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Abstract
Despite extensive research on parsing of En-
glish sentences into Abstract Meaning Repre-
sentation (AMR) graphs, full-document parsing
into a unified graph representation lacks well-
defined representation and evaluation. Taking
advantage of a super-sentential level of AMR
coreference annotation from previous work, we
introduce a simple algorithm for deriving a uni-
fied graph representation, avoiding the pitfalls
of information loss from over-merging and lack
of coherence from under-merging. Next, we
describe improvements to the Smatch metric to
make it tractable for comparing document-level
graphs, and use it to re-evaluate the best pub-
lished document-level AMR parser. We also
present a pipeline approach combining the top
performing AMR parser and coreference reso-
lution systems, providing a strong baseline for
future research.

1 Introduction

Abstract Meaning Representation (AMR) is a for-
malism that represents the meaning of a text in the
form of a directed graph, where nodes represent
concepts and edges are labeled with relations (Ba-
narescu et al., 2013). Until recently, the annotated
corpora for AMR only provided sentence-level an-
notations. As a result, AMR parsing research has
been limited to sentence-level parsing. A unified
document-level AMR graph representation can be
quite useful for applications that require document-
level understanding, such as question answering
and summarization.

The most recent release of AMR annotations
(AMR 3.0) includes a multi-sentence AMR cor-
pus (MS-AMR; O’Gorman et al., 2018) that pro-
vides cross-sentential coreference information for
AMR graphs. These annotations connect multiple
sentence-level graphs via coreference chains, im-
plicit relations and bridging relations. However, an

adequate representation of this multi-sentence in-
formation in the form of an AMR graph has yet to
be decided upon. The initial proposal (O’Gorman
et al., 2018), to merge all nodes in a coreference
chain into one node, suffers from significant infor-
mation loss. Without a consistent multi-sentence
graph representation, AMR’s standard Smatch met-
ric (Cai and Knight, 2013) cannot be used for eval-
uation and comparison. The Smatch scores differ
greatly depending on how the coreference infor-
mation is added to the AMR graphs. Additionally,
the Smatch algorithm is exceedingly slow in its
original form when run over multi-sentence graphs.
These limitations in multi-sentence AMR graph
representation and evaluation get in the way of re-
search efforts in this area. Without a consistent
representation and evaluation mechanism, it is im-
possible to draw meaningful comparisons between
different approaches on the task. In this work,
we present a simple and non-lossy multi-sentence
AMR graph representation as well as a modifica-
tion of the Smatch algorithm that allows efficient
and consistent evaluation.1

Our chief contributions are:
• A standard for merging sentence-level AMR

graphs into a single document-level graph
based on MS-AMR coreference annotations
(DOCAMR; §3.3)

• A faster implementation of the Smatch metric
suitable for evaluating document-level AMR
parsers (§4.1)

• A metric, based on Smatch, for specific evalu-
ation of coreference in document-level AMR
graphs (§4.3)

• A baseline system for document-level AMR
parsing and its evaluation (§5)

1The code for producing the proposed representation and
efficient Smatch evaluation under Apache License 2.0 is avail-
able at: https://github.com/IBM/docAMR
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Figure 1: Two example sentences (on the left) annotated with cross sentential identity chain (red) and implicit
relation (blue) and the corresponding merged representation (on the right) as per (O’Gorman et al., 2018)

2 Multi-Sentence AMR Corpus

Multi-Sentence AMR corpus (henceforth MS-
AMR) is part of AMR3.0 release and was intro-
duced by O’Gorman et al. (2018). While a number
of works have used document-level AMR graph
creation for downstream tasks such as summariza-
tion (Liu et al., 2015; Lee et al., 2021), it is the only
dataset currently with manual annotations of AMR
document graphs. It contains 284 documents in its
train split and 9 documents on test split, annotated
over 8027 gold AMRs in total. Out of the 284 train
documents, 43 are annotated twice; in this work we
refer to these double annotation documents as our
development set.

Coreference chains were annotated as clusters
of coreferent nodes in gold AMR graphs, rather
than as coreferent spans of text: this is what allows
evaluation with Smatch. Such an annotation also
precludes evaluation of system predictions using
more traditional coreference evaluations, as there is
no notion of mention spans to use when comparing
mentions.

The MS-AMR corpus also annotated implicit re-
lations, as shown in the blue ARG4 edge in figure 1,
whenever a numbered argument of a predicate was
semantically identifiable in another sentence. Simi-
larly, the MS-AMR corpus annotates bridging men-
tions, such as part-whole or set-member relations.
Both implicit relations and bridging relations can
be seamlessly added as cross-sentential edges.

Coreference chains form the majority of cross-
sentential relations annotated in MS-AMR. Unlike
implicit and bridging relations, there is no straight
forward way of incorporating coreference chains
into a multi-sentence AMR graph. Next section
discusses the challenges involved and proposes a
solution.

3 Document-level AMR Representation

As discussed in the past section, majority of MS-
AMR annotations take the form of coreference
chains over sentence-level gold AMR graphs. In
this work, we propose a representation DOCAMR
that incorporates these chains into multi-sentence
AMR graphs. The motivation for having such a
representation is two-fold. First, representing a
multi-sentence document as a single AMR graph
will allow downstream applications to treat the
whole document as single entity, much like the
AMR graphs for sentences. Second, it is crucial
to have a consistent representation for the purpose
of evaluating MS-AMR predictions. Smatch – the
standard evaluation metric for AMR – operates
over graphs. We can use this metric for MS-AMR
evaluation only if the system outputs and the gold
graphs adhere to the same document-level graph
representation.

Intrasentential coreferences in sentence-level
AMR are annotated with what one might call man-
ual full merge – i.e., given multiple mentions in
the same sentence (such as a named entity and a
pronoun), a human annotator would pick a single
informative mention, and merge all other informa-
tion into the root of the subgraph representing that
mention. Language being efficient, it is very rare
for multiple non-reduced mentions to occur in the
same sentence, therefore it was a trivial task for
human annotators. MS-AMR human annotations
do not perform manual merge – they only indicate
the nodes in multiple existing sentence-level graphs
that participate in a coreference cluster.

3.1 Why Not Merge All Coreferent Nodes?

The pioneering work on MS-AMR (O’Gorman
et al., 2018) that introduced the annotations, also
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Figure 2: Two examples of merge operations that result in loss or distortion of information. Nodes of the same
color belong to the same sentence-level AMR. Dashed lines indicate the identity chain links. In the top example, the
merged node representation (right) reverses the meaning of the first sentence because of the negative :polarity

node migrating from the merged node like-01. In the bottom example, the non-predicate node favor has received
a bunch of ARG nodes from the fellow coreference nodes. Moreover, the merged-in predicate nodes give-01 and
help-01 have lost association with their arguments. For example, the sentence "you help the fellow lift [something]"
will be consistent with this graph.

proposed a way to represent MS-AMR in the form
of a graph. This approach essentially merges all
coreferent nodes from a chain into one node that
inherits all the parents and children of the origi-
nal nodes. Furthermore, if the lexical form of the
merged nodes are different, each distinct form is
added as an additional instance of the merged node
connected via an :instance edge. Figure 1 shows
a simple example of this merge operation.

This representation has a desirable property in
that it treats cross sentential coreference informa-
tion in a manner similar to sentence-level reentran-
cies. Another advantage of node merging is that
a single node represents each entity/event, thus a
document representation can be viewed as a mini
Knowledge Base for the document. Moreover, this
highly connected representation is consequential
for Smatch: if a gold document has a cluster of
ten mentions and a system incorrectly splits that
cluster into six and four mentions, then the opti-
mal one-to-one Smatch alignment will consider all
links to the smaller cluster wrong.

However, merging coreference nodes at the doc-
ument level is not trivial. Automatic indiscriminate
merging of all coreference clusters has serious lim-

itations. Without manual curation of potentially
conflicting referential expressions or situations, it
can end up merging conflicting information, partic-
ularly with event coreference: e.g., “his hatred of
cats” and “John doesn’t like cats” would be merged
into the AMR equivalent of “John+he does not (like
+ hate) cats”. It does not preserve the semantics of
the original AMR graphs. Figure 2 shows exam-
ples of merge operations that either lose or distort
the meaning of the text.

Moreover, the proposed method of (O’Gorman
et al., 2018) assumes that a node can have multiple
:instance edges – however existing AMR tools
(including the Smatch implementation) do not al-
low multiple :instance edges on a node. In the
hand full of previous works on MS-AMR, edge
labels other than :instance are used to connect
additional forms of a node. One node becomes
privileged over others under the proposed approach
– as a result, a system that selects the privileged
node differently will be unnecessarily penalized.

We wish to avoid the above pitfalls while still
retaining the advantages of node merging. The next
section discusses the principles considered while
formulating the DOCAMR representation.
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3.2 Considerations

Our primary consideration while designing DOC-
AMR has been to preserve the meaning of the
underlying text as encoded by the combination of
sentence-level graphs and MS-AMR annotations.
Whenever a secondary consideration led towards a
lossy representation, we decided in favor of mean-
ing preservation. In addition, we considered the
following principles:
1. Be consistent with AMR’s treatment of within-
sentence coreference. In sentence-level AMRs,
pronominal concepts are only used in the absence
of a contentful antecedent. Pronouns don’t con-
tribute enough meaning beyond referential infor-
mation. Therefore, only those pronouns are kept
whose antecedent is unspecified. Furthermore,
in sentence-level AMRs all coreferent nodes are
merged so they share the same variable. We stick
to these principles except in the cases where they
can potentially cause information loss.
2. Do not place more weight on any particular
representative member of a coreference chain. It
would be artificial to represent the cluster as pair-
wise mention-mention links, e.g. by privileging one
mention as the primary representative of the cluster.
Instead, coref chains should be represented in a
way that the non-pronominal ways of referring to
the entity/event in different sentences are on equal
footing.
3. Systems should not get too much credit for su-
perficial decisions (like merely creating a concept
for a pronoun, or detecting the name string and
entity type on every mention of the name). This
can be achieved by merging the nodes whenever
it can be done safely without loss of information.
The effect is that the scoring places more weight
on detection of coreference.
4. The representation should support comparison
via Smatch (without unnecessary computational
overhead) for document-level parsers given the
same document as input.2

5. The edges between the nodes in a coref cluster
and their sentence-level neighbours should be kept
intact, so that when evaluated with Smatch, at least
one mention in a chain of correctly predicted entity
mentions will get full credit even if the coreference
is missed.
6. Finally, the representation should not rely on
complicated heuristics or new manual annotations.

2We do not consider here how to measure similarity be-
tween comparable documents.

For example, we considered and ultimately rejected
the possibility of merging coreferent non-name
nodes, which would have required heuristics for
choosing one representative concept from among
multiple distinct concepts from different mentions
(and also would have violated principle #2).

3.3 Proposed Approach (DOCAMR)

We propose DOCAMR, an extension of AMR
to the document level. In this representation,
the entity and event coreference annotations from
(O’Gorman et al., 2018) are properly assimilated
into a single graph representing the meaning of
the document. It completely preserves the seman-
tic information while trying to stay close to the
sentence-level AMR conventions.

The basic idea is that a new node with concept
coref-entity is added for each identity chain of
nodes – all nodes participating in the chain are
then connected to this node via a :coref relation.
Figure 3 shows an example of this. In addition
to the base method of using coref-entity nodes,
we introduce two exceptions. First, all the named
entities within an identity chain are merged into
one named entity. Second, all pronominal nodes
participating in a chain are dropped. Both these ex-
ceptions are consistent with the treatment of coref-
erent named entities and pronouns in sentence-level
AMR annotations. Further details of these two ex-
ceptions are outlined below:

Treatment of Named Entities: All the named
entities (that is, AMR nodes with a :name relation)
participating in an identity chain cluster are merged
into one named entity. The structure of named enti-
ties is quite consistent and usually all the named en-
tities participating in a chain match exactly. Occa-
sionally, a cluster may contain named entities that
differ in their type, wiki link or form of the name.
In such cases, all unique forms of the name and
all unique wikis are kept under a common variable.
If types are different, the most specific type be-
comes the root and remaining types are connected
to it with the new relation :additional-type.3

If nodes to be merged have modifier roles other
than :name and :wiki, they are gathered under the
merged entity node.

3We use the AMR types ontology to decide which type is
the most specific. If a cluster contains types that are not in the
AMR ontology, then the ones from the ontology are considered
for root position; and if none belong to the ontology, the most
frequent type from the within the cluster becomes the root.
Frequency ties are broken by picking the first mention.
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Figure 3: Our proposed DOCAMR representation ap-
plied to the bottom example from Figure 2. For the
identity chain between he and fellow, the pronoun is
dropped indicated in dotted gray and the links are trans-
ferred to the non-pronominal node. For the identity
chain between favor, give-01 and help-01, merging
is deemed potentially lossy – instead a coref-entity

node is introduced and all nodes in the chain are linked
to it via :coref edge. This not only preserves the mean-
ing without loss but also avoids preferential treatment
of any content node in the chain.

Treatment of Pronominal Nodes: Sentential
AMR incorporates pronouns as concepts only as a
fallback if there is no contentful antecedent within
the same sentence. We extend this philosophy to
pronominal nodes whose antecedent can be found
in another sentence. That is, all pronominal nodes
participating in an identity chain cluster with an
antecedent are replaced by the chain-entity node,
removing the pronominal concepts from the graph.
Pronominal concepts are retained only if there is
no content antecedent to be found. For an iden-
tity chain with exclusively pronominal nodes, no
chain-entity node is needed; they are simply
merged into one node, which is labeled with the
most specific pronoun concept in the chain (e.g.,
“he” is considered more specific than “someone”).
As a special case, if a heterogeneous pronoun chain
(with multiple pronouns) refers to a participant in
a dialogue – indicated by the concept i or you – a
new interlocutor-entity node is introduced and
all pronouns are merged into that to account for dif-
ferent perspectives taken in different utterances.

A notable consequence of discarding pronoun
concepts is that, correct antecedent resolution is
required in order for any roles in which the pronom-
inal mention participates, to be counted as correct.
Systems could struggle with long chains of pro-
nouns, especially if the first in the chain is resolved
to the wrong antecedent and this causes cascad-
ing errors. That said, we believe representing the
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Figure 4: Various scenarios of merge operations in
DOCAMR: (a) Merging first and second person pro-
nouns in a dialogue into interlocutor-entity (b)
Merging named entities with multiple forms, keeping all
distinct forms under separate name nodes (c) Dropping
pronominal nodes and replacing them with the named
entity in the chain Nodes of the same color belong to
the same sentence-level AMR. Dotted gray indicates
dropped nodes and edges.

wrong substantive entity as participating in a rela-
tion is a serious error, no less so when a system
correctly clusters a group of pronouns but fails to
resolve their antecedent correctly.
Discard Single Node Clusters: After creating
a document-level graph per the rules outlined
above, we perform a final step of removing any
coref-entity nodes with one :coref edge, and re-
place references to that node with its only member
node. This can happen if there is a cluster with one
non-pronominal concept and one or more pronouns
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Train Dev1 Dev2

Nodes in chains 12513 1241 1141

Pronouns in chains 4456 433 423↪ Pronoun 1029 141 121↪ Interlocutor-entity 773 66 90↪ Other node 1494 140 118↪ Coref-entity 1160 86 94

NEs in chains 2917 224 205
NEs merged 903 85 84

Table 1: Statistics on DOCAMR merge operations. Top
row shows the total number of un-merged nodes in all
identity-chains. Middle section shows the total num-
ber of pronominal nodes in identity-chain and the num-
bers of different target node types they are merged into.
Most pronouns are dropped only about one fourth – in
pronoun-only chains – are merged into one of the pro-
nouns in the chain. Bottom sections shows number of
Named Entities in chains before and after merging.

that got deleted. It can also happen if a cluster had
multiple names that were merged. This simplifica-
tion will discard superfluous coref-entity nodes.
It would make alignment faster for Smatch that
uses surface form matching during initialization.

3.4 The Roads not Taken

In an attempt to adhere to the sentence-level AMR
conventions (principle 1 in §3.2) to a greater extent,
we considered merging all non-predicate nodes par-
ticipating in a cluster – keeping the most specific
one. This required heuristics and even manual in-
put on deciding the most specific instances, we
therefore did not take that route.

A less complicated version of this would have
been merging only those nodes that have the same
concept. However, even if a concept recurs, the
different mentions may have different modifier-
s/arguments that may collide and make merging
problematic. Merging only concepts with the same
modifiers could place outsize importance on the
attachment of modifiers by the parser. We opted
for the simplest approach of not performing any
merging of non-name, non-pronominal nodes.

We also considered an alternative representa-
tion where, similar to DOCAMR, all nodes par-
ticipating in a coreference cluster are connected
to a coref-entity – but unlike DOCAMR, the
parents of all participating nodes now point to
the coref-entity. In other words, all mention
nodes are clustered (via :coref edge without any

merge) under coref-entity along with their de-
scendent sub-graphs, but the coref-entity nodes
sit between the mention nodes and their sentence-
level parents. This flipped version of DOCAMR
makes dense connections at document level mak-
ing Smatch more sensitive to coreference errors.
However, this often results in multiple similar or
identical sub-graphs collected under coref-entity
– with no connection to the corresponding sentences.
Merging these sub-graphs based on the similarity
of their structure will make the final representation
highly dependent on small modifier level differ-
ences. Another significant side effect of this ap-
proach is that due to lack of connection with origi-
nal sentence level graphs, the Smatch algorithm (as
given in §4.1) cannot benefit from sentence align-
ments and becomes prohibitively inefficient.

4 DOCAMR Evaluation

DOCAMR represents MS-AMR annotations of
multiple sentences in the form of one AMR graph.
Ideally, the quality of this graph should be assessed
as single unified entity. Traditional measures of
coreference, such as MUC, CEAF etc., try to align
the gold coreference chains with the predicted ones
based on the shared mentions. In the case of text
based coreference resolution, identifying shared
mentions is trivial since the mentions are anchored
in the input text. AMR, by contrast, is not an-
chored in the text – the nodes of AMR graphs are
not aligned to words. As a result, traditional coref-
erence measures can be applied to AMR only if
the graphs are either identical to the gold graphs or
have been aligned at the node level.

The Smatch algorithm used for evaluation of
AMR parsers is a randomly initialized, greedy, hill-
climbing algorithm. Due to the greedy nature of the
algorithm, multiple random restarts are needed to
get a stable matching score. Moreover, the problem
itself is NP-complete and even its greedy imple-
mentation becomes prohibitively slow as the size
of graph increases. As a result, Smatch in its orig-
inal form is quite inefficient for document-level
AMR evaluation.

4.1 Smatch Evaluation

Smatch (Cai and Knight, 2013) views an AMR
graph as a set of triples, where each triple com-
prises of either a pair of nodes with a relation label
(i.e. edges in the graph) or one node with an at-
tribute and its value (i.e. concepts and attributes).
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Given the set of triples for a source and a tar-
get graph and an optimal alignment between their
nodes, the metric computes the precision, recall
and F-score over triples between the two graphs.
An optimal alignment is the one that will maxi-
mize the F-score. Cai and Knight (2013) provide
a greedy implementation of Smatch that uses a
combination of a ‘smart initialization’ and greedy
hill-climbing steps to get closer to an optimal map-
ping. Each greedy step needs to evaluate m(n−1)
options where m and n are the numbers of nodes in
the two graphs being matched. Therefore, Using
this implementation of Smatch at the document-
level is very slow.

4.2 Document-level Smatch

The sentence-level Smatch implementation4 relies
on a pool of candidate node-mappings to efficiently
select the next greedy step. The pool includes all
the node mappings that can possibly add to the
triple F-score. We can restrict this candidate pool
further for document-level Smatch if the source and
target documents are aligned at the sentence level.
More specifically, we can forbid any source to tar-
get node alignments where the sentence(s) of the
source node is(are) not aligned with the sentence(s)
of the target node. Note, that in DOCAMR graphs,
certain nodes can belong to multiple sentences such
as coref-entity or a merged node.

We propose an implementation of Smatch
(DOCSMATCH) that assumes alignment between
the roots of sentence-level subgraphs of a pair of
document-level AMR graphs. Nodes are first cat-
egorised by sentences with each node possibly
assigned to multiple sentences. Next, the candi-
date mappings pool is constructed respecting the
sentence-level alignments. In particular, a node
in one AMR cannot be mapped to a node in the
other AMR if none of their assigned sentences are
aligned (see appendix A for details). For instance,
consider the example in figure 4(c) – the node for
the concept now must be aligned to a node in the
third sentence in a target graph, whereas the person
node, merged from mentions in all 3 original sen-
tences, is not constrained.5

4https://amr.isi.edu/evaluation.html
5Note that there could be a case where the predicted parse

of sentence 2 resembles the correct parse of sentence 1 and
vice versa without any coreference link between the two—
then the proposed constraint would prevent finding the optimal
alignment. However, this happens quite infrequently. More-
over, we argue that accidental mapping of triples between
graphs of entirely unrelated sentences should not be rewarded.

DOCSMATCH allows us to evaluate the DOC-
AMR development set comprising of 42 docu-
ments in roughly 4 minutes with the default four
random-restarts. This is a manageable time frame
for the purpose of parser comparisons. The original
Smatch evaluation for the same setup ran out-of-
memory (with up-to 200GB allocation) without a
result. Table 3 compares the Smatch scores and the
runtimes of our implementation with those of the
original Smatch with 1 random restart.

4.3 Coreference Subscore
A side effect of representing and evaluating the
document AMR as a single unified graph is that
we can not analyze the coreference performance
of the parser separately. To mitigate this, we pro-
pose and implement a breakdown of Smatch that
provides a separate coreference subscore. For the
purpose of coreference subscore, all nodes con-
nected to multiple sentences are considered corefer-
ent nodes. Incoming edges for each coreferent node
are counted as a part of the coreference subscore, as
well as bridging relations and nodes with the labels
coref-entity or interloculor-entity. Note, in
the case of merged nodes, their incoming edges
count towards the coreference scores, however the
node themselves (i.e. their instance triples) are not
counted towards the coreference score.

Since what is considered a coreference depends
on the graph structure, the edges and nodes that are
considered coreferent in the gold graph might be
different from those in the predicted graph. There-
fore, to calculate F1 for the coreference subscore,
we consider an edge or node to be a correct match
if (1) it has a matching node or edge according to
the standard Smatch score, and (2) the node or edge
is part of coreference in both the gold and predicted
graph. Recall is calculated as a percentage of gold
coreference nodes/edges, precision is a percentage
of predicted coreference nodes/edges, and F1 is
taken as the harmonic average.

5 Experiments and Results

We use DOCAMR along with our efficient im-
plementation of Smatch to assess the quality of
two document-level AMR parsing systems. First,
we develop a pipeline system combining a top-
performing AMR parser (Zhou et al., 2021) and
a state-of-the-art coreference resolution system

Note also that for the border case where all nodes are con-
nected with all sentences, the constrained version will be same
as the original Smatch.
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MS-AMR Splits Double Anno. (Dev1) Double Anno. (Dev2) Test

AMR Coref Smatch Coref Reent Smatch Coref Reent Smatch Coref Reent

Gold None 87.6 0 72 88.6 0 73 86.4 0 72
Gold CoreNLP 89.7 34 76 90.6 35 78 90.6 47 80
Gold AllenNLP 90.5 40 78 91.0 41 79 91.3 53 82

(Anikina et al., 2020) - - - - - - 44.3 17 21

S-BART None 67.1 0 53 67.8 0 53 67.5 0 55
S-BART CoreNLP 68.7 28 57 69.3 29 57 71.3 43 63
S-BART AllenNLP 69.4 33 59 69.8 34 59 72.0 50 65

Table 2: Document-level Smatch, coreference sub-scores (Coref) and reentrancy scores (Reent) on MS-AMR
double annotations (Dev1 and Dev2) and test splits – using various combinations of gold and predicted AMR graphs
with predicted coreferences from CoreNLP (Clark and Manning, 2016) and AllenNLP (Joshi et al., 2020).

Impl. Original DOCSMATCH

Split R Time Smatch Time Smatch

Dev1 4 - - 244 69.4
Dev2 4 - - 136 69.8
Test 4 - - 417 72.0

Dev1 1 927 69.5 66 69.3
Dev2 1 945 69.8 41 69.7
Test 1 1314 71.3 104 72.0

Table 3: Comparison of Smatch scores and runtimes
(in seconds) between the original Smatch implemen-
tation (Original) and our proposed implementation
(DOCSMATCH). All results are on our best perform-
ing pipeline system. R is the number of random restarts.
‘Original’ Smatch runs out of memory for R>1.

(Joshi et al., 2020). We also provide the pipeline
results with CoreNLP’s neural coreference resolu-
tion system (Clark and Manning, 2016) v4.3.2 for
additional point of comparison. Second, we reeval-
uate the past best system of Anikina et al. (2020)
– this is also a pipeline approach combining AMR
parser of (Lindemann et al., 2019) with AllenNLP
coreference resolution system.6

5.1 Our Pipeline Approach

We use the BART-based structured transformer
model of Zhou et al. (2021) to produce sentence-
level AMR graphs. In particular, we use the
StructBART-S version of their system referred to as
S-BART in table 2. This parser produces node-to-

6We obtained the document-level graphs before merge
operations from Anikina et al. (2020) for the purpose of re-
evaluation in DOCAMR format.

token alignments as part of its output – we use these
alignments to match coreference systems’ outputs
with AMR graphs. Text-based coreferences are ob-
tained using the systems of Joshi et al. (2020) and
Clark and Manning (2016). Coreference chains are
computed from these prediction files.7

In order to incorporate this coreference informa-
tion into the AMR graphs, we first convert node-
to-token alignments into node-to-span alignments.
The span of a node is defined as the smallest text
span containing all the tokens aligned to any of its
descendants (to avoid loops, re-entrant edges are
removed keeping only the first). With node-to-span
alignments, a predicted mention is assigned to the
node with the shortest span containing the mention.
If there is more than one candidate node, the one
with the greatest height, subsuming the other can-
didates is selected. Instances of coreference within
a sentence are ignored assuming that the sentence-
level parser has already taken care of them.

5.2 Results

Table 2 shows the results on MS-AMR double an-
notation documents (used here as development set)
and its test split. Both gold and predicted AMR
graphs are converted to DOCAMR before running
Smatch evaluation. All numbers are produced us-
ing document-level Smatch with 4 random restarts.

Our pipeline approach outperforms the previous
best system by a large margin, providing a strong
baseline for future research on this task. This is due
mainly to difference in quality of the underlying
sentence-level parsers.

7Using the package https://github.com/boberle/
corefconversion
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Dev1 Smatch Time (s)

No-Merge 93.3 66
Merge-NE 92.8 66
DOCAMR 87.6 90
Merge-All 82.4 153

Table 4: Impact of representation on evaluation scores
and runtimes. Comparing double-annotation gold doc-
uments (Dev1) with and without coreference links in
different document-level representations.

Note that significant improvements in corefer-
ence quality result in only small improvements in
overall Smatch score – showing that a separate
coreference subscore is essential for assessing a
system’s performance on cross-sentential relations.
We also report reentrancy scores (Damonte et al.,
2017) for comparison. While the performance gap
is more pronounced in reentrancy scores compared
to overall Smatch, the gains are best highlighted
in coreference subscore. For instance, reentrancy
scores improves by up to 2 points from CoreNLP
to AllenNLP in all settings – coref subscores, on
the other hand, shows up to 7 points improvement
giving a finer range for coreference evaluation.
Impact of Representation on Smatch: To high-
light how document-level representation can affect
Smatch scores and efficiency, we compare the gold
double-annotation development set with and with-
out coreference links. In addition to DOCAMR
we consider three representations: 1) No-Merge:
where all coreference nodes are linked via coref-
entity without any merging 2) Merge-NE: where
only Named Entities are merged and 3) Merge-All:
where all coreference nodes in a chain are merged
(O’Gorman et al., 2018). One of our aims for DOC-
AMR was to ensure that the lack of coreference
links is visible in the overall Smatch score. Ta-
ble 4 shows that DOCAMR makes this gap bigger
without losing efficiency or semantic information.

6 Related Work

MS-AMR Annotations MS-AMR annotations
by O’Gorman et al. (2018) include coreference
chains, implicit roles and bridging relations. In the
context of AMR-based summarization, Lee et al.
(2021) present a novel dataset consisting of human-
annotated alignments between the nodes of paired
documents and summaries to evaluate merge strate-
gies for merging individual AMR graphs into a
document graphs. However, they sought out the

merge operations that can serve as cross senten-
tial coreference in the absence of any annotations
– they only merge nodes with same surface forms,
except for ’person’ nodes. Our work, on the other
hand, outlines a representation for already available
gold annotations, where nodes’ surface forms don’t
match in a large number of cases.

MS-AMR Evaluations and Models O’Gorman
et al. (2018) proposes Smatch as primary method
for scoring MS-AMRs. They also report CoNLL-
F1 relying on Smatch alignments. Adopting the
methods from O’Gorman et al. (2018), Anikina
et al. (2020) presented a comparative evaluation of
various coreference resolution systems over MS-
AMR test sets and document-level Smatch evalua-
tions of machine generated sentence-level AMRs
augmented with coreference predictions from vari-
ous systems. The best approach from their study is
incorporated as a baseline in §5. Fu et al. (2021) in-
troduce an AMR coreference resolution system that
uses graph neural network to model gold sentence-
level AMR graphs for coreference predictions. This
system assumes gold graphs and is not compara-
ble with document-level parsing systems. Use of
gold graphs also alleviates the need for alignments
between gold and predicted graphs for the pur-
pose of evaluation. Bai et al. (2021) constructed
dialogue-level AMR graphs from multiple utter-
ance level AMRs by incorporating inter-sentence
coreference, speaker and identical concept infor-
mation into sentence-level AMRs.

7 Conclusion

We have presented DOCAMR, a graph represen-
tation for document-level AMR graphs based on
coreference annotations. Relative to the original
sentence-level graphs, DOCAMR removes redun-
dancy without information loss. We modified the
implementation of Smatch to take advantage of
sentence provenance to efficiently search for node
alignments when comparing two document-level
graphs. Finally, we reported results for a document-
level parsing pipeline that can serve as a strong
baseline for future work on this task.
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A Constrained Candidate Node
Mappings for DOCSMATCH

Algorithm 1 Constrained candidate node mappings
for efficient document-level Smatch computation.
inputs:
dAMR1,dAMR2 pair of AMRs for a document
sRoots1,sRoots2 aligned sentence roots

N ← Number of sentences {in the document} {collect de-
scendant of sRoots}
for i← 1..N do

Desc1[i]← GETDESC(dAMR1,sRoots1[i])
Desc2[i]← GETDESC(dAMR2,sRoots2[i])

end for
CandMap← {} {Candidate Node Mappings}
for i← 1..N do

for node ∈Desc1[i] do
CandMap[node] +=Desc2[i]

end for
end for
return CandMap
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