
prepending textual prompts before the inputs and
thus helps the PLM to generate desired outputs
of NLP tasks directly. Motivated by this, many
works have tried to improve various NLP tasks
by creating manually-crafted (Schick and Schütze,
2021a,b; Mishra et al., 2021) or automatically-
searched (Jiang et al., 2020; Shin et al., 2020; Gao
et al., 2021) hard prompts, which are discrete to-
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kens but not necessarily human-readable. Further-
more, soft prompts (Hambardzumyan et al., 2021;
Qin and Eisner, 2021; Zhong et al., 2021; Liu et al.,
2021) are proposed, which are tuneable embed-
dings rather than tokens in the vocabularies and
can be directly trained with task-specific supervi-
sion. Lester et al. (2021) demonstrate that prompt
tuning (PT) method can match the performance
of full-parameter fine-tuning when the PLM has
billions of parameters. This suggests that PT is
promising to utilize extremely large PLMs. How-
ever, the much more training time needed to reach
the convergence makes PT inefficient. In this work,
we show that prompt transfer can improve the ef-
fectiveness to some extent with knowledge trans-
fer, and empirically analyze the transferability of
prompts across tasks and PLMs.

Knowledge Transfer Cross-task knowledge
transfer (Ruder, 2017) has been a long-standing
way to improve the effectiveness and efficiency of
NLP systems. In the PLM era, some works pro-
pose to tune the PLMs on intermediate tasks (Phang
et al., 2018; Pruksachatkun et al., 2020; Gururan-
gan et al., 2020; Wang et al., 2019a; Vu et al., 2020;
Poth et al., 2021) before fine-tuning on specific
target tasks to achieve certain benefits. Vu et al.
(2020) empirically analyze the transferability be-
tween tasks in this setting.

These explorations are all for fine-tuning. Con-
sidering the potential of PT, we believe the trans-
ferability and knowledge transfer methods for PT
are worth exploring. As a prior attempt, Lester
et al. (2021) demonstrate that PT’s cross-domain
transferability is stronger than fine-tuning.

Similar to our work, recent work (Vu et al., 2021)
also explores the cross-task transfer with prompt
initialization and prompt similarity metrics based
on cosine similarity. However, Vu et al. (2021)
focus on improving the effectiveness of PT but we
attempt to improve the efficiency. Additionally, we
explore more transferability indicators, especially
the overlapping rate of activated neurons, and also
investigate cross-model transfer, which is inspired
by previous cross-model knowledge transfer works
such as Net2Net (Chen et al., 2016), knowledge
distillation (Hinton et al., 2015) and knowledge
inheritance (Qin et al., 2021).

3 Preliminary

Here we introduce the basic knowledge about PT
(§ 3.1) as well as the downstream tasks (§ 3.2) and

models (§ 3.3) investigated in experiments.

3.1 Prompt Tuning

In this work, we study the PT method that is capa-
ble of tuning large PLMs (Lester et al., 2021; Liu
et al., 2021), i.e., we only explore the PT method
freezing PLM parameters. PT prepends some vir-
tual tokens, i.e., the soft prompts, into the inputs of
the PLM to provide knowledge about downstream
tasks. The soft prompts are essentially tunable em-
bedding vectors, which are trained with the objec-
tive enforcing the PLM to generate desired outputs
of the downstream task in the same way of the
pre-training objective.

Formally, given an input sequence with n to-
kens X = {x1, x2, . . . , xn}, we first prepend
l randomly initialized soft prompts P =
{p1,p2, . . . ,pl} before them, where pi ∈ Rd is
an embedding vector, and d is the input dimension
of the PLM. The training objective is to maximize
the likelihood of decoding the desired output y:

L = p(y|P, x1, . . . , xn), (1)

where only P is learnable. For the language under-
standing tasks, y is the label token corresponding
to the label of X . For the conditional generation
tasks, y is a sequence. Especially, for the models
pre-trained with the masked language modeling
objective like RoBERTa, we additionally prepend
a special [MASK] token before the prompts and
train the prompts to let the PLM fill y into it.

3.2 Investigated NLP Tasks

To comprehensively study the prompt transferabil-
ity across various NLP tasks, we involve 17 di-
verse tasks, which can be divided into 6 types:
(1) Sentiment Analysis (SA), including IMDB
(Maas et al., 2011), SST-2 (Socher et al., 2013),
laptop (Pontiki et al., 2014), restaurant
(Pontiki et al., 2014), Movie Rationales (Movie)
(Zaidan et al., 2008) and TweetEval (Tweet) (Bar-
bieri et al., 2020); (2) Natural Language In-
ference (NLI), including MNLI (Williams et al.,
2018), QNLI (Wang et al., 2019b) and SNLI (Bow-
man et al., 2015); (3) Ethical Judgment (EJ), in-
cluding deontology (Hendrycks et al., 2021)
and justice (Hendrycks et al., 2021); (4)
Paraphrase Identification (PI), including QQP
(Sharma et al., 2019) and MRPC (Dolan and Brock-
ett, 2005); (5) Question Answering (QA), includ-
ing SQuAD (Rajpurkar et al., 2016) and NQ-Open
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(Lee et al., 2019); (6) Summarization (SUM), in-
cluding Multi-News (Fabbri et al., 2019) and
SAMSum (Gliwa et al., 2019). Details for these
tasks, evaluation metrics, label tokens, implemen-
tations are in appendix A.

3.3 Investigated Models

We investigate prompt transferability for two se-
ries of PLMs: RoBERTa (Liu et al., 2019b) and
T5 (Raffel et al., 2020), which represent two main-
stream pre-training types: masked language mod-
eling and sequence-to-sequence pre-training. Con-
sidering RoBERTa can only predict a single token
(or a fixed length of tokens) under prompt tuning
paradigm, for the conditional generation tasks (QA
and SUM) that output multiple tokens, we only
investigate T5. We mainly report results for the
two largest versions of PLMs, i.e., RoBERTaLARGE

and T5XXL. The more detailed results for the other
sizes are attached in appendix.

4 Cross-Task Transfer

We empirically study the cross-task transferability
of soft prompts (§ 4.1) and try to improve the effec-
tiveness and efficiency of PT with transfer (§ 4.2).

4.1 Zero-shot Transfer Performance

To study the cross-task transferability, we first ex-
amine PT’s zero-shot transfer performance, i.e., we
conduct PT on a source task, then directly reuse
the trained prompts on other target tasks and eval-
uate their performance. The results are shown in
Figure 31, from which we can observe that: (1) For
the tasks within the same type, transferring soft
prompts between them can generally perform well
and may even outperform vanilla PT on the target
task, especially when the source task has more data
(the case of transferring from IMDB to Movie in
Figure 3 (a) and transferring from restaurant
to laptop in Figure 3 (b)), which demonstrates
that it is promising to improve PT’s effectiveness
and efficiency with knowledge transfer from sim-
ilar tasks. (2) For the tasks of different types, the
transferability of soft prompts among them is gen-
erally poor, and transferring soft prompts often
achieve similar performance to randomly initial-
ized prompts.

(3) However, some tasks can transfer to different-
type tasks to some extent, such as the QA and SUM
tasks to SA tasks in Figure 3 (b). To understand

1More results on other PLMs are left in appendix B.1.

this, it is worthwhile to explore what controls the
transferability between prompts, and we do some
preliminary study in § 6.

4.2 Transfer with Initialization
To improve the effectiveness and efficiency of
PT with cross-task transfer, we explore a cross-
task transferable prompt tuning (TPTTASK) method,
which initializes soft prompts with well-trained
prompts of the most similar task and then starts PT.

For a target task, we start TPTTASK with trained
prompts of the source task achieving the best zero-
shot transfer performance in Figure 3. From the
results of the performance and training time com-
parisons2 in Table 1, we can see TPTTASK can
mostly achieve better or comparable performance
to vanilla PT starting from random initialization,
and TPTTASK generally takes less training time.

5 Cross-Model Transfer

We further study the cross-model transferability
of soft prompts. Intuitively, cross-model trans-
fer allows us to train prompts on a small and
computationally efficient PLM and use them on
a massive and computationally expensive PLM,
which will be much more efficient and environment-
friendly. We investigate the feasibility of cross-
model transfer on transferring from a source PLM
(RoBERTaLARGE) to a larger and heterogeneous tar-
get PLM (T5XXL), which shall be the most difficult
setting. Appendix C shows the experimental re-
sults of other settings. Directly reusing trained
soft prompts between different PLMs is infeasible
since their embedding spaces are different. Hence,
we investigate how to do cross-model prompt pro-
jection (§ 5.1) and see the transfer performance
(§ 5.2). Furthermore, we explore to improve PT
with cross-model transfer initialization (§ 5.3).

5.1 Cross-Model Prompt Projection
To project the trained soft prompts of a PLM to the
semantic space of a different PLM, we train pro-
jectors with various objectives and examine their
effectiveness. A good way to train the cross-model
projectors may need some task-specific supervi-
sions, but the trained projector shall generalize to
different tasks so that the efficiency for learning the
new tasks on the target model could be improved.

Formally, given the prompt of the source PLM
P s = {ps

1, . . . ,p
s
l }, we concatenate the l virtual

2Training time comparisons are left in appendix B.3.
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Figure 3: Relative zero-shot transfer performance (zero-shot transfer performance / original PT performance) (%)
on the target tasks (columns) of the soft prompts trained on the source tasks (rows) for RoBERTaLARGE and T5XXL.
Colors of the task names indicate task types. Blue: SA. Green: NLI. Brown: EJ. Orange: PI. Purple: QA. Gray:
SUM. Random Prompt of the last row means the soft prompts are randomly generated without any training.

Task Type SA NLI EJ PI QA SUM

Task IMDB SST-2 laptop restaurant Movie Tweet MNLI QNLI SNLI deontology justice QQP MRPC SQuADNQ-Open Multi-News SAMSum

Metric Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. F1 F1 ROUGE-L ROUGE-L

RoBERTaLARGE

Performance (PT) (%) 92.2 96.1 76.4 83.7 84.9 76.1 87.3 92.4 91.9 85.6 81.0 88.9 81.2 N/A N/A N/A N/A
Performance (TPTTASK) (%) 92.4 96.3 79.1 85.8 85.1 76.1 87.9 93.1 91.9 85.6 78.2 86.1 79.2 N/A N/A N/A N/A

Convergence Speedup 1.7 1.1 1.0 1.9 1.2 0.9 1.2 1.2 1.3 0.9 0.7 0.8 0.9 N/A N/A N/A N/A
Comparable-result Speedup 2.5 2.4 1.0 3.8 1.5 1.3 1.1 2.3 1.0 0.9 N/A N/A N/A N/A N/A N/A N/A

T5XXL

Performance (PT) (%) 96.5 97.4 76.6 90.1 97.9 76.2 90.5 95.2 93.4 87.0 92.5 90.0 86.3 86.3 20.8 29.2 45.8
Performance (TPTTASK) (%) 96.6 97.8 84.2 88.6 97.5 77.0 92.0 96.2 94.0 95.3 90.7 90.9 89.0 85.9 21.3 29.3 46.8

Convergence Speedup 1.2 49.7 2.2 1.1 3.9 1.4 12.5 24.9 49.9 29.8 1.5 1.0 3.3 1.1 1.0 2.0 2.0
Comparable-result Speedup 1.2 48.9 219.8 N/A N/A 1.5 12.5 29.9 49.9 29.9 N/A 1.0 5.0 N/A 1.0 2.0 2.5

Table 1: Performance on 17 NLP tasks of vanilla prompt tuning (PT) and prompt tuning with transferring initial-
ization (TPTTASK), which initialize PT with the one performing best in zero-shot transfer, as well as the conver-
gence speedup (the quotient of the training steps of PT by the training time of TPTTASK reaching convergence)
and comparable-result speedup (the quotient of the training time of PT by the training time of TPTTASK achieving
comparable performance to PT). N/A represents the tasks that RoBERTaLARGE cannot conduct, or we fail to speed
up training with TPTTASK.

tokens into a unified vector Ps ∈ Rlds . The pro-
jector Proj(·) is to project it to P̃s ∈ Rldt in the
semantic space of the target PLM, where ds and dt
are the input embedding dimensions of the source
and target PLM, respectively. We parameterize the
projector with a two-layer perceptron as follows:

P̃s=Proj(Ps)=W2(σ(P
sW1+b1))+b2, (2)

where W1 ∈ Rdh×lds ,W2 ∈ Rldt×dh are train-
able matrices, b1 ∈ Rdh ,b2 ∈ Rldt are biases, σ
is a non-linear activation function. We investigate

two learning objectives to train the projector3:

Distance Minimizing We firstly try to learn
cross-model projections by minimizing the dis-
tance between the projected prompt and the paral-
lel prompt Pt originally trained on the target PLM
with the same task, i.e., the training objective is to
minimize their L2-distance ‖Proj(Ps)−Pt‖2.

Task Tuning We then try to train the cross-model
projector with task-specific supervision signals on

3More projector-training details are left in appendix C.1.
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Method SA NLI EJ PI
IMDB SST-2 laptop restaurant Movie Tweet MNLI QNLI SNLI deontology justice QQP MRPC

PT on T5XXL 96.5 97.4 76.6 88.1 97.9 72.5 90.5 95.2 93.4 87.0 92.5 90.0 86.3

Random Prompt 49.7 49.0 19.8 17.0 51.6 15.5 31.8 49.3 31.9 51.3 50.0 36.4 67.0

(a) Zero-shot Transfer Performance (%)

laptop
Distance Minimizing 49.6 49.0 76.6 17.5 51.5 14.4 31.8 48.1 32.8 53.3 49.9 36.8 66.6
Task Tuning 82.9 89.3 80.3 85.7 78.6 58.4 32.4 50.7 33.6 54.9 51.6 33.9 63.7

MNLI
Distance Minimizing 49.6 50.1 19.8 18.3 51.2 15.0 90.5 49.0 32.9 50.3 49.0 36.8 65.6
Task Tuning 49.7 48.8 19.8 17.0 51.6 16.0 89.8 82.7 88.2 49.7 50.0 36.8 67.7

(b) Transfer with Initialization (TPTMODEL)

laptop
Performance (%) 96.5 97.4 82.9 90.3 97.4 74.4 91.0 95.4 93.4 92.5 92.5 90.0 87.9
Convergence Speedup 1.1 1.7 1.9 1.3 0.6 1.3 0.9 0.9 1.0 1.0 0.7 1.1 1.1
Comparable-result Speedup 1.0 19.0 16.0 6.0 N/A 2.2 3.6 1.1 6.0 6.0 0.9 1.8 3.4

MNLI
Performance (%) 96.5 97.4 82.7 88.5 95.8 74.7 91.2 95.9 93.5 94.6 92.5 90.0 87.7
Convergence Speedup 1.0 1.6 1.8 0.9 0.4 1.3 1.0 1.1 1.4 2.0 1.7 0.9 0.9
Comparable-result Speedup 1.0 18.0 15.0 1.6 N/A 1.5 18.0 20.0 30.0 7.5 5.0 1.5 1.9

Table 2: Cross-model prompt transfer (RoBERTaLARGE to T5XXL) results, including non-transfer baselines (vanilla
PT and randomly generated prompts), zero-shot transfer performance of various projectors, and TPTMODEL results
(performance, convergence speedup, and comparable-result speedup similar to Table 1). TPTMODEL adopts the Task
Tuning projectors to project the soft prompts.

the target PLM. Specifically, we directly tune the
projected prompts on some tasks and back propa-
gate the supervision signals to train the projector
weights, so that the projector can learn how to stim-
ulate the target PLM and thus may generalize to
transfer the prompts of other tasks.

These methods rely on some tasks (parallel
trained soft prompts or training data) to train the
projector. The projector learning methods are ag-
nostic to the specific training tasks used, and we
choose laptop and MNLI in experiments.

5.2 Zero-shot Transfer Performance

The zero-shot transfer performance of various
projector-learning methods are shown in Table 24

(a). We can observe that: (1) Distance Minimizing
works well to transfer the prompts of the projector-
training task, but falls back to random performance
on the other unseen tasks, which is not practically
usable. This is consistent with our findings in § 6
that the embedding distances do not strongly corre-
late to prompt transferability. (2) Task Tuning
performs better and successfully generalizes to
same-type unseen tasks of the projector-training
tasks (e.g. NLI tasks for the projectors trained
with MNLI), which proves the feasibility of prac-
tical cross-model prompt transfer. (3) The projec-
tors trained with Task Tuning still cannot work
for different-type tasks, which may be limited by
the cross-task prompt transferability investigated

4More results on other PLMs are left in appendix C.2.

in § 4.1. This urges further attention to developing
universal cross-model projections.

5.3 Transfer with Initialization
Similar to § 4.2, we further study whether the pro-
jected soft prompts can initialize PT on the target
PLM and accelerate training as well as improve
performance. We propose cross-model transfer-
able prompt tuning, TPTMODEL, which adopts the
Task Tuning projectors to project the soft prompts
trained on the source PLM into the target PLM and
initialize PT with the projected prompts.

The performance and speedup are shown in Ta-
ble 2 (b). We can see that, for the tasks within
the same type of the projector-training task, com-
pared to vanilla PT, TPTMODEL can mostly achieve
comparable or better performance with much less
training time, which demonstrates that practical
cross-model prompt transfer is promising for im-
proving the efficiency and effectiveness of PT.

6 Exploring Transferability Indicator

Based on the positive results in cross-task and cross-
model transfer, we explore why the soft prompts
can transfer across tasks and what decides the trans-
ferability between them, which may shed light on
the mechanisms behind PT and help to design trans-
ferable PT methods. We explore various prompt
similarity metrics and examine how well do they
align with the zero-shot transfer performance. If
a similarity metric can well indicate transferabil-
ity, it suggests the factors considered in designing
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this metric decide the prompt transferability. More-
over, the prompt similarity metrics can qualify task
similarities using the trained soft prompts as task
embeddings and may help in developing cross-task
transfer methods. As a straightforward example, if
we build a prompt warehouse containing prompts
of diverse tasks, we can retrieve prompts of similar
tasks for a new task with a certain similarity metric
and better improve PT with TPTTASK.

6.1 Prompt Similarity Metric
We explore the following two kinds of metrics:

Embedding Similarity We firstly regard the
trained soft prompts as only embeddings in the
vector space and calculate their Euclidean simi-
larity and cosine similarity, among which cosine
similarity is also explored by Vu et al. (2021).

Given two groups of trained prompts contain-
ing l virtual tokens: P t1 = {pt1

1 , . . . ,p
t1
l } and

P t2 = {pt2
1 , . . . ,p

t2
l }, which correspond to tasks

t1 and t2. Firstly, we concatenate the l virtual to-
kens for each group and get two concatenation em-
beddings Pt1 ,Pt2 ∈ Rld, then we compute Eu-
clidean similarity and cosine similarity of them:

Econcat(P
t1 , P t2) =

1

1 + ‖Pt1 −Pt2‖ ,

Cconcat(P
t1 , P t2) =

Pt1 ·Pt2

‖Pt1‖‖Pt2‖ .
(3)

We further explore a simple way to make the
metrics invariant to token positions. We compute
Euclidean distances and cosine similarities for ev-
ery virtual token pairs in the two groups and use
the averaged results in the final similarity metrics:

Eaverage(P
t1 , P t2) =

1

1 + 1
l2

l∑
i=1

l∑
j=1

‖pt1
i − pt2

j ‖
,

Caverage(P
t1 , P t2) =

1

l2

l∑

i=1

l∑

j=1

pt1
i · pt2

j

‖pt1
i ‖‖pt2

j ‖
.

(4)

Model Stimulation Similarity In the second
way, we depict their similarities based on how they
stimulate the PLMs, i.e., we examine the similar-
ities between the responses of PLMs to the two
soft prompts. Motivated by Geva et al. (2021) and
Dai et al. (2021), which both find that the activa-
tion of the neurons in the feed-forward layers of
Transformers (Vaswani et al., 2017) corresponds
to specific model behaviors, we propose to use the
overlapping rate of activated neurons as a simi-
larity metric of prompts. Specifically, the feed-
forward network FFN(·) in a Transformer layer is:

Model Metric Same
Task

Different
Tasks

RoBERTaLARGE

Econcat 9.4 6.8
Eaverage 41.6 37.6
Cconcat 47.6 31.7
Caverage 1.7 1.1
ON 39.4 21.4

T5XXL

Econcat 0.5 0.3
Eaverage 4.0 3.4
Cconcat 29.4 3.4
Caverage 4.0 2.1
ON 62.0 46.1

Table 3: The average values (%) of the 5 similarity met-
rics for prompt pairs of the same task (trained with 3
different random seeds) and different tasks.

FFN(x) = max(xW>
1 + b1,0)W2 + b2, (5)

where x ∈ Rd is the input embedding, W1,W2 ∈
Rdm×d are trainable matrices, and b1,b2 are bias
vectors. The max(xW>

1 + b1,0) can be regarded
as the non-negative activation values for dm hidden
neurons (Geva et al., 2021). We then change all the
positive elements of max(xW>

1 + b1,0) to 1 and
get the one-hot activation state vector s.

We feed an input sequence {P,<s>} into the
PLMs, where <s> is the special token indicating
the start of a sentence. For RoBERTa, a [MASK]
is additional prepended. This sequence is in the
format of PT inputs but without specific input sen-
tences.

We use the activation states of the positions
used to decode outputs, which shall be more task-
specific. Specifically, for T5, we use the decoder
module’s activation states at the first position. For
RoBERTa, we use the activation states of [MASK].
Finally, we concatenate the activation states of
PLM’s L layers to get the overall activation states:

AS(P ) = [s1; s2; ...; sL]. (6)

We can only retrieve the activation states of a
part of layers in the similarity computation. In
experiments, we find that the higher layers tend
to be more task-specific, which is consistent with
the probing results (Liu et al., 2019a). Hence we
use the activation states of the top 3 layers5 in ex-
periments below. We calculate the overlapping
rate of activated neurons ON(P t1 , P t2) between

5More results about the different layers’s performance are
left in appendix D.4.
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Metric RoBERTaLARGE T5XXL

Econcat 22.6 12.9
Eaverage 2.8 −2.5
Cconcat 24.8 31.6
Caverage 44.7 33.5
ON 49.7 36.9

Table 4: The Spearman’s rank correlation scores (%)
between various similarity metrics and cross-task zero-
shot transfer performance of soft prompts.
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Figure 4: Spearman’s correlation scores of ON and
Caverage with cross-task zero-shot transfer perfor-
mance change along with the parameter size of T5.

the trained soft prompts of task t1 and t2 with the
cosine similarity:

ON(P t1 , P t2) =
AS(P t1) ·AS(P t2)

‖AS(P t1)‖‖AS(P t2)‖ . (7)

6.2 Experimental Results
To evaluate the effectiveness of the above similarity
metrics of soft prompts, we (i) test whether the sim-
ilarity metrics can distinguish the trained prompts
of the same tasks and different tasks, and (ii) exam-
ine whether these metrics align with the zero-shot
transfer performance.

Regarding (i), we compare the similarities of the
investigated metrics for two trained prompts within
the same task (trained with different random seeds)
and between different tasks in Table 3. From the
results, we can observe that all the metrics work
well to distinguish the prompts of the same task
and different tasks. This suggests that the trained
soft prompts of different tasks form distinguishable
clusters in the embedding space and also stimulate
different abilities within the PLM.

Moreover, to evaluate (ii), how well the sim-
ilarity metrics align with the cross-task transfer
performance, we quantify the correlations between
the similarities and zero-shot transfer performance
in Figure 3. Specifically, for each target task’s
prompt, we rank various source tasks’ prompts

Projector Task Caverage ON

Task Tuning
(laptop)

laptop 3.8 52.4
Same-Type Tasks 4.1 51.0
Different-Type Tasks 3.4 46.0

Task Tuning
(MNLI)

MNLI 2.7 70.7
Same-Type Tasks 2.7 56.7
Different-Type Tasks 4.1 53.4

Table 5: Similarities (%) between the prompts pro-
jected with Task Tuning projector and the original
prompts trained on T5XXL.

with similarity scores and zero-shot transfer perfor-
mance and then compute the Spearman’s rank cor-
relation (Spearman, 1987) between the two ranks
generated by these two ways. The overall results
are shown in Table 46. We can see that: (1) The
overlapping rate of activated neurons (ON) metric
works better than all the embedding similarities,
which suggests that model stimulation is more im-
portant for prompt transferability than embedding
distances. (2) ON works much worse on T5XXL
(11B parameters) than on RoBERTaLARGE (330M
parameters). We guess this is because larger PLMs
have higher redundancy (Aghajanyan et al., 2021),
which means prompts can activate different redun-
dant neurons to do similar jobs and thus influence
the sensitivity of ON metric. This is supported by
the experiments showing that the Spearman’s corre-
lation scores of ON drop with the increase of PLM
scales (Figure 4), from which we can see Caverage

also exhibits a similar trend. We encourage future
work to explore how to overcome the PLM redun-
dancy for better transferrable PT. As a preliminary
trial, we find that by taking the intersection of ac-
tivation states of 3 prompts trained with different
random seeds, ON’s correlation score on T5XXL
raises from 36.9% to 46.3%.

We further explore whether the prompt simi-
larity metrics also work in the cross-model trans-
fer setting by testing whether they work between
the projected prompts and original prompts of the
same task. In Table 5, we show the similarities of
prompts projected with Task Tuning projectors by
the two best metrics Caverage and ON. We can see:
(1) ON metric shows that the projected prompts
are highly similar to the original prompts within
the same type of projector-training tasks but are
not so similar to different-type tasks, which is quite
consistent with the cross-model zero-shot transfer

6The detailed results by task types are left in appendix D.2.
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performance in Table 2. (2) However, Caverage can-
not reflect this phenomenon, which shows that the
perspective of model stimulation is more promising
for understanding transferability again.

7 Conclusion

We empirically investigate the transferability of
prompts in this paper. In the cross-task setting,
we find that soft prompts can transfer to similar
tasks without training. In the cross-model setting,
we successfully project prompts into the space of
other PLMs. Further, we utilize trained prompts of
other tasks or other PLMs as initialization to signif-
icantly accelerate training and improve effective-
ness. Moreover, we explore various prompt trans-
ferability indicators and show that how the prompts
stimulate PLMs is important to transferability. We
hope the empirical analyses and the model stimula-
tion idea can facilitate further research on transfer-
able and efficient PT.
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A Basic Setup for Various Tasks

A.1 Dataset and Task

Sentiment Analysis (SA) SA is the task of clas-
sifying sentiment polarities for a given sentence.
We select IMDB (Maas et al., 2011), SST-2
(Socher et al., 2013), SemEval/laptop (Pon-
tiki et al., 2014), SemEval/restaurant (Pontiki
et al., 2014), Movie Rationales (Movie) (Zaidan
et al., 2008), and TweetEval (Tweet) (Barbieri
et al., 2020) for our experiments.

Natural Language Inference (NLI) NLI is the
task of determining whether a hypothesis is entailed
or contradicted by a given sentences (premise, hy-
pothesis). We select MNLI (Williams et al., 2018),
QNLI (Wang et al., 2019b), and SNLI (Bowman
et al., 2015) for our experiments.

Ethical Judgment (EJ) EJ is the task of de-
ciding whether a sentence is ethically acceptable.
We select Ethics/deontology (Hendrycks et al.,
2021) and Ethics/justice (Hendrycks et al.,
2021) for our experiments.

Paraphrase Identification (PI) PI is the task of
classifying whether a pair of sentences are seman-
tically identical. We select QQP (Sharma et al.,
2019) and MRPC (Dolan and Brockett, 2005) for
our experiments.

Question Answering (QA) QA is the task of an-
swering a question. We choose SQuAD (Rajpurkar
et al., 2016) and NQ-Open (Lee et al., 2019) to
analyze. For SQuAD, a PLM captures the answer
from the content. As for NQ-Open, a PLM directly
generates the answer without the content.

Summarization (SUM) SUM is the task of sum-
marizing a given article and generating the abstract.
We select Multi-News (Fabbri et al., 2019), and
SAMSum (Gliwa et al., 2019) for our experiments.

A.2 Evaluation Metrics

For classification tasks (SA, NLI, EJ, and PI), we
use accuracy (Acc.) as their evaluation metric. As
for generation tasks (QA and SUM), we utilize F1
and ROUGE-L (Lin, 2004), respectively.

A.3 Prompt Tuning Setting

In the experiments, for all the investigated tasks,
we use AdamW (Loshchilov and Hutter, 2019) as
the optimizer and set the learning rate as 0.001. We
set the length of soft prompts l as 100. All the soft

prompts are randomly initialized and optimized
with Equation 1. In the inference stage, RoBERTa
predicts the label tokens at the [MASK] position and
T5 directly uses its decoder to do generation. For
the classification tasks (SA, NLI, EJ and PI), we
obtaining answers in a ranking manner, i.e., we
rank the label tokens by their likelihoods and regard
the PLMs as predict the label of the label token with
highest likelihood. For the conditional generation
tasks (QA and SUM), we directly take the outputs
of PLMs as their answers.

A.4 Label Tokens

The used label tokens for the classification tasks
(SA, NLI, EJ, PI) are shown in Table 6. For gener-
ation tasks (QA, SUM), the desired output is just
the annotated answers.

Task Label Tokens

Sentiment Analysis (SA)

IMDB positive, negative
SST-2 positive, negative
laptop positive, moderate, negative
restaurant positive, moderate, negative
Movie positive, negative
Tweet positive, moderate, negative

Natural Language Inference (NLI)

MNLI yes, neutral, no
QNLI yes, no
SNLI yes, neutral, no

Ethical Judgment (EJ)

deontology acceptable, un
justice acceptable, un

Paraphrase Identification (PI)

QQP true, false
MRPC true, false

Table 6: Label tokens of classification tasks.

B Cross-Task Transfer

B.1 More Zero-shot transfer performance

In § 4.1, we report the zero-shot transfer perfor-
mance (relative performance) on RoBERTaLARGE

and T5XXL. Here, we investigate the zero-shot
transfer performance on other sizes of RoBERTa
and T5, which are shown in Figure 5. According
to these results, we can find that the transferabil-
ity of soft prompts between the tasks of different
types is generally poor, which is consistent with
the conclusion in § 4.1.
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(a) T5SMALL
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(c) RoBERTaBASE
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(d) RoBERTaLARGE

Figure 5: Relative performance (transferring zero-shot performance / original PT performance) (%) on the target
tasks (columns) of the soft prompts trained on the source tasks (rows), both of which demonstrate the relative
performance for zero-shot transfer of prompts of RoBERTa and T5. Colors of the tasks names indicate the task
types. Blue: sentiment analysis (SA). Green: natural language inference (NLI). Brown: ethical judgment (EJ).
Orange: paraphrase identification (PI). Purple: question answering (QA). Gray: summarization (SUM). Random
Prompt of the last row means the soft prompts are randomly generated without any training.
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(a) Directly transferring (RoBERTaBASE)
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(b) Unifying the label tokens (RoBERTaBASE)

Figure 6: To exclude the poor transferability, which may result from the fact that different-type tasks use different
label tokens, we unify the label tokens of different tasks into the same set of numbers (1, 2, . . .) and choose
RoBERTaBASE for the experiments. From Figure (a) and (b), we observe that the transferability between different-
type tasks are still generally not improved in this way. This indicates that different-type tasks surely require distinct
abilities.

B.2 Unifying Label Tokens
We hypothesize that the poor transferability be-
tween different task types may result from the fact
that different-type tasks usually use different label
tokens, e.g., yes and no are for NLI tasks while
positive and negative are for SA tasks. To
verify whether this factor influences the transfer-
ability, we unify the label tokens of different tasks
into the same set of numbers (1, 2, . . .) and choose
RoBERTaBASE for the experiments. In Figure 6,
we can observe that the transferability between
different-type tasks are generally not improved in
this way. This indicates that different-type tasks
surely require distinct abilities, which prohibits
reusing prompts between them.

B.3 Speedup Calculation
In this paper, we compute convergence speedup
and comparable-result speedup as follows:

Convergence Speedup(x) =
PT convergence time

TPT convergence time
,

Comparable-result Speedup(x) =
PT convergence time

time of TPT achieving comparable result to PT
.

(8)

We calculate the training loss and the evalua-
tion score per 100 steps during the training. When

the training loss stops dropping and the evaluation
score stops increasing for 300 steps, we set the
point as the convergence point. For the conver-
gence speedup in Equation 8, the PT convergence
time is divided by the TPT convergence time. As
for the comparable-result speedup in Equation 8,
the PT convergence time are divided by the time of
TPT achieving comparable performance to PT.

C Cross-Model Transfer

C.1 Implementation Details of Projector
As mentioned in § 5.1, we give the prompt of the
source PLM, P s = {ps

1, . . . ,p
s
l }, and concatenate

its l virtual tokens into a unified vector Ps ∈ Rlds ,
where ds is the hidden size of the source PLM.
To transfer Ps to the target PLM whose hidden
size is dt, we design a projection function Proj(·)
parameterized by a two-layer perceptron as follows:

P̃s=Proj(Ps)=W2(σ(P
sW1+b1))+b2, (9)

where W1 ∈ Rdh×lds ,W2 ∈ Rldt×dh are train-
able matrices, b1 ∈ Rdh ,b2 ∈ Rldt are biases,
σ is a non-linear activation function. For train-
ing configurations of projector, the optimizer is
AdamW (Loshchilov and Hutter, 2019), the train-
ing batch size is 16, the learning rate is 0.005,
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Method SA NLI EJ PI
IMDB SST-2 laptop restaurant Movie Tweet MNLI QNLI SNLI deontology justice QQP MRPC

From BERTBASE to RoBERTaBASE

PT on RoBERTaBASE 89.9 93.8 77.3 80.7 79.2 74.5 80.6 90.5 88.5 72.9 70.0 86.9 83.9

Random Prompt 50.6 50.8 2.3 1.2 50.5 40.5 32.8 50.5 33.3 50.4 50.2 36.8 68.0

IMDB, laptop
Distance Minimizing 89.7 53.1 75.6 18.3 54.2 24.0 31.2 50.0 33.3 50.6 50.0 36.8 67.2
Task Tuning 88.2 82.2 76.3 77.9 73.4 43.6 32.0 47.9 32.8 49.8 49.4 50.2 47.7

MNLI
Distance Minimizing 55.6 51.0 2.5 1.4 53.1 41.1 80.0 50.6 33.3 50.6 50.0 48.3 68.0
Task Tuning 50.9 52.0 11.9 13.1 45.8 18.2 80.0 74.9 80.0 50.4 49.9 36.8 68.1

From RoBERTaBASE to RoBERTaLARGE

PT on RoBERTaLARGE 91.8 96.0 78.1 81.7 81.7 76.6 88.5 93.4 90.7 85.6 81.1 89.0 82.7

Random Prompt 50.1 50.2 2.0 2.0 49.5 40.5 32.7 51.0 33.3 50.3 49.9 40.6 61.2

IMDB, laptop
Distance Minimizing 92.1 50.1 77.0 1.4 51.0 37.6 33.1 50.2 32.8 50.4 50.0 62.3 38.3
Task Tuning 90.4 76.2 64.2 69.5 79.7 45.0 33.3 50.5 33.1 50.3 50.0 38.5 79.7

MNLI
Distance Minimizing 50.3 51.2 5.2 5.9 51.0 40.6 88.5 49.1 33.2 50.3 50.0 45.1 66.4
Task Tuning 67.7 76.1 28.9 43.7 60.4 49.1 87.1 79.4 84.5 49.7 50.0 36.8 68.5

From T5BASE to T5XXL

PT on T5XXL 96.5 97.4 76.6 88.1 97.9 72.5 90.5 95.2 93.4 87.0 92.5 90.0 86.3

Random Prompt 49.7 49.0 19.8 17.0 51.6 15.5 31.8 49.3 31.9 51.3 50.0 36.4 67.0

laptop
Distance Minimizing 49.0 49.7 76.6 17.0 52.3 16.3 31.8 48.7 33.3 54.1 49.0 36.7 67.7
Task Tuning 77.2 86.2 80.3 83.5 64.6 55.2 31.9 49.9 32.9 48.7 52.8 50.7 53.1

MNLI
Distance Minimizing 49.7 49.0 19.8 17.1 51.6 15.5 90.5 49.3 34.8 52.3 50.0 36.8 67.7
Task Tuning 54.9 70.0 60.8 74.1 3.6 41.4 89.7 84.8 90.8 49.7 50.0 37.2 66.4

Table 7: We conduct experiments between various PLMs in different scales and heterogeneous frameworks: from
BERTBASE to RoBERTaBASE, from RoBERTaBASE to RoBERTaLARGE, and from T5BASE to T5XXL. Besides, we
highlight the non-trivial zero-shot performance (%) of the cross-model setting with bold.

and the inner hidden size dh is 768. In this pa-
per, we investigate cross-model transfer among var-
ious PLMs including BERTBASE, RoBERTaBASE,
RoBERTaLARGE, T5SMALL, T5BASE, and T5XXL,
whose hidden sizes are 768, 768, 1024, 512, 768,
and 1024, respectively. Besides, for non-linear
activation functions, we have tried tanh and
LeakyReLU (Xu et al., 2015), and find their per-
formance on various PLMs are similar. The re-
ported results are based on LeakyReLU.

C.2 More Zero-shot Transfer Performance

In § 5.2, we showed the zero-shot transfer perfor-
mance of various projector-learning methods in
the setting of transferring from RoBERTaLARGE to
T5XXL. We explore more cross-model transfer set-
tings here, which are transferring between various
PLMs in different scales and heterogeneous frame-
works, including from BERTBASE to RoBERTaBASE,
from RoBERTaBASE to RoBERTaLARGE, and from
T5BASE to T5XXL. We can find that the results in
Table 7 are all consistent with § 5.2.

C.3 Technical Details of TPTMODEL

In § 5.3, we demonstrate cross-model transferrable
prompt tuning (TPTMODEL) can well improve per-

formance and reduce training time.
However, when we apply TPTMODEL to more

PLMs, we find that the projected prompts may
have quite different L2 norm values with the origi-
nal prompts, especially for the small-scale PLMs
(e.g., from BERTBASE to RoBERTaBASE). Specif-
ically, we obtain the projected prompts with the
trained Task Tuning projector, and find that the pro-
jected prompts are hard to optimize in some tasks
as shown in Figure 7 [Without LayerNorm].
Thus, we attempt to add the layer normalization
operation (Ba et al., 2016) LayerNorm into the
projectors to regularize the norm of the projected
prompt as follows:

P̃s = LayerNorm(Proj(Ps)). (10)

By the LayerNorm, the projected prompts can
work well on TPTMODEL and achieve better per-
formance and speedup as shown in Figure 7
[With LayerNorm]. Interestingly, although
prompts projected by the projectors [Without
LayerNorm] are hard to be trained in TPTMODEL,
they can achieve similar zero-shot transfer perfor-
mance with the prompts projected by the projectors
[With LayerNorm] in Table 8.
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Figure 7: The (—) represents vanilla PT on RoBERTaBASE. As for (—), it utilizes projected prompts from
BERTBASE as initializations to conduct PT on RoBERTaBASE. The projected prompts respectively come from two
different Task Tuning projectors: [Without LayerNorm] and [With LayerNorm].

Method SA NLI EJ PI
IMDB SST-2 laptop restaurant Movie Tweet MNLI QNLI SNLI deontology justice QQP MRPC

PT on RoBERTaBASE 89.9 93.8 77.3 80.7 79.2 74.5 80.6 90.5 88.5 72.9 70.0 86.9 83.9

[Without LayerNorm]

Task Tuning (IMDB, laptop) 86.5 84.9 73.4 75.3 76.6 47.7 31.8 52.0 32.9 50.3 50.0 37.6 67.5
Task Tuning (MNLI) 66.6 70.4 53.0 43.8 57.8 47.9 82.4 74.9 78.1 50.4 49.9 45.3 70.1

[With LayerNorm]

Task Tuning (IMDB, laptop) 88.2 82.2 76.3 77.9 73.4 43.6 32.0 47.9 32.8 49.8 49.4 50.2 47.7
Task Tuning (MNLI) 50.9 52.0 11.9 13.1 45.8 18.2 80.0 74.9 80.0 50.4 49.9 36.8 68.1

Table 8: We find that the zero-shot performances of prompts projected by two Task Tuning projectors ([With
LayerNorm] and [Without LayerNorm]) are close. Bold represents non-trivial performance.

D Transferability Indicator

D.1 Effectiveness of Similarity Metrics

We categorize all prompts into three groups: same
tasks (prompts trained with different seeds on the
same dataset), same-type tasks, and different-type
tasks. Table 9 shows that all the similarity metrics

successfully distinguish task types.

D.2 Correlation Between Prompt
Transferability and Prompt Similarity

In § 6, we provide the overall averaged Spearman’s
rank correlation scores (%) between various simi-
larity metrics and zero-shot transfer performance
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Metric Same
Tasks

Same-type
Tasks

Different-type
Tasks

RoBERTaLARGE

Econcat 9.4 9.4 6.8
Eaverage 41.6 41.4 37.6
Cconcat 47.6 45.3 31.7
Caverage 1.7 1.3 1.1
ON (Bottom 3) 42.8 43.3 39.1
ON (Top 3) 39.4 28.2 21.4
ON (All 24) 40.0 35.8 29.6

T5XXL (Decoder Module)

Econcat 0.5 0.5 0.3
Eaverage 4.0 5.1 3.4
Cconcat 29.4 2.8 2.4
Caverage 4.0 2.6 2.1
ON (Bottom 3) 80.3 75.4 76.3
ON (Top 3) 62.0 52.7 46.1
ON (All 24) 60.8 54.0 49.2

Table 9: The average values (%) of the 5 similarity
metrics for prompt pairs within the same task (trained
with 3 different random seeds) and between differ-
ent tasks (of the same type and different types) on
RoBERTaLARGE and T5XXL.

Metric SA NLI EJ PI QA SUM All

T5SMALL (Decoder Module)

Econcat 10.1 19.6 31.3 5.3 27.3 38.0 21.9
Eaverage -6.8 -28.0 18.7 -2.6 29.1 42.9 8.9
Cconcat 34.6 63.6 26.6 19.3 -2.1 12.5 25.7
Caverage 64.3 65.1 30.7 15.7 27.7 19.2 37.1

ON (Bottom 3) 32.9 72.6 41.8 14.2 45.5 52.8 43.3
ON (Top 3) 50.6 74.8 51.4 2.6 60.3 78.8 52.5
ON (All 24) 44.8 79.7 44.5 6.3 59.7 67.9 50.5

T5BASE (Decoder Module)

Econcat 55.2 -17.0 10.2 21.5 5.9 -1.1 20.8
Eaverage 53.4 -42.3 -10.7 7.5 -27.7 -10.8 9.0
Cconcat 57.2 25.2 35.1 37.0 30.2 -20.5 28.4
Caverage 47.6 70.0 30.4 48.0 34.9 16.8 42.4

ON (Bottom 3) 34.7 29.8 40.8 16.9 24.2 72.2 36.0
ON (Top 3) 53.8 24.3 50.6 46.1 54.7 79.1 49.1
ON (All 24) 46.1 25.0 42.6 39.7 56.7 72.3 43.4

T5XXL (Decoder Module)

Econcat 40.8 -13.4 19.3 11.4 -4.3 -19.5 12.9
Eaverage 32.2 -42.6 9.7 -2.0 -27.7 -34.0 -2.5
Cconcat 21.4 40.9 42.6 24.6 30.2 45.6 31.6
Caverage 23.3 44.8 33.3 29.3 34.9 49.9 33.5

ON (Bottom 3) 9.1 20.7 14.8 18.3 24.2 -9.9 12.4
ON (Top 3) 42.7 33.6 39.1 30.3 54.7 11.1 36.9
ON (All 24) 31.0 23.6 37.7 34.2 56.7 15.4 32.0

ONI (Bottom 3) - - - - - - - - - - - - 25.3
ONI (Top 3) - - - - - - - - - - - - 46.3
ONI (All 24) - - - - - - - - - - - - 40.0

Table 10: Spearman’s rank correlation scores (%) be-
tween various similarity metrics and zero-shot transfer
performance of soft prompts for various scales of T5
and ONI as introduced in appendix D.3.

Metric SA NLI EJ PI All

RoBERTaBASE

Econcat 31.1 -5.9 30.5 16.2 20.2
Eaverage 17.2 -52.4 12.1 -13.5 -4.4
Cconcat 51.6 8.8 38.5 29.7 36.3
Caverage 65.8 55.9 26.1 28.9 51.7

ON (Bottom 3) 56.2 64.3 17.9 21.2 46.8
ON (Top 3) 77.9 74.2 43.4 32.7 64.8
ON (All 24) 71.2 70.5 33.6 25.0 58.1

RoBERTaLARGE

Econcat 42.5 -16.3 21.4 22.8 22.6
Eaverage 34.5 -55.1 -5.8 3.6 2.8
Cconcat 44.5 -11.7 23.6 22.0 24.8
Caverage 38.2 77.1 12.4 47.8 44.7

ON (Bottom 3) 32.0 34.8 44.5 30.3 34.3
ON (Top 3) 70.9 45.6 13.5 28.9 49.7
ON (All 24) 62.7 40.6 16.0 31.1 45.6

Table 11: Spearman’s rank correlation scores (%) be-
tween various similarity metrics and zero-shot trans-
fer performance of soft prompts for various scales of
RoBERTa.

of soft prompts for RoBERTaLARGE and T5XXL.
Here, we further show Spearman’s rank corre-

lation scores grouped by the task types on more
PLMs. The results are shown in Table 10 and Ta-
ble 11.

D.3 PLMs’ Redundancy Influence Indicators
From Table 10, we find that the correlation between
prompt transferability and prompt similarity will
drop with the increase of PLM size. We guess
that this phenomena may result from PLMs’ high
redundancy (Aghajanyan et al., 2021).

To try to overcome this, we simultaneously uti-
lize the prompts trained with three random seeds
on the same dataset and take their intersection of
activation states as the activated neurons into the
similarity (ON) computation. This similarity is
called ONI. By using it, the correlation score of
ON can significantly raise as shown in Table 10.

D.4 Overlapping Rate of Activated Neurons
in Different Layers

To further understand model stimulation in PLMs,
we investigate ON in different layers of PLMs.
Specifically, on RoBERTaBASE, we measure the
similarity between different prompts with activa-
tion states of from 1 to 3 layers (Figure 8), from
4 to 6 layers (Figure 9), from 7 to 9 layers (Fig-
ure 10), from 10 to 12 layers (Figure 11), and all
12 layers (Figure 12), respectively.
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We find that the activated neurons are common in
the bottom layers but tend to be more task-specific
in top layers, which is consistent with the findings
of previous works (Liu et al., 2019a).
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Figure 8: ON in 1 - 3 layers of RoBERTaBASE.
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Figure 9: ON in 4 - 6 layers of RoBERTaBASE.
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Figure 10: ON in 7 - 9 layers of RoBERTaBASE.

3968



IM
DB

(S
A)

SS
T-2

(S
A)

lap
to

p
(S

A)

re
st

au
ra

nt
(S

A) Mo
vie

(S
A)

Tw
ee

t
(S

A) MN
LI

(N
LI) QN

LI
(N

LI) SN
LI

(N
LI)

de
on

to
log

y
(E

J) ju
st

ice
(E

J) QQ
P

(P
I)

MR
PC

(P
I)

Prompt

IMDB(SA)

SST-2(SA)

laptop(SA)

restaurant(SA)

Movie(SA)

Tweet(SA)

MNLI(NLI)

QNLI(NLI)

SNLI(NLI)

deontology(EJ)

justice(EJ)

QQP(PI)

MRPC(PI)

Pr
om

pt

1.00 0.45 0.38 0.42 0.56 0.41 0.23 0.22 0.26 0.14 0.14 0.23 0.16
0.45 1.00 0.45 0.54 0.46 0.65 0.31 0.31 0.39 0.14 0.15 0.34 0.16
0.38 0.45 1.00 0.45 0.34 0.43 0.21 0.20 0.23 0.15 0.16 0.20 0.14
0.42 0.54 0.45 1.00 0.42 0.55 0.22 0.25 0.34 0.14 0.15 0.31 0.15
0.56 0.46 0.34 0.42 1.00 0.43 0.26 0.29 0.26 0.15 0.16 0.31 0.16
0.41 0.65 0.43 0.55 0.43 1.00 0.37 0.34 0.42 0.15 0.18 0.32 0.17
0.23 0.31 0.21 0.22 0.26 0.37 1.00 0.38 0.39 0.20 0.24 0.29 0.21
0.22 0.31 0.20 0.25 0.29 0.34 0.38 1.00 0.46 0.18 0.23 0.33 0.25
0.26 0.39 0.23 0.34 0.26 0.42 0.39 0.46 1.00 0.17 0.21 0.34 0.21
0.14 0.14 0.15 0.14 0.15 0.15 0.20 0.18 0.17 1.00 0.55 0.16 0.41
0.14 0.15 0.16 0.15 0.16 0.18 0.24 0.23 0.21 0.55 1.00 0.20 0.47
0.23 0.34 0.20 0.31 0.31 0.32 0.29 0.33 0.34 0.16 0.20 1.00 0.19
0.16 0.16 0.14 0.15 0.16 0.17 0.21 0.25 0.21 0.41 0.47 0.19 1.00

Overlapping Percentage of Activated Parameters 10 - 12 Layers

Low

High

Figure 11: ON in 10 - 12 layers of RoBERTaBASE.
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Figure 12: ON in all 12 layers of RoBERTaBASE.
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