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Abstract

Many scientific papers such as those in arXiv
and PubMed data collections have abstracts
with varying lengths of 50–1000 words and
average length of approximately 200 words,
where longer abstracts typically convey more
information about the source paper. Up to re-
cently, scientific summarization research has
typically focused on generating short, abstract-
like summaries following the existing datasets
used for scientific summarization. In domains
where the source text is relatively long-form,
such as in scientific documents, such summary
is not able to go beyond the general and coarse
overview and provide salient information from
the source document. The recent interest to
tackle this problem motivated curation of scien-
tific datasets, arXiv-Long and PubMed-Long,
containing human-written summaries of 400-
600 words, hence, providing a venue for re-
search in generating long/extended summaries.
Extended summaries facilitate a faster read
while providing details beyond coarse infor-
mation. In this paper, we propose TSTR, an
extractive summarizer that utilizes the introduc-
tory information of documents as pointers to
their salient information. The evaluations on
two existing large-scale extended summariza-
tion datasets indicate statistically significant
improvement in terms of ROUGE and average
ROUGE (F1) scores (except in one case) as
compared to strong baselines and state-of-the-
art. Comprehensive human evaluations favor
our generated extended summaries in terms of
cohesion and completeness.

1 Introduction

Over the past few years, summarization task has
witnessed a huge deal of progress in extractive (Nal-
lapati et al., 2017; Liu and Lapata, 2019; Yuan
et al., 2020; Cui et al., 2020; Jia et al., 2020; Feng
et al., 2018) and abstractive (See et al., 2017; Co-
han et al., 2018; Gehrmann et al., 2018; Zhang
et al., 2019; Tian et al., 2019; Zou et al., 2020)

[Introductory] Neural machine translation (@xcite), directly applying a
single neural network to transform the source sentence into the target
sentence, has now reached impressive performance (@xcite […] Motivated
by recent success in unsupervised cross-lingual embeddings (@xcite), the
models proposed for unsupervised NMT often assume that a pair of
sentences from two different languages can be mapped to a same latent
representation in a shared-latent space (@xcite) […] Although the shared
encoder is vital for mapping sentences from different languages into the
shared-latent space, it is weak in keeping the uniqueness and internal
characteristics of each language, such as the style, terminology and sentence
structure. […] For each language, the encoder and its corresponding
decoder perform an AE, where the encoder generates the latent
representations from the perturbed input sentences and the decoder
reconstructs the sentences from the latent representations. Experimental
results show that the proposed approach consistently achieves great success.

[Non-introductory] […] To further enforce the shared-latent space, we
train a discriminative neural network, referred to as the local discriminator,
to classify between the encoding of source sentences and the encoding of
target sentences. […] the shared encoder is weak in keeping the unique
characteristic of each language. This confirms our intuition that the shared
layers are vital to map the source and target latent representations to a
shared-latent space. […] This shows that the proposed model only trained
with monolingual data effectively learns to use the context information and
the internal structure of each language […] The models proposed recently
for unsupervised NMT use a single encoder to map sentences from different
languages to a shared-latent space. […] The experimental results reveal that
our approach achieves significant improvement and verify our conjecture
that the shared encoder is really a bottleneck for improving the
unsupervised NMT.

Figure 1: A truncated human-written extended sum-
mary. Top box: introductory information, bottom
box: non-introductory information. Colored spans are
pointers from introductory sentences to associated non-
introductory detailed sentences.

settings. Many scientific papers such as those in
arXiv and PubMed (Cohan et al., 2018) posses ab-
stracts of varying length, ranging from 50 to 1000
words and average length of approximately 200
words. While scientific paper summarization has
been an active research area, most works (Cohan
et al., 2018; Xiao and Carenini, 2019; Cui and Hu,
2021; Rohde et al., 2021) in this domain have fo-
cused on generating typical short and abstract-like
summaries (Chandrasekaran et al., 2020). Short
summaries might be adequate when the source text
is of short-form such as those in news domain;
however, to summarize longer documents such as
scientific papers, an extended summary including
400–600 terms on average, such as those found in
extended summarization datasets of arXiv-Long
and PubMed-Long, is more appealing as it conveys
more detailed information.
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Extended summary generation has been of re-
search interest very recently. Chandrasekaran
et al. (2020) motivated the necessity of generating
extended summaries through LongSumm shared
task 1. Long documents such as scientific papers
are usually framed in a specific structure. They start
by presenting general introductory information 2.
This introductory information is then followed by
supplemental information (i.e., non-introductory)
that explain the initial introductory information in
more detail. Similarly, as shown in Figure 1, this
pattern holds in a human-written extended sum-
mary of a long document, where the preceding sen-
tences (top box inside Figure 1) are introductory
sentences and succeeding sentences (bottom box
inside Figure 1) are explanations of the introduc-
tory sentences. In this study, we aim to guide the
summarization model to utilize the aforementioned
rationale in human-written summaries. We con-
sider introductory sentences as those that appear
in the first section of paper with headings such as
Introduction, Overview, Motivations, and so forth.
As such, all other parts of paper and their sentences
are considered as non-introductory (i.e., supple-
mentary). We use these definitions in the reminder
of this paper.

Herein, we approach the problem of extended
summary generation by incorporating the most
important introductory information into the sum-
marization model. We hypothesize that incorpo-
rating such information into the summarization
model guides the model to pick salient detailed
non-introductory information to augment the final
extended summary. The importance of the role
of introduction in the scientific papers was earlier
presented in (Teufel and Moens, 2002; Armağan,
2013; Jirge, 2017) where they showed such infor-
mation provides clues (i.e. pointers) to the objec-
tives and experiments of studies. Similarly, Boni
et al. (2020) conducted a study to show the impor-
tance of introduction part of scientific papers as
its relevance to the paper’s abstract. To validate
our hypothesis, we test the proposed approach on
two publicly available large-scale extended summa-
rization datasets, namely arXiv-Long and PubMed-
Long. Our experimental results improve over the
strong baselines and state-of-the-art models. In
short, the contributions of this work are as follows:

1https://ornlcda.github.io/SDProc/
sharedtasks.html

2We will exchangeably use (non-)introductory information
and (non-)introductory sentences in the rest of this paper.

• A novel multi-tasking approach that incorpo-
rates the salient introductory information into
the extractive summarizer to guide the model
in generating a 600-term (roughly) extended
summary of a long document, containing the
key detailed information of a scientific paper.

• Intrinsic evaluation that demonstrates statis-
tically significant improvements over strong
extractive and abstractive summarization base-
lines and state-of-the-art models.

• An extensive human evaluation which reveals
the advantage of the proposed model in terms
of cohesion and completeness.

2 Related Work

Summarizing scientific documents has gained a
huge deal of attention from researchers, although
it has been studied for decades. Neural efforts
in scientific text have used specific characteris-
tics of papers such as discourse structure (Cohan
et al., 2018; Xiao and Carenini, 2019) and citation
information (Qazvinian and Radev, 2008; Cohan
and Goharian, 2015, 2018) to aid summarization
model. While prior work has mostly covered the
generation of shorter-form summaries (approx. 200
terms), generating extended summaries of roughly
600 terms for long-form source documents such
as scientific papers has been motivated very re-
cently (Chandrasekaran et al., 2020).

The proposed models for the extended summary
generation task include jointly learning to predict
sentence importance and sentence section to ex-
tract top sentences (Sotudeh et al., 2020); utiliz-
ing section-contribution computations to pick sen-
tences from important section for forming the fi-
nal summary (Ghosh Roy et al., 2020); identify-
ing salient sections for generating abstractive sum-
maries (Gidiotis et al., 2020); ensembling of ex-
traction and abstraction models to form final sum-
mary (Ying et al., 2021); an extractive model with
TextRank algorithm equipped with BM25 as sim-
ilarity function (Kaushik et al., 2021); and incor-
porating sentences embeddings into graph-based
extractive summarizer in an unsupervised man-
ner (Ramirez-Orta and Milios, 2021). Unlike these
works, we do not exploit any sectional nor citation
information in this work. To the best of our knowl-
edge, we are the first at proposing the novel method
of utilizing introductory information of the scien-
tific paper to guide the model to learn to generate
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summary from the salient and related information.

3 Background: Contextualized language
models for summarization

Contextualized language models such as BERT (De-
vlin et al., 2019), and ROBERTA (Liu et al., 2019)
have achieved state-of-the-art performance on a
variety of downstream NLP tasks including text
summarization. Liu and Lapata (2019) were the
first to fine-tune a contextualized language model
(i.e., BERT) for the summarization task. They
proposed BERTSUM —a fine-tuning scheme for
text summarization— that outputs the sentence
representations of the source document (we use
the term source and source document interchange-
ably, referring to the entire document). The BERT-
SUMEXT model, which is built based on BERT-
SUM, was proposed for the extractive summariza-
tion task. It utilizes the representations produced
by BERTSUM, passes them through Transformers
encoder (Vaswani et al., 2017), and finally uses
a linear layer with Sigmoid function to compute
copying probabilities for each input sentence. For-
mally, let l1, l2, ..., ln be the binary tags over the
source sentences x = {sent1, sent2, ..., sentn} of
a long document, in which n is the number of sen-
tences in the paper. The BERTSUMEXT network
runs over the source documents as follows (Eq. 1),

hb = BertSum(x)

h = Encodert(hb)

p = σ(Woh+ bo)

(1)

where hb and h are the representations of source
sentences encoded by BERTSUM and Trasformers
encoder, respectively. Wo and bo are trainable pa-
rameters, and p is the probability distribution over
the source sentences, signifying extraction copy
likelihood. The goal of this network is to train a net-
work that can identify the positive sets of sentences
as the summary. To prevent the network from se-
lecting redundant sentences, BERTSUM uses Tri-
gram Blocking (Liu and Lapata, 2019) for sentence
selection in inference time. We refer the reader to
the main paper for more details.

4 TSTR: Intro-guided Summarization

In this section, we describe our methodology to
tackle the extended summary generation task. Our
approach exploits the introductory information 3.

3Introductory information is defined in Section 1

EXTENDED 

SUMMARY

SOURCE 

SENTENCES

INTRODUCTORY

SENTENCES

Figure 2: Our model uses introductory sentences as
pointers to the source sentences. It then forms the final
extended summary by extracting salient sentences from
the source. Highlights in red show the salient parts.

of the paper as pointers to salient sentences within
it, as shown in Figure 2. It is ultimately expected
that the extractive summarizer is guided to pick
salient sentences across the entire paper.

The detailed illustration of our model is shown
in Figure 3. To aid the extractive summarization
model (i.e., right-hand box in Figure 3) which takes
in source sentences of a scientific paper, we utilize
an additional BERTSUM encoder called Introduc-
tory encoder (left-hand box in Fig. 3) that receives
xintro = {sent1, sent2, ..., sentm}, with m being
the number of sentences in introductory section.
The aim of adding second encoder in this frame-
work is to identify the clues in the introductory
section which point to the salient supplementary
sentences 4. The BERTSUM network computes the
extraction probabilities for introductory sentences
as follow (same way as in Eq. 1),

h̃b = BertSum(xintro)

h̃ = Encodert(h̃b)

p̃ = σ(Wj h̃+ bj)

(2)

in which h̃b, and h̃ are the introductory sentence
representations by BERTSUM, Transformers en-
coder, respectively. p̃ is the introductory sentence
extraction probabilities. Wj and bj are trainable
matrices.

After identifying salient introductory sentences,
the representations associated with them are re-
trieved using a pooling function and further used to
guide the first task (i.e., right-hand side in Figure
3) as follows,

h̃top = Select(h̃, p̃, k)

ĥ = MLP1(h̃top)
(3)

4Supplementary sentences are defined in Section 1.
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Figure 3: Detailed illustration of our summarization framework. Task-1 (t1): source sentence extraction (right-hand
gray box). Task-2 (t2): introductory sentence extraction (left-hand gray box). As shown, the identified salient
introductory sentences at training stages are incorporated into the representations of source sentences by the
Select(·) function (orange box) with k = 3. Plus sign shows the concatenation layer. The feed-forward neural
network is made of one linear layer.

where Select(·) is a function that takes in all in-
troductory sentence representations (i.e., h̃), and
introductory sentence probabilities p̃. It then out-
puts the representations associated with top k in-
troductory sentences, sorted by p̃. To extract top
introductory sentences, we first sort h̃ vectors based
on their computed probabilities p̃ and then we pick
up top k hidden vectors (i.e., h̃top) that has the high-
est probability. MLP1 is a multi-layer perceptron
that takes in concatenated vector of top introduc-
tory sentences and projects it into a new vector
called ĥ.

At the final stage, we concatenate the trans-
formed introductory top sentence representations
(i.e., ĥ) with each source sentence representations
from Eq. 1 (i.e., hi where i shows the ith paper
sentence) and process them to produce a resulting
vector r which is intro-aware source sentence hid-
den representations. After processing the resulting
vector through a linear output layer (with Wz and
bz as trainable parameters), we obtain final intro-
aware sentence extraction probabilities (i.e., p) as
follows,

r = MLP2(hi ; ĥ)

p = σ(Wzr + bz)
(4)

in which MLP2 is a multi-layer perceptron, influ-
encing the knowledge from introductory sentence
extraction task (i.e., t2) into the source sentence ex-
traction task (i.e., t1). We train both tasks through
our end-to-end system jointly as follows,

ℓtotal = (α)ℓt1 + (1− α)ℓt2 (5)

where ℓt1 , and ℓt2 are the losses computed for in-
troductory sentence extraction and source sentence
extraction tasks, α is the regularizing parameter
that balances the learning process between two
tasks, and ℓtotal is the total computed loss that is
optimized during the training.

5 Experimental Setup

In this section, we explain the datasets, baselines,
and preprocessing and training parameters.

5.1 Dataset

We use two publicly available scientific extended
summarization datasets (Sotudeh et al., 2021).
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- arXiv-Long: A set of arXiv scientific pa-
pers containing papers from various scientific
domains such as physics, mathematics, computer
science, quantitative biology. arXiv-Long is in-
tended for extended summarization task and was
filtered from a larger dataset i.e., arXiv (Cohan
et al., 2018) for the summaries of more than 350
tokens. The ground-truth summaries (i.e., ab-
stract) are long, with the average length of 574
tokens. It contains 7816 (train), 1381 (validation),
and 1952 (test) papers.

- PubMed-Long: A set of biomedical scien-
tific papers from PubMed with average summary
length of 403 tokens. This dataset contains 79893
(train), 4406 (validation), and 4402 (test) scien-
tific papers.

- LongSumm: The recently proposed Long-
Summ dataset for a shared task (Chandrasekaran
et al., 2020) contains 2236 abstractive and ex-
tractive summaries for training and 22 papers for
the official test set. We report a comparison with
BERTSUMEXTMULTI using this data in Table
2. However, as the official test set is blind, our
experimental results in Table 1 do not use this
dataset.

5.2 Baselines

We compare our model with two strong non-neural
systems, and four state-of-the-art neural summa-
rizers. We use all of these baselines for the pur-
pose of extended summary generation whose docu-
ments hold different characteristics in length, writ-
ing style, and discourse structure as compared to
documents in the other domains of summarization.

- LSA (Steinberger and Jez̈ek, 2004): an extrac-
tive vector-based model that utilizes Singular
Value Decomposition (SVD) to find the semanti-
cally important sentences.

- LEXRANK (Erkan and Radev, 2004): a widely
adopted extractive summarization baseline that
utilizes a graph-based approach based on eigen-
vector centrality to identify the most salient sen-
tences.

- BERTSUMEXT (Liu and Lapata, 2019): a con-
textualized summarizer fine-tuned for summa-
rization task, which encodes input sentence rep-
resentations, and then processes them through
a multi-layer Transformers encoder to obtain

document-level sentence representation. Finally,
a linear output layer with Sigmoid activation
function outputs a probability distribution over
each input sentence, denoting the extent to which
they are probable to be extracted.

- BERTSUMEXT-INTRO (Liu and Lapata, 2019):
a BERTSUMEXT model that only runs on the
introductory sentences as the input, and extracts
the salient introductory sentences as the summary.

- BERTSUMEXTMULTI (Sotudeh et al., 2021):
an extension of the BERTSUMEXT model that
incorporates an additional linear layer with Sig-
moid classifier to output a probability distribution
over a fixed number of pre-defined sections that
an input sentence might belong to. The additional
network is expected to predict a single section
for an input sentence and is trained jointly with
BERTSUMEXT module (i.e., sentence extractor).

- BART (Lewis et al., 2020): a state-of-the-art ab-
stractive summarization model that makes use
of pretrained encoder and decoder. BART can
be thought of as an extension of BERTSUM in
which merely encoder is pre-trained, but decoder
is trained from scratch. While our model is an ex-
tractive one, at the same time, we find it of value
to measure the abstractive model performance in
the extended summary generation task.

5.3 Preprocessing, parameters, labeling, and
implementation details

We used the open implementation of BERT-
SUMEXT with default parameters 5. To implement
the non-neural baseline models, we utilized Sumy
python package 6. Longformer model (Beltagy
et al., 2020) is utilized as our contextualized lan-
guage model for running all the models due to its
efficacy at processing long documents. For our
model, the cross-entropy loss function is set for
two tasks (i.e., t1 : source sentence extraction and
t2 : introductory sentences extraction in Figure 3)
and the model is optimized through multi-tasking
approach as discussed in Section 3. The model with
the highest ROUGE-2 on validation set is selected
for inference. The validation is performed every
2k training steps. α (in Eq. 5) is set to be 0.5 (em-
pirically determined). Our model includes 474M

5https://github.com/nlpyang/PreSumm
6https://github.com/miso-belica/sumy
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trainable parameters, trained on dual GeForce GTX
1080Ti GPUs for approximately a week. We use
k = 5 for arXiv-Long, k = 8 for PubMed-Long
datasets (Eq. 3). We make our model implementa-
tion as well as sample summaries publicly available
to expedite ongoing research in this direction 7.

A two-stage labeling approach was employed
to identify ground-truth introductory and non-
introductory sentences. In the first stage, we used a
greedy labeling approach (Liu and Lapata, 2019)
to label sentences within the first section of a given
paper (i.e., labeling introductory sentences) with
respect to their ROUGE overlap 8 with the ground-
truth summary (i.e., abstract). In the second stage,
the same greedy approach was exploited over the
rest of sentences (i.e., non-introductory)9 with re-
gard to their ROUGE overlap with the identified
introductory sentences in the first stage. Our choice
of ROUGE-2 and ROUGE-L is based on the fact that
these express higher similarity with human judg-
ments (Cohan and Goharian, 2016). We continued
the second stage until a fixed length of the sum-
mary was reached. Specifically, the fixed length of
positive labels is set to be 15 for arXiv-Long, and
20 for PubMed-Long datasets as these achieved the
highest oracle ROUGE scores in our experiments.

6 Results

6.1 Experimental evaluation

The recent effort in extended summarization and its
shared task of LongSumm (Chandrasekaran et al.,
2020) used average ROUGE (F1) to rank the par-
ticipating systems, in addition to commonly-used
ROUGE-N scores. Table 2 shows the performance
of the participated systems on the blind test set.
As shown, BERTSUMEXTMULTI model outper-
forms other models by a large margin (i.e., with
relative improvements of 6% and 3% on ROUGE-
1 and average ROUGE(F1), respectively); hence,
we use the best-performing in terms of F1 (i.e.,
BERTSUMEXTMULTI model) in our experiments.
Tables. 1 presents our results on the test sets of

arXiv-Long and PubMed-Long datasets, respec-
tively. As observed, our model statistically sig-
nificantly outperforms the state-of-the-art systems
on both datasets across most of the ROUGE vari-

7https://github.com/Georgetown-IR-Lab/
TSTRSum

8We used mean of ROUGE-2 and ROUGE-L.
9We assumed that non-introductory sentences occur in

sections other than the first section.

ants, except ROUGE-L on PubMed-Long. The im-
provements gained by our model validates our hy-
pothesis that incorporating the salient introductory
sentence representations into the extractive summa-
rizer yields a promising improvement. Two non-
neural models (i.e., LSA and LEXRANK) under-
perform the neural models, as expected. Compar-
ing the abstractive model (i.e., BART) with extrac-
tive neural ones (i.e., BERTSUMEXT and BERT-
SUMEXTMULTI), we see that while there is rel-
atively a smaller gap in terms of ROUGE-1, the
gap is larger for ROUGE-2, and ROUGE-L. Inter-
estingly, in the case of BART, we found that gen-
erating extended summaries is rather challenging
for abstractive summarizers. Current abstractive
summarizers including BART have difficulty in ab-
stracting very detailed information, such as num-
bers, and quantities, which hurts the faithfulness
of the generated summaries to the source. This
behavior has a detrimental effect, specifically, on
ROUGE-2 and ROUGE-L as their high correlation
with human judgments in terms of faithfulness has
been shown (Pagnoni et al., 2021). Comparing
the extractive BERTSUMEXT and BERTSUMEXT-
MULTI models, while BERTSUMMULTIEXT is
expected to outperfom BERTSUMEXT, it is ob-
served that they perform almost similarly, with
small (i.e., insignificant) improved metrics. This
might be due to the fact that BERTSUMEXTMULTI

works out-of-the-box when a handful amount of
sentences are sampled from diverse sections to
form the oracle summary as also reported by its
authors. However, when labeling oracle sentences
in our framework (i.e., Intro-guided labeling), there
is no guarantee that the final set of oracle sen-
tences are labeled from diverse sections. Over-
all, our model achieves about 1.4%, 2.4%, 3.5%
(arXiv-Long), and 1.0%, 2.5%, 1.3% (PubMed-
Long) improvements across ROUGE score vari-
ants; and 2.2% (arXiv-Long), 1.4% (PubMed-
Long) improvements over F1, compared to the
neural baselines (i.e., BERTSUMEXT and BERT-
SUMEXTMULTI). While comparing our model
with BERTSUMEXT-INTRO, we see the vital effect
of adding second encoder at finding supplemen-
tary sentences across non-introductory sections,
where our model gains relative improvements of
9.62%-26.26%-16.09% and 9.40%-5.27%-9.99%
for ROUGE-1, ROUGE-2, ROUGE-L on arXiv-
Long and PubMed-Long, respectively. In fact, the
sentences that are picked as summary from the in-
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arXiv-Long PubMed-Long
Model R1(%) R2(%) RL(%) F1 (%) R1(%) R2(%) RL(%) F1 (%)

ORACLE 53.35 24.40 23.65 33.80 52.11 23.41 25.42 33.65
BERTSUMEXT-INTRO 44.88 15.99 19.14 26.25 45.08 20.08 21.52 28.89

LSA 43.23 13.47 17.50 24.73 44.47 15.38 19.17 26.34
LEXRANK 43.73 15.01 18.62 25.41 48.63 20.37 22.49 30.50
BERTSUMEXT 48.42 19.71 21.47 29.87 48.82 20.89 23.37 31.03
BERTSUMEXTMULTI 48.52 19.66 21.42 29.87 48.85 20.71 23.29 30.95
BART 48.12 15.30 20.80 28.07 48.32 17.33 21.42 29.87
TSTR (Ours) 49.20∗ 20.19∗ 22.22∗ 30.54 49.32∗ 21.41∗ 23.67 31.47

Table 1: ROUGE (F1) results of the baseline models and our model on the test sets of the extended summarization
datasets (arXiv-Long, and PubMed-Long). ∗ shows the statistical significance (paired t-test, p < 0.05).

R1 R2 RL F1(%)

Summaformers (2020) 49.38 16.86 21.38 29.21
IIITBH-IITP (2020) 49.03 15.74 20.46 28.41
Auth-Team (2020) 50.11 15.37 19.59 28.36
CIST_BUPT (2020) 48.99 15.06 20.13 28.06
BERTSUMEXTMULTI (2021) 53.11 16.77 20.34 30.07

Table 2: ROUGE (F1) results of different systems on
the blind test set of LongSumm dataset containing 22
abstractive summaries.

troduction section are not comprehensive as such
they are clues to the main points of the paper. The
other important sentences are picked from the sup-
plementary parts (i.e., non-introductory) of the pa-
per.

6.2 Human evaluation

While our model statistically significantly improves
upon the state-of-the-art baselines in terms of
ROUGE scores, a few works have reported the low
correlation of ROUGE with human judgments (Liu
and Liu, 2008; Cohan and Goharian, 2016; Fab-
bri et al., 2021). In order to provide insights into
why and how our model outperforms the best-
performing baselines, we perform a manual anal-
ysis of our system’s generated summaries, BERT-
SUMEXT’s, and BERTSUMEXTMULTI’s. For the
sake of evaluation, two annotators were asked to
manually evaluate two sets of 40 papers’ ground-
truth abstracts (40 for arXiv-Long, and 40 for
PubMed-Long) with their generated extended sum-
maries (baselines’ and ours) to gain insights into
qualities of each model. Annotators were Electrical
Engineering and Computer Science PhD students
and familiar with principles of reading scientific

papers. Samples were randomly selected from the
test set, one from each 40 evenly-spaced bins sorted
by the difference of ROUGE-L between two experi-
mented systems.

The evaluations were performed according to
two metrics: (1) Cohesion: whether the ordering
of sentences in summary is cohesive, namely sen-
tences entail each other. (2) Completeness: whether
the summary covers all salient information pro-
vided in the ground-truth summary. To prevent bias
in selecting summaries, the ordering of system-
generated summaries were shuffled such that it
could not be guessed by the annotators. Annotators
were asked to specify if the first system-generated
summary wins/loses or ties with the second system-
generated summary in terms of qualitative metrics.
It has to be mentioned that since our model is purely
extractive, it does not introduce any fact that is un-
faithful to the source.

Our human evaluation results along with Co-
hen’s kappa (Cohen, 1960) inter-rater agreements
are shown in Table 3 (agr. column). As shown,
our system’s generated summaries improve com-
pleteness and cohesion in over 40% for most of
the cases (6 out of 8 for win cases 10). Specifi-
cally, when comparing with BERTSUMEXT, we
see that 68%, 80% (arXiv-Long); and 60%, 66%
(PubMed-Long) of sampled summaries are at least
as good as or better than the corresponding base-
line’s generated summaries in terms of cohesion
and completeness, respectively. Overall, across
two metrics for BERTSUMEXT and BERTSUMEXT-
MULTI, we gain relative improvements over the
baselines: 25.6%, 19.0% (cohesion), and 56.5%,

10Win cases are the ones in which our system wins the
baseline(s) in terms of cohesion/completeness.
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Metric Win Tie Lose agr.

Our Model vs. BERTSUMEXT baseline

Cohesion 43% 25% 32% 46.5%
Completeness 46% 34% 20% 48.9%

Our Model vs. BERTSUMEXTMULTI baseline

Cohesion 42% 24% 34% 47.2%
Completeness 45% 32% 24% 49.1%

Metric Win Tie Lose agr.

Our Model vs. BERTSUMEXT baseline

Cohesion 39% 21% 30% 52.1%
Completeness 47% 19% 34% 51.3%

Our Model vs. BERTSUMEXTMULTI baseline

Cohesion 37% 21% 32% 48.2%
Completeness 41% 17% 32% 46.3%

(a) (b)
Table 3: Results of human evaluations over 40 papers sampled from (a) arXiv-Long’s, and (b) PubMed-Long’s test
set. agr. shows inter-rater agreement.

[Introductory] The objective of the work presented here is to study the mechanism of
radiative line driving and the corresponding properties of the winds of possible
generations of very massive stars at extremely low metallicities and to investigate
the principal influence of these winds on ionizing fluxes and observable ultraviolet
spectra. ["#] The basic new element of this approach, needed in the domain of
extremely low metallicity, is the introduction of depth dependent force multipliers
representing the radiative line acceleration. ["%] […] Because of the depth
dependent force multipliers a new formulation of the critical point equations is
developed and a new iterative solution algorithm for the complete stellar wind
problem is introduced (section 4). ["&]

[Non-introductory] In this section we develop a fast algorithm to calculate stellar
wind structures and mass - loss rates from the equation of motion (eq.[eom1]) using
a radiative line acceleration parametrized in the form of eq.[fmp3]. ["'] After the
new concept to calculate stellar wind structures with variable force multipliers has
been introduced and tested by comparing with the observed wind properties. ["(]
The purpose of this first study is to provide an estimate about the strengths of stellar
winds at very low metallicity for very massive hot stars in a mass range roughly
between 100 to 300 m@xmath3. [")] With our new approach to describe line driven
stellar winds at extremely low metallicity we were able to make first predictions of
stellar wind properties, ionizing fluxes and synthetic spectra of a possible population
of very massive stars in this range of metallicity. ["*] […] We also calculated
synthetic spectra and were able to present for the first time predictions of uv spectra
of very massive stars at extremely low metallicities. ["+] We learned that the
presence of stellar winds leads to observable broad spectral line features, which
might be used for spectral diagnostics, should such an extreme stellar population be
detected at high redshift. [",] […]

s6 s1

s2

s3

s4

s8

s7

s5

(a) (b)

Figure 4: (a) Our system’s generated summary, (b) Sentence graph visualization of our system’s generated summary.
Green and gray nodes are introductory and non-introductory sentences, respectively. Edge thickness denotes the
ROUGE score strength between pair of sentences. Parts, from which sentences are sampled, are shown inside brackets.
The summary is truncated due to space limitations. Ground-truth summary-worthy sentences are underlined, and
colored spans show pointers from introductory to non-introductory sentences.

46.7% (completeness) on arXiv-Long; and 23.1%,
13.5% (cohesion), and 27.7%, 21.9% (complete-
ness) on PubMed-Long. 11 These improvements,
qualitatively evaluated by the human annotators,
show the promising capability of our purposed
model in generating improved extended summaries
which are more preferable than the baselines’. We
observe a similar improvement trend when com-
paring our summaries with BERTSUMEXTMULTI,
where 66%, 77% (arXiv-Long); and 58%, 58%
(PubMed-Long) of our summaries are as good as or
better than the baseline’s in terms of cohesion and
completeness. Looking at the Cohen’s inter-rater
agreement, the correlation scores fall into “moder-

11Relative improvement of win rate over lose rate.

ate” agreement range according to the interpreta-
tion of Cohen’s kappa range (McHugh, 2012).

6.3 Case study
Figure 4 (a) demonstrates an extended summary
generated from a sample arXiv-Long paper by our
model. The underlined sentences denote that the
corresponding sentences are oracle (i.e., summary-
worthy), the colored spans denote the pointers from
introductory information to non-introductory infor-
mation, and sentence numbers appear in brackets
following each sentence. As shown, our system
first identifies salient introductory sentences (i.e.,
[s1] and [s3]), and then augments them with im-
portant non-introductory sentences. Figure 4 (b)
shows the ROUGE scores between pairs of intro-
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ductory and non-introductory sentences. The edge
thickness signifies the strength of the ROUGE score
between a pair of sentences. For example, intro-
ductory sentence [s1] highly correlates with non-
introductory sentence [s7] as it has a stronger edge
(s1, s7) thickness. More specifically, [s1] has men-
tions of “radiative line driving”, “properties of
the winds”, “possible generations of very massive
stars”, and “ionizing fluxes” which maps to [s7]
with semantically similar mentions of “line driven
stellar winds”, “stellar wind properties”, “possi-
ble generations of very massive stars”, and “ioniz-
ing fluxes” 12.

7 Error Analysis

To determine the limitations of our model, we fur-
ther analyze our system’s generated summaries
and report three common defects, along with the
percentage of these errors among underperformed
cases. We found that (1) our end-to-end system’s
performance is highly dependent on the introduc-
tory sentence extraction task’s performance (i.e.,
task t2 in Figure 3) as identification of salient in-
troductory sentences (i.e., oracle introductory sen-
tences) sets up a firm ground to explore detailed
sentences from the non-introductory parts of the
paper. In other words, identification of non-salient
introductory sentences leads to a drift in finding
supplemental sentences from the non-introductory
parts. Our model often underperforms when it can-
not find important sentences from the introductory
part (65%); (2) in underperformed cases, our model
fails in selecting motivation, objective sentences
from the introductory part, and only identifies the
contribution sentences (i.e., describing paper’s con-
tributions), such that the final generated summary
is composed of contribution sentences, rather than
objective sentences. This observation hurts the sys-
tem in cohesion and completeness (40%); and (3)
as discussed, our model matches introductory sen-
tences with sentences from non-introductory parts
of the paper. Given that two sentences within a sci-
entific paper might conceptually convey the exact
same information, but are just paraphrased of each
other, our model samples both to form the final
summary as a high semantic correlation exists be-
tween them. This phenomenon leads to sampling
two sentences that convey the same information

12The entire system-generated summaries are
publicly available at https://github.com/
Georgetown-IR-Lab/TSTRSum, including 40 human-
evaluated cases.

without providing more details; hence, information
redundancy (35%).

8 Conclusion

In this work, we propose a novel approach to tackle
the extended summary generation for scientific doc-
uments. Our model is built upon the fine-tuned
contextualized language models for text summa-
rization. Our method improves over strong and
state-of-the-art summarization baselines by adding
an auxiliary learning component for identifying
salient introductory information of long documents,
which are then used as pointers to guide the sum-
marizer to pick summary-worthy sentences. The
extensive intrinsic and human evaluations show the
efficacy of our model in comparison with the state-
of-the-art baselines, using two large scale extended
summarization datasets . Our error analysis further
paves the path for future reseacrh.
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