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Abstract

Neural module networks (NMN) have
achieved success in image-grounded tasks
such as Visual Question Answering (VQA)
on synthetic images. However, very limited
work on NMN has been studied in the
video-grounded dialogue tasks. These tasks
extend the complexity of traditional visual
tasks with the additional visual temporal vari-
ance and language cross-turn dependencies.
Motivated by recent NMN approaches on
image-grounded tasks, we introduce Video-
grounded Neural Module Network (VGNMN)
to model the information retrieval process in
video-grounded language tasks as a pipeline
of neural modules. VGNMN first decomposes
all language components in dialogues to
explicitly resolve any entity references and
detect corresponding action-based inputs from
the question. The detected entities and actions
are used as parameters to instantiate neural
module networks and extract visual cues
from the video. Our experiments show that
VGNMN can achieve promising performance
on a challenging video-grounded dialogue
benchmark as well as a video QA benchmark.

1 Introduction

Vision-language tasks have been studied to build
intelligent systems that can perceive information
from multiple modalities, such as images, videos,
and text. Extended from image-grounded tasks, e.g.
(Antol et al., 2015), recently Jang et al. (2017); Lei
et al. (2018) propose to use video as the ground-
ing features. This modification poses a significant
challenge to previous image-based models with the
additional temporal variance through video frames.
Recently Alamri et al. (2019) further develop video-
grounded language research into the dialogue do-
main. In the proposed task, video-grounded dia-
logues, the dialogue agent is required to answer
questions about a video over multiple dialogue
turns. Using Figure 1 as an example, to answer
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Caption: a boy and a man walk to the room. 
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Figure 1: A sample video-grounded dialogue with a
demonstration of a reasoning process

questions correctly, a dialogue agent has to resolve
references in dialogue context, e.g. “he” and “it”,
and identify the original entity, e.g. “a boy" and “a
backpack". Besides, the agent also needs to iden-
tify the actions of these entities, e.g. “carrying a
backpack” to retrieve information from the video.

Current state-of-the-art approaches to video-
grounded dialogue tasks, e.g. (Le et al., 2019b;
Fan et al., 2019) have achieved remarkable perfor-
mance through the use of deep neural networks to
retrieve grounding video signals based on language
inputs. However, these approaches often assume
the reasoning structure, including resolving refer-
ences of entities and detecting the corresponding
actions to retrieve visual cues, is implicitly learned.
An explicit reasoning structure becomes more ben-
eficial as the tasks complicate in two scenarios:
video with complex spatial and temporal dynamics,
and language inputs with sophisticated semantic
dependencies, e.g. questions positioned in a di-
alogue context. These scenarios often challenge
researchers to interpret model hidden layers, iden-
tify errors, and assess model reasoning capability.

Similar challenges have been observed in image-
grounded tasks in which deep neural networks ex-
hibit shallow understanding capability as they ex-
ploit superficial visual cues (Agrawal et al., 2016;
Goyal et al., 2017; Feng et al., 2018; Serrano and
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Smith, 2019). Andreas et al. (2016b) propose neu-
ral module networks (NMNs) by decomposing a
question into sub-sequences called program and
assembling a network of neural operations. Moti-
vated by this line of research, we propose a new
approach, VGNMN, to video-grounded language
tasks. Our approach benefits from integrating neu-
ral networks with a compositional reasoning struc-
ture to exploit low-level information signals in
video. An example of the reasoning structure can
be seen on the right side of Figure 1.

Video-grounded Neural Module Network
(VGNMN) tackles video understanding through
action and entity-paramterized NMNs to retrieve
video features. We first decompose question
into a set of entities and extract video features
related to these entities. VGNMN then extracts
the temporal steps by focusing on relevant actions
that are associated with these entities. VGNMN is
analogous to how human processes information by
gradually retrieving signals from input modalities
using a set of discrete subjects and their actions.

To tackle dialogue understanding, VGNMN is
trained to resolve any co-reference in language in-
puts, e.g. questions in a dialogue context, to iden-
tify the unique entities in each dialogue. Previous
approaches to video-grounded dialogues often ob-
tain question global representations in relation to
dialogue context. These approaches might be suit-
able to represent general semantics in open-domain
dialogues (Serban et al., 2016). However, they are
not ideal to detect fine-grained information in a
video-grounded dialogue which frequently entails
dependencies between questions and past dialogue
turns in the form of entity references.

In summary, our contributions include:

• VGNMN, a neural module network-based ap-
proach for video-grounded dialogues.

• The approach includes a modularized system
that creates a reasoning pipeline parameter-
ized by entity and action-based representa-
tions from both dialogue and video contexts.

• Our experiments are conducted on the chal-
lenging benchmark for video-grounded dia-
logues, Audio-visual Scene-Aware Dialogues
(AVSD) (Alamri et al., 2019) as well as TGIF-
QA (Jang et al., 2017) for video QA task.

• Our results indicate strong performance of
VGNMN as well as improved model inter-

pretability and robustness to difficult scenarios
of dialogues, videos, and question structures.

2 Related Work

2.1 Video-Language Understanding

The research of video-language understanding aims
to develop a model’s joint understanding capa-
bility of language, video, and their interactions.
Jang et al. (2017); Gao et al. (2018); Jiang et al.
(2020) propose to learn attention guided by ques-
tion global representation to retrieve spatial-level
and temporal-level visual features. Li et al. (2019);
Fan et al. (2019); Jiang and Han (2020) model
interaction between all pairs of question token-
level representations and temporal-level features of
the input video through similarity matrix, memory
networks, and graph networks respectively. Gao
et al. (2019); Le et al. (2019c, 2020b); Lei et al.
(2020); Huang et al. (2020) extends the previous
approach by dividing a video into equal segments,
sub-sampling video frames, or considering object-
level representations of input video. We propose to
replace token-level and global question represen-
tations with question representations composed of
specific entities and actions.

Recently, we have witnessed emerging tech-
niques in video-language systems that exploit deep
transformer-based architectures such as BERT (De-
vlin et al., 2019) for pretraining multimodal rep-
resentations (Li et al., 2020a; Yang et al., 2020;
Kim et al., 2021; Tang et al., 2021; Lei et al.,
2021; Zellers et al., 2021) in very large-scale video-
language datasets. While these systems can achieve
impressive performance, they are not straightfor-
ward to apply in domains with limited data such as
video-grounded dialogues. Moreover, as we shown
in our qualitative examples, our approach facili-
tates better interpretability through the output of
decoded functional programs.

2.2 Video-grounded Dialogues

Extended from video QA, video-grounded dialogue
is an emerging task that combines dialogue re-
sponse generation and video-language understand-
ing research. This task entails a novel requirement
for models to learn dialogue semantics and de-
code entity co-references in questions. Nguyen
et al. (2018); Hori et al. (2019); Hori et al. (2019);
Sanabria et al. (2019); Le et al. (2019a,b) extend
traditional QA models by adding dialogue his-
tory neural encoders. Kumar et al. (2019) en-
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hances dialogue features with topic-level represen-
tations to express the general topic in each dia-
logue. Schwartz et al. (2019) treats each dialogue
turn as an independent sequence and allows inter-
action between questions and each dialogue turn.
Le et al. (2019b) encodes dialogue history as a
sequence with embedding and positional represen-
tations. Different from prior work, we dissect the
question sequence and explicitly detect and decode
any entities and their references. Our approach also
enables insights on how models extract deductive
bias from dialogues to extract video information.

2.3 Neural Module Network

Neural Module Network (NMN) (Andreas et al.,
2016b,a) is introduced to address visual QA by de-
composing questions into linguistic sub-structures,
known as programs, to instantiate a network of neu-
ral modules. NMN models have achieved success
in synthetic image domains where a multi-step rea-
soning process is required (Johnson et al., 2017b;
Hu et al., 2018; Han et al., 2019). Yi et al. (2018);
Han et al. (2019); Mao et al. (2019) improve NMN
models by decoupling visual-language understand-
ing and visual concept learning. Our work is re-
lated to the recent work (Kottur et al., 2018; Jiang
and Bansal, 2019; Gupta et al., 2020) that extended
NMNs to image reasoning in dialogues and reading
comprehension reasoning. Our approach follows
the previous approaches that learn to generate pro-
gram structure and require no parser at evaluation
time. Compared to prior work, we use NMN to
learn dependencies between the composition in lan-
guage inputs and the spatio-temporal dynamics in
videos. Specifically, we propose to construct a rea-
soning structure from text, from which detected
entities are used to extract visual information in the
spatial space and detected actions are used to find
visual information in the temporal space.

3 Method

In this section, we present the design of our model.
An overview of the model can be seen in Figure 2.

3.1 Task Definition

The input to the model consists of a dialogue D
which is grounded on a video V . The input com-
ponents include the question of current dialogue
turn Q, dialogue history H, and the features of
the input video, including visual and audio input.
The output is a dialogue response, denoted as R.
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Parser
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History Dialog 

Understanding 
Neural Modules

Entity-level 
Dialogue Context 

Question 
Parser

Video 
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Entity/Action-level 
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Figure 2: An overview of the VGNMN approach. Col-
orful boxes are network components and the rest are
input/output. Dotted lines are for optional components.

Each text input component is a sequence of words
w1, ..., wm ∈ Vin, the input vocabulary. Simi-
larly, the output responseR is a sequence of tokens
w1, ..., wn ∈ Vout, the output vocabulary. The ob-
jective of the task is the generation objective that
output answers of the current dialogue turn t:

R̂t = argmax
Rt

P (Rt|V,Ht,Qt; θ)

= argmax
Rt

LR∏

n=1

Pm(wn|Rt,1:n−1,V,Ht,Qt; θ)

where LR is the length of the sequence R. In a
Video-QA task, the dialogue historyH is simply ab-
sent and the output response is typically collapsed
to a single-token response.

3.2 Encoders

Text Encoder. A text encoder is shared to encode
text inputs, including dialogue history, questions,
and captions. The text encoder converts each text
sequence X = w1, ..., wm into a sequence of em-
beddings X ∈ Rm×d. We use a trainable embed-
ding matrix to map token indices to vector represen-
tations of d dimensions through a mapping function
φ. These vectors are then integrated with ordering
information of tokens through a positional encod-
ing function with layer normalization (Ba et al.,
2016; Vaswani et al., 2017). The embedding and
positional representations are combined through
element-wise summation. The encoded dialogue
history and question of the current turn are defined
as H = Norm(φ(H) + PE(H)) ∈ RLH×d and
Q = Norm(φ(Q) + PE(Q)) ∈ RLQ×d.

Video Encoder. To encode video, we use pre-
trained models to extract visual and audio features.
We denote F as the sampled video frames or video
clips. For object-level visual features, we denote O
as the maximum number of objects considered in
each frame. The resulting output from a pretrained
object detection model is Zobj ∈ RF×O×dvis . We
concatenate each object representation with the
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Module Input Output Description
find P, H Hent For related entities in question, select the relevant tokens from dialogue history
summarize Hent,Q Qctx Based on contextual entity representations, summarise the question semantics
where P,V Vent Select the relevant spatial position corresponding to original (resolved) entities
when P,Vent Vent+act Select the relevant entity-aware temporal steps corresponding to the action parameter
describe P,Vent+act Vctx Select visual entity-action features based on non-binary question types
exist Q,Vent+act Vctx Select visual entity-action features based on binary (yes/no) question types

Table 1: Description of the modules and their functionalities. We denote P as the parameter to instantiate each
module, H as the dialogue history, Q as the question of the current dialogue turn, and V as video input.

corresponding coordinates projected to dvis dimen-
sions. We also make use of a CNN-based pre-
trained model to obtain features of temporal di-
mension Zcnn ∈ RF×dvis . The audio feature is
obtained through a pretrained audio model, Zaud ∈
RF×daud . We passed all video features through a
linear transformation layer with ReLU activation
to the same embedding dimension d.

3.3 Neural Modules

We introduce neural modules that are used to as-
semble an executable program constructed by the
generated sequence from question parsers. We pro-
vide an overview of neural modules in Table 1 and
demonstrate dialogue understanding and video un-
derstanding modules in Figure 3 and 4 respectively.
Each module parameter, e.g. “a backpack”, is ex-
tracted from the parsed program (See Section 3.4).
For each parameter, we denote P ∈ Rd as the aver-
age pooling of component token embeddings.
find(P,H)→Hent. This module handles en-

tity tracing by obtaining a distribution over to-
kens in the dialogue history. We use an entity-to-
dialogue-history attention mechanism applied from
an entity Pi to all tokens in the dialogue history.
Any neural network that learn to generate attention
between two tensors is applicable .e.g. (Bahdanau
et al., 2015; Vaswani et al., 2017). The attention
matrix normalized by softmax, Afind,i ∈ RLH , is
used to compute the weighted sum of dialogue his-
tory token representations. The output is combined
with entity embedding Pi to obtain contextual en-
tity representation Hent,i ∈ Rd.
summarize(Hent,Q)→Qctx. For each con-

textual entity representation Hent,i, i = 1, ..., Nent,
it is projected to LQ dimensions and is combined
with question token embeddings through element-
wise summation to obtain entity-aware question
representation Qent,i ∈ RLQ×d. It is fed to a one-
dimensional CNN with max-pooling layer (Kim,
2014) to obtain a contextual entity-aware ques-
tion representation. We denote the final output

as Qctx ∈ RNent×d.
While previous models usually focus on global

or token-level dependencies (Hori et al., 2019; Le
et al., 2019b) to encode question features, our
modules compress fine-grained question represen-
tations at the entity level. Specifically, find
and summarize modules can generate entity-
dependent local and global representations of ques-
tion semantics. We show that our modularized
approach can achieve better performance and trans-
parency than traditional approaches to encode dia-
logue context (Serban et al., 2016; Vaswani et al.,
2017) (Section 4).
where(P,V)→Vent. Similar to the find

module, this module handles entity-based atten-
tion to the video input. However, the entity rep-
resentation P , in this case, is parameterized by
the original entity in dialogue rather than in ques-
tion (See Section 3.4 for more description). Each
entity Pi is stacked to match the number of sam-
pled video frames/clips F . An attention network
is used to obtain entity-to-object attention matrix
Awhere,i ∈ RF×O. The attended feature are com-
pressed through weighted sum pooling along the
spatial dimension, resulting in Vent,i ∈ RF×d,
i = 1, ..., Nent.
when(P,Vent)→Vent+act. This module fol-

lows a similar architecture as the where mod-
ule. However, the action parameter Pi is stacked
to match Nent dimensions. The attention matrix
Awhen,i ∈ RF is then used to compute the visual
entity-action representations through weighted sum
along the temporal dimension. We denote the out-
put for all actions Pi as Vent+act ∈ RNent×Nact×d

describe(P,Vent+act)→Vctx. This module
is a linear transformation to compute Vctx =
Wdesc

T [Vent+act;Pstack] ∈ RNent×Nact×d where
Wdesc ∈ R2d×d, Pstack is the stacked represen-
tations of parameter embedding P to Nent ×Nact

dimensions, and [; ] is the concatenation operation.
Note that the parameter P here is extracted from
questions, often as the type of questions e.g. “what”
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Figure 3: find and summarize neural modules for dialogue understanding
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Figure 4: where and when neural modules for video understanding

and “how”. This eliminates the need to have differ-
ent modules for different question types. However,
we noted the current design may be challenged in
rare cases in which an utterance contain numerous
questions (refer to Figure 5).

The exist module is used when the questions
are “yes/no” questions. This module is a special
case of describe module where the parameter
P is simply the average pooled question embed-
dings. The above where module is applied to
object-level features. For temporal-based features
such as CNN-based and audio features, the same
neural operation is applied along the temporal di-
mension. Each resulting entity-aware output is
then incorporated to frame-level features through
element-wise summation.

An advantage of our architecture is that it sepa-
rates dialogue and video understanding. We adopt
a transparent approach to solve linguistic entity ref-
erences during the dialogue understanding phase.
The resolved entities are fed to the video under-
standing phase to learn entity-action dynamics in
the video. We show that our approach is robust
when dialogue evolves to many turns and video
extends over time (Please refer to Section 4).

3.4 Question Parsers

To learn compositional programs, we follow
(Johnson et al., 2017a; Hu et al., 2017) and
consider program generation as a sequence-to-
sequence task. We adopt a simple template
“〈param1〉〈module1〉〈param2〉〈module2〉...” as
the target sequence. The resulting target sequences
for dialogue and video understanding programs are
sequences Pdial and Pvid respectively.

The parsers decompose questions into sub-

sequences to construct compositional reasoning
programs for dialogue and video understanding.
Each parser is a vanilla Transformer decoder, in-
cluding multi-head attention layers on questions
and past dialogue turns (Please refer to Appendix
A.1 for more technical details).

3.5 Response Decoder
System response is decoded by incorporating the di-
alogue context and video context outputs from the
corresponding reasoning programs to target token
representations. We follows a vanilla Transformer
decoder architecture (Le et al., 2019b), which con-
sists of 3 attention layers: self-attention to attend
on existing tokens, attention to Qctx from dialogue
understanding program execution, and attention to
Vctx from video understanding program execution.

A(1)
res = Attention(R|j−1

0 , R|j−1
0 , R|j−1

0 ) ∈ Rj×d

A(2)
res = Attention(A(1)

res , Qctx, Qctx) ∈ Rj×d

A(3)
res = Attention(A(2)

res , Vctx, Vctx) ∈ Rj×d

Multimodal Fusion. For video features come
from multiple modalities, visual and audio, the con-
textual features, denoted Vctx, is obtained through
a weighted sum of component modalities, e.g. con-
textual visual features V vis

ctx and contextual audio
features V aud

ctx . The scores Sfusion to compute the
weighted sum is defined as:

Sfusion = Softmax(W T
fusion[Qstack;V

vis
ctx ;V

aud
ctx ])

where Qstack is the mean pooling output of ques-
tion embeddings Q which is then stacked to Nent +
Nact dimensions, and Wfusion ∈ R3d×2 are train-
able model parameters. The resulting Sfusion has a
dimension of ∈ R(Nent+Nact)×2.
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Response Generation. To generate response se-
quences, a special token “_sos” is concatenated as
the first tokenw0. The decoded tokenw1 is then ap-
pended to w0 as input to decode w2 and so on. Sim-
ilarly to input source sequences, at decoding time
step j, the input target sequence is encoded to ob-
tain representations of system response R|j−1

0 . We
combine vocabulary of input and output sequences
and share the embedding matrixE ∈ R|V|×d where
V = Vin ∩ Vout. During training time, we directly
use the ground-truth responses as input to the de-
coder and optimize VGNMN with a cross-entropy
loss to decode the next ground-truth tokens. During
test time, responses are generated auto-regressively
through beam search with beam size 5. Note that
we apply the same procedure to generate reasoning
programs from question parsers.

4 Experiments

Datasets. We use the AVSD benchmark from
the Dialogue System Technology Challenge 7
(DSTC7) (Hori et al., 2019). The benchmark con-
sists of dialogues grounded on the Charades videos
(Sigurdsson et al., 2016). Each dialogue contains
up to 10 dialogue turns, each turn consists of a ques-
tion and expected response about a given video.
For visual features, we use the 3D CNN-based fea-
tures from a pretrained I3D model (Carreira and
Zisserman, 2017) and object-level features from a
pretrained FasterRNN model (Ren et al., 2015b).
The audio features are obtained from a pretrained
VGGish model (Hershey et al., 2017). In the ex-
periments with AVSD, we consider two settings:
one with video summary and one without video
summary as input. In the setting with video sum-
mary, the summary is concatenated to the dialogue
history before the first dialogue turn. We also adapt
VGNMN to the video QA benchmark TGIF-QA
(Jang et al., 2017). Different from AVSD, TGIF-
QA contains a diverse set of QA tasks:

• Count: an open-ended task which counts the
number of repetitions of an action

• Action: a multiple-choice (MC) task which
asks about a certain action occurring for a
fixed number of times

• Transition: an MC task which emphasizes
temporal transition in video

• Frame: an open-ended QA about visual con-
tents of one of the video frames

# Train Val. Test

AVSD
Dialogs 7,659 1,787 1,710
Turns 153,180 35,740 13,490
Words 1,450,754 339,006 110,252

TGIFQA

Count QA 24,159 2,684 3,554
Action QA 18,428 2,047 2,274
Trans. QA 47,434 5,270 6,232
Frame QA 35,453 3,939 13,691

Table 2: Summary of DSTC7 AVSD and TGIF-QA
benchmark

For the TGIF-QA benchmark, we use the extracted
features from a pretrained ResNet model (He et al.,
2016). Table 2 shows a summary of the AVSD and
TGIF-QA benchmarks.

Training Details. We follow prior approaches
(Hu et al., 2017, 2018; Kottur et al., 2018) by ob-
taining the annotations of the programs through
a language parser (Hu et al., 2016) and a refer-
ence resolution model (Clark and Manning, 2016).
During training, we directly use these as ground-
truth labels of programs to train our models. The
ground-truth responses are augmented with label
smoothing technique (Szegedy et al., 2016). Dur-
ing inference time, we generate all programs and
responses from given dialogues and videos. We run
beam search to enumerate programs for dialogue
and video understanding and dialogue responses.

We use a training batch size of 32 and embed-
ding dimension d = 128 in all experiments. Where
Transformer attention is used, we fix the number
of attention heads to 8 in all attention layers. In
neural modules with MLP layers, the MLP network
is fixed to 2 linear layers with a ReLU activation in
between. In neural modules with CNN, we adopt
a vanilla CNN architecture for text classification
(without the last MLP layer) where the number of
input channels is 1, the kernel sizes are {3, 4, 5},
and the number of output channels is d. We ini-
tialize models with uniform distribution (Glorot
and Bengio, 2010). During training, we adopt the
Adam optimizer (Kingma and Ba, 2015) and a de-
caying learning rate (Vaswani et al., 2017) where
we fix the warm-up steps to 15K training steps. We
employ dropout (Srivastava et al., 2014) of 0.2 at
all networks except the last linear layers of ques-
tion parsers and response decoder. We train models
up to 50 epochs and select the best models based
on the average loss per epoch in the validation set.

All models are trained in a V100 GPU with a
capacity of 16GB. We approximated each training
epoch took about 20 minutes to run. For each
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model experiment with VGNMN, we obtained at
least 2 runs and reported the average results. We
implemented models in Pytorch and released the
code and model checkpoints 1.

Optimization. We optimize models by joint
training to minimize the cross-entropy losses to
generate responses and functional programs.

L = αLdial + βLvid + Lres

= α
∑

j

− log(Pdial(Pdial,j))

+ β
∑

l

− log(Pvideo(Pvideo,l))

+
∑

n

− log(Pres(Rn))

where P is the probability distribution of an out-
put token. The probability is computed by passing
output representations from the parsers and decoder
to a linear layer W ∈ Rd×V with softmax activa-
tion. We share the parameters between W and
embedding matrix E.

AVSD Results. We evaluate model performance
by the objective metrics, including BLEU (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005), ROUGE-L (Lin, 2004), and CIDEr (Vedan-
tam et al., 2015), between each generated response
and 6 reference gold responses. As seen in Table 3,
our models outperform most of existing approaches.
We observed that our approach did not outperform
the GPT-based baselines (Li et al., 2020b; Le and
Hoi, 2020) in the setting that allows video sum-
mary/caption input. However, the performance
of our model in the setting without video sum-
mary/caption input is on par with the GPT-based
baseline (Li et al., 2020b), even though our model
did not rely on deep pretrained representations on
large-scale text data. These observations imply
that GPT-based models can better capture video
context from video caption/summary through rich
pretrained representations. However, without ac-
cess to video caption/summary, these models may
fail to understand video from visual-only represen-
tations. In this setting, GPT-based models may be
inferior to VGNMN, which explicitly exploits the
compositional structures from textual inputs to inte-
grate visual features. We also found that VGNMN
applied to object-level features is competitive to
the model applied to CNN-based features. The

1https://github.com/henryhungle/vgnmn

Model PT Vis. Aud. B-4 M R C
Without Video Summary/Caption
Baseline (Hori et al., 2019) - I - 0.305 0.217 0.481 0.733
Baseline (Hori et al., 2019) - I V 0.309 0.215 0.487 0.746
(Le et al., 2019a) - I V 0.315 0.239 0.509 0.848
FGA (Schwartz et al., 2019) - I V - - - 0.806
JMAN (Chu et al., 2020) - I - 0.309 0.240 0.520 0.890
(Hori et al., 2019) - I V 0.371 0.248 0.527 0.966
MTN (Le et al., 2019b) - I - 0.343 0.247 0.520 0.936
MTN (Le et al., 2019b) - I V 0.368 0.259 0.537 0.964
MSTN (Lee et al., 2020) - I V 0.379 0.261 0.548 1.028
BiST (Le et al., 2020a) RX V 0.390 0.259 0.552 1.030
GPT2 (Li et al., 2020b) X I V 0.402 0.254 0.544 1.052
VGNMN - I - 0.397 0.262 0.550 1.059
VGNMN - FR - 0.388 0.259 0.549 1.040
VGNMN - - V 0.381 0.252 0.534 1.004
VGNMN - I V 0.396 0.263 0.549 1.059
With Video Summary/Caption
TopicEmb (Kumar et al., 2019) - I A 0.329 0.223 0.488 0.762
(Le et al., 2019a) - I V 0.310 0.242 0.515 0.856
JMAN (Chu et al., 2020) - I - 0.334 0.239 0.533 0.941
(Nguyen et al., 2018) - I V 0.360 0.249 0.544 0.997
(Sanabria et al., 2019) X RX - 0.387 0.266 0.564 1.087
MSTN (Lee et al., 2020) - I V 0.377 0.275 0.566 1.115
(Hori et al., 2019) - I V 0.405 0.273 0.566 1.118
MTN (Le et al., 2019b) - I - 0.392 0.269 0.559 1.066
MTN (Le et al., 2019b) - I V 0.410 0.274 0.569 1.129
BiST (Le et al., 2020a) RX V 0.429 0.284 0.581 1.192
GPT2 (Le and Hoi, 2020) X I V 0.436 0.282 0.579 1.194
GPT2 (Li et al., 2020b) X I V 0.459 0.294 0.606 1.308
VGNMN - I - 0.421 0.277 0.574 1.171
VGNMN - FR - 0.421 0.275 0.571 1.148
VGNMN - I V 0.421 0.277 0.573 1.167
VGNMN - I+C V 0.429 0.278 0.578 1.188

Table 3: AVSD test results: Metrics are: BLEU-4
(B-4), METEOR (M), ROUGE-L (R), and CIDEr (C).
The visual features are: I3D (I), ResNeXt-101 (RX),
Faster-RCNN (FR), caption as a video input (C). The
audio features are: VGGish (V), AclNet (A). Xon
PT denotes models using pretrained weights and/or ad-
ditional finetuning. The best/second-best results are
bold/underlined respectively.

flexibility of VGNMN neural programs show when
we treat the caption as an input equally to visual or
audio inputs and execute entity-action level neural
operations on the encoded caption sequence.

Robustness. To evaluate model robustness, we
report BLEU4 and CIDEr of model variants in var-
ious experimental settings. Specifically, we com-
pare against performance of output responses in the
first dialogue turn position (i.e. 2nd-10th turn vs.
the 1st turn), or responses grounded on the shortest
video length range (video ranges are intervals of
0-10th, 10-20th percentile and so on). We report
results of the following model variants: (1) w/o
video NMN: VGNMN without using video-based
modules, e.g. when and where. Video features
are retrieved through a token-level representation
of questions (Le et al., 2019b). (2) no NMN: (1) +
without dialogue-based modules, e.g. find and
summarize. Dialogue history is encoded by a
hierarchical LSTM encoder (Hori et al., 2019).

Robustness to video length: In Table 4a, we
noted that the performance gap between VGNMN
and (1) is quite distinct, with 7/10 cases of video
ranges in which VGNMN outperforms. However,
in lower ranges (i.e. 1-23 seconds) and higher
ranges (37-75 seconds), VGNMN performs not
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Video
(seconds)

BLEU4 CIDEr
VGNMN (1) VGNMN (1)

1-23 0.432 0.447 1.298 1.355
23-28 0.436 0.433 1.264 1.165
28-30 0.398 0.376 1.203 1.164

30-30.6 0.441 0.418 1.220 1.202
30.6-31 0.413 0.411 1.250 1.166
31-31.6 0.439 0.451 1.249 1.295
31.6-32 0.430 0.419 1.217 1.192
32-33 0.468 0.445 1.343 1.237
33-37 0.388 0.381 1.149 1.124
37-75 0.356 0.365 0.910 0.962

(a) Performance by video length bet-
ween VGNMN and variant (1) (w/o video
NMN).

Dial.
Turn

BLEU4 CIDEr
(1) (2) (1) (2)

1 0.579 0.587 1.623 1.650
2 0.429 0.430 1.155 1.142
3 0.275 0.289 0.867 0.846
4 0.309 0.305 0.859 0.855
5 0.355 0.335 1.088 1.023
6 0.357 0.329 1.044 0.950
7 0.342 0.325 0.896 0.847
8 0.361 0.332 1.025 0.973
9 0.383 0.431 1.043 1.182

10 0.395 0.371 0.931 0.977

(b) Performance by dialogue turn
between variants (1) (w/o
video NMN) and (2) (no NMN)

Question
structure

BLEU-4 CIDEr
VGNMN (2) VGNMN (2)

Yes/No 0.474 0.447 1.306 1.244
Wh- 0.266 0.265 0.706 0.699
How 0.636 0.663 1.817 1.878

Others 0.287 0.318 0.701 0.768
1Sent+Que 0.374 0.357 0.854 0.822
2Sent+Que 0.303 0.225 0.554 0.487

>2Sent+Que 0.000 0.000 0.000 0.000
2SubQue 0.196 0.180 0.489 0.460
3SubQue 0.332 0.000 0.653 0.112

(c) Performance by utterance structures bet-
ween VGNMN and variant (2) (no NMN):
Single-question utterances (Top) vs. Multi-
part utterances (Bottom).

Table 4: VGNMN and model variants by configurations of dialogues, videos, and question structures

as well as model (1). We observed that related
factors might affect the discrepancy, such as the
complexity of the questions for these short and
long-range videos. Potentially, our question parser
for the video understanding program needs to be
improved (e.g. for tree-based programs) to retrieve
information in these ranges.

Robustness to dialogue turn: In Table 4b, we ob-
served that model (1) performs better than model
(2) overall, especially in higher turn positions, i.e.
from the 4th turn to 8th turn. Interestingly, we
noted some mixed results in very low turn position,
i.e. the 2nd and 3rd turn, and very high turn po-
sition, i.e. the 10th turn. Potentially, with a large
dialogue turn position, the neural-based approach
such as hierarchical RNN can better capture the
global dependencies within dialogue context than
the entity-based compositional NMN method.

Robustness to question structure: Finally, we
compared performance of VGNMN with the no-
NMN variant (1) in different cases of question
structures: single-question vs. multiple-part struc-
ture. In single-question structures, we examined by
the question types (e.g. yes/no, wh-questions). In
multi-part structures, we further classified whether
there are sentences preceding the question (e.g.
“1Sent+Que”) or there are smaller (sub-)questions
(e.g. “2SubQue”) within the question. In Table
4c, we observed that VGNMN has clearer perfor-
mance gains in multi-part structures than single-
question structures. In multi-part structures, we
observed higher gaps between VGNMN and model
(1) in highly complex cases e.g. “2Sent+Que”
vs. “1Sent+Que”. These observations indicate
the robustness of VGNMN and the underlying
compositionality principle to deal with complex
question structures. We also noted that VGNMN
is still susceptible to extremely long questions
(“>2Sent+Que”) and future work is needed to ad-

dress these scenarios.

Turn Question Dialogue NMN Video NMN Response

3

...what are 
they doing in 
the scene ? 
are they on a 
rooftop ?

Predicted: 
find(they), 
find(the 
scene) 
→summarize()  
✘
Gold: 
find(they)
→summarize()

Predicted: where(two men in 
the video),where(the scene)
→ when(doing in the scene)→ 
describe(what) ✘
Gold: where(two men), 
where(rooftop)→when(doing 
in the scene)
→describe(what)

Predicted: one is 
washing a chair and 
the other is taking 
pictures  ✘
Gold: yes , on a 
second floor roof 
deck , one man is 
washing a chair , 
another man is 
either filming or 
taking pictures

4

does he sit in 
the chair 
after 
washing it ?

Predicted: 
find(he), 
find(the 
chair) 
→summarize()
✓
Gold: 
find(he), 
find(the 
chair)→ 
summarize()

Predicted: where(one man in 
the video), where(a chair)→ 
when(sit in the chair after 
washing it)→exist() ✓
Gold: where(one man), where(a 
chair)→ when(sit in the 
chair after washing it)
→exist()

Predicted: no , he 
does not sit in the 
chair  ✓
Gold: no he does 
not , there is a pipe 
with water running 
all over

Turn Question Dialogue 
Understanding 

Program

Video Understanding
Program

Response

3

in the door 
way to the 
next room, 
there is an 
object. what is 
that?

Predicted: find(the 
room), find(the 
door)
→summarize()✘
Gold: summarize()

Predicted: where(what 
room)
→when(what is that)
→exist()✘
Gold: describe(what)

Predicted: it looks 
like he is in a living 
room. ✘
Gold: he went to 
the doorway for a 
vacuum.

4

when he gets 
up, does he 
have anything 
in his hand?

Predicted: 
find(he), 
find(his)→ 
summarize()✓
Gold:find(he), 
find(his)→ 
summarize()

Predicted: where(one 
person in the video)
→when(get up, have 
anything in his hands)→ 
describe(when)✘
Gold: where(one person 
in the video)→when(get 
up), when(have anything 
in his hands)→ 
describe(when)

Predicted: he has a 
vacuum in his 
hands. ✓
Gold: he goes for 
the vacuum.

Figure 5: Interpretability of model outputs on AVSD:
Example A (Top) and Example B (Bottom).

Interpretability. In Figure 5, we show both suc-
cess and failure cases of generated responses and
corresponding generated functional programs. In
each example, we marked predicted outputs as in-
correct if they do not match the ground-truth com-
pletely (even though the outputs might be partially
correct). From Figure 5, we observe that in cases
where generated dialogue programs and video pro-
grams match or are close to the gold labels, the
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model can generate generally correct responses.
For cases where some module parameters do not
exactly match but are closed to the gold labels, the
model can still generate responses with the correct
visual information (e.g. the 4th turn in example
B). In cases of wrong predicted responses, we can
further look at how the model understands the ques-
tions based on predicted programs. In the 3rd turn
of example A, the output response is missing a
minor detail as compared to the label response be-
cause the video program fails to capture “rooftop”
as a where parameter. These subtle yet important
details can determine whether output responses can
fully address user queries. In the 3rd turn of exam-
ple B, the model wrongly identifies “what room”
as a where parameter and subsequently generates
a wrong response that it is “a living room”.

TGIF-QA Results. We report the result using
the L2 loss in Count task and accuracy in other
tasks. From Table 5, VGNMN outperforms the
majority of the baseline models in all tasks by a
large margin. Compared to AVSD experiments,
the TGIF-QA experiments emphasize the video un-
derstanding ability of the models, removing the
requirement for dialogue understanding and natu-
ral language generation. Since TGIF-QA questions
follow a very specific question type distribution
(count, action, transition, and frameQA), the ques-
tion structures are simpler and easier to learn than
AVSD. Using exact-match accuracy of parsed pro-
grams vs. label programs as a metric, our question
parser can achieve a performance 81% to 94% ac-
curacy in TGIF-QA vs. 41-45% in AVSD. The
higher accuracy in decoding a reasoning structure
translates to better adaptation between training and
test time, resulting in higher performance gains.

Model Vis. Count
(Loss)

Action
(Acc)

Tran.
(Acc)

FrQA
(Acc)

VIS (Ren et al., 2015a) R 4.80 0.488 0.348 0.350
MCB (Fukui et al., 2016) R 5.17 0.589 0.243 0.257
Yu et al. (Yu et al., 2017) R 5.13 0.561 0.640 0.396
ST-VQA (Gao et al., 2018) R+F 4.32 0.629 0.694 0.495
Co-Mem (Gao et al., 2018) R+F 4.10 0.682 0.743 0.515
PSAC (Li et al., 2019) R 4.27 0.704 0.769 0.557
HME (Fan et al., 2019) R+C 4.02 0.739 0.778 0.538
STA (Gao et al., 2019) R 4.25 0.723 0.790 0.566
CRN+MAC (Le et al., 2019c) R 4.23 0.713 0.787 0.592
MQL (Lei et al., 2020) V - - - 0.598
QueST (Jiang et al., 2020) R 4.19 0.759 0.810 0.597
HGA (Jiang and Han, 2020) R+C 4.09 0.754 0.810 0.551
GCN (Huang et al., 2020) R+C 3.95 0.743 0.811 0.563
HCRN (Le et al., 2020b) R+RX 3.82 0.750 0.814 0.559
BiST (Le et al., 2020a) RX 2.14 0.847 0.819 0.648
VGNMN R 2.65 0.845 0.887 0.747

Table 5: Experiment results on the TGIF-QA bench-
mark. The visual features are: ResNet-152 (R), C3D
(C), Flow CNN from two-stream model (F), VGG (V),
ResNeXt-101 (RX).

Cascading Errors. Compared to prior ap-
proaches, we noted that VGNMN is a modular-
ized system which may result in cascading errors
to downstream modules. One major error is the
error of generated programs which is used as pa-
rameters in neural modules. To gauge this error,
we compare the performance of VGNMN between
2 cases: with generated programs and with ground-
truth programs. From Table 6, we noticed some
performance gaps between these cases. These ob-
servations imply that: (1) program generations
and response generations are positively correlated
and more accurate programs can lead to better re-
sponses; and (2) current question parsers are not
perfect, resulting in wrong parameters to instantiate
neural modules. Future work may focus on learn-
ing better question parsers or directly deploying a
better off-the-shelf parser tool.

AVSD BLEU4 METEOR ROUGE-L CIDEr
Gen. 0.396 0.263 0.549 1.059
GT 0.408 0.272 0.560 1.115

TGIF-QA
Count
(Loss)

Action
(Acc)

Transition
(Acc)

FrameQA
(Acc)

Gen. 2.65 0.845 0.887 0.747
GT 1.90 0.857 0.898 0.780

Table 6: Comparison of VGNMN on AVSD (top) and
TGIF-QA (bottom) when using generated (“Gen.”) vs.
ground-truth (“GT”) programs.

For additional experiment results, qualitative
samples, and analysis between model variants, re-
fer to Appendix B and C.

5 Conclusion

In this work, we introduce Video-grounded Neural
Module Network (VGNMN). VGNMN consists of
dialogue and video understanding neural modules,
each of which performs entity and action-level op-
erations on language and video components. Our
comprehensive experiments on AVSD and TGIF-
QA benchmarks show that our models can achieve
competitive performance while promoting a com-
positional and interpretable learning approach.

6 Broader Impacts

During the duration of this work, there have been
no ethical concerns regarding the model implemen-
tation, training, and testing. The data used in this
work has been carefully reviewed and accordingly
to the description from the original authors, we did
not find any concerns on any significant biases. For
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any potential application or extension of this work,
we would like to highlight some specific concerns.
First, as the work is developed to build an intelli-
gent dialogue agents, models should not be used
with the intention to create fake human profiles for
any harmful purposes (e.g. fishing or spreading
fake news). For wider use of dialogue systems,
the application of work might result in certain im-
pacts to some stakeholders whose jobs may be af-
fected by this application (e.g. customer service
call agents). We hope any application should be
carefully considered against these potential risks.
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A Additional Model Details

A.1 Question Parsers
To learn compositional programs, we follow
(Johnson et al., 2017a; Hu et al., 2017) and
consider program generation as a sequence-to-
sequence task. We adopt a simple template
“〈param1〉〈module1〉〈param2〉〈module2〉...” as
the target sequence. The resulting target sequences
for dialogue and video understanding programs are
sequences Pdial and Pvid respectively.

The parsers decompose questions into sub-
sequences to construct compositional reasoning
programs for dialogue and video understanding.
Each parser is an attention-based Transformer de-
coder. The Transformer attention is a multi-head
attention on query q, key k, and value v tensors, de-
noted as Attention(q, k, v). For each token in the
q sequence , the distribution over tokens in the k
sequence is used to obtain the weighted sum of the
corresponding representations in the v sequence.

Attention(q, k, v) = softmax(
qkT√
dk

)v ∈ RLq×dq
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Each attention is followed by a feed-forward net-
work applied to each position identically. We ex-
ploit the multi-head and feed-forward architecture,
which show good performance in NLP tasks such
as NMT and QA (Vaswani et al., 2017; Dehghani
et al., 2019), to efficiently incorporate contextual
cues from dialogue components to parse question
into reasoning programs. At decoding step 0, we
simply use a special token _sos as the input to
the parser. In each subsequent decoding step, we
concatenate the prior input sequence with the gener-
ated token to decode in an auto-regressive manner.
We share the vocabulary sets of input and output
components and thus, use the same embedding ma-
trix. Given the encoded question Q, to decode the
program for dialogue understanding, the contextual
signals are integrated through 2 attention layers:
one attention on previously generated tokens, and
the other on question tokens. At time step j, we
denote the output from an attention layer as Adial,j.

A
(1)
dial = Attention(Pdial|j−1

0 , Pdial|j−1
0 , Pdial|j−1

0 )

A
(2)
dial = Attention(A

(1)
dial, Q,Q) ∈ Rj×d

To generate programs for video understanding,
the contextual signals are learned and incorporated
in a similar manner. However, to exploit dialogue
contextual cues, the execution output of dialogue
understanding neural modules Qctx is incorporated
to each vector in Pdial through an additional atten-
tion layer. This layer integrates the resolved entity
information to decode the original entities for video
understanding. It is equivalent to a reasoning pro-
cess that converts the question from its original
multi-turn semantics to single-turn semantics.

A
(1)
vid = Attention(Pvid|j−1

0 , Pvid|j−1
0 , Pvid|j−1

0 )

A
(2)
vid = Attention(A

(1)
vid, Q,Q) ∈ Rj×d

A
(3)
vid = Attention(A

(2)
vid, Qctx, Qctx) ∈ Rj×d

A.2 How to locate entities?
Noted that in the neural modules described in
Section 3.3, during training, we simply feed the
ground-truth programs to optimize these modules.
For instance, the neural module where received
the ground truth entities P which is then used to in-
stantiate the neural network and retrieve from video
V . During test time, we decode the programs token
by token through the question parsers, and feed the
predicted entities P̂ to neural modules. Note that
we do not assume, and hence not train model to

retrieve ground-truth locations of visual entities in
videos. This strategy enables the applicability of
VGNMN as we consider these entity annotations
mostly unavailable in real-world systems.

B Additional Experimental Results

B.1 Non-NMN Models

We experiment with several Non-NMN based vari-
ants of our models. As can be seen in Table 7,
our approach to video and dialogue understand-
ing through compositional reasoning programs ex-
hibits better performance than non-compositional
approaches. Compared to the approaches that di-
rectly process frame-level features in videos (Row
B) or token-level features in dialogues (Row C,
D), our full VGNMN (Row A) considers entity-
level and action-level information extraction and
thus, avoids unnecessary and possibly noisy ex-
traction. Compared to the approaches that obtain
dialogue contextual cues through a hierarchical en-
coding architecture (Row E, F) such as (Serban
et al., 2016; Hori et al., 2019), VGNMN directly
addresses the challenge of entity references in di-
alogues. As mentioned, we hypothesize that the
hierarchical encoding architecture is more appro-
priate for less entity-sensitive dialogues such as
chit-chat and open-domain dialogues.

B.2 Dialogue context integration

Experimenting with different ways to integrate di-
alogue context representations, we observe that
adding an attention layer attending to question dur-
ing response decoding (Row G) is not necessary.
This can be explained as the representation Qctx

obtained from dialogue understanding program al-
ready contains contextual information of both dia-
logue history and question and question input is no
longer needed in the decoding phase. Furthermore,
we investigate the model sensitivity to natural lan-
guage generation through its ability to construct
linguistically correct programs and responses. To
generate responses that are linguistically appropri-
ate, VGNMN needs dialogue context representa-
tion Qctx as input to the response decoder (Row
H). The model also needs encoded question Q as
input to the video understanding program parser to
be able to decompose this sequence to entity and
action module parameters (Row I).
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# Model Variant generated programs ground-truth programs
BLEU4 CIDEr BLEU4 CIDEr

A Full VGNMN 0.421 1.171 0.423 1.167
B ↪→ video NMNs ∼ response-decoder-to-video attn. 0.415 1.159 - -
C ↪→ dial. NMNs ∼ res-decoder-to-(history→question) attn. 0.412 1.151 - -
:q!D ↪→ dial. NMNs ∼ res-decoder-to-concat(history+question) attn. 0.411 1.133 - -
E ↪→ dial. NMNs ∼ HREDLSTM(history) + question attn. 0.414 1.153 - -
F ↪→ dial. NMNs ∼ HREDGRU(history) + question attn. 0.415 1.138 - -
G ↪→ + response-decoder-to-question attn. 0.424 1.166 0.426 1.164
H ↪→ - response-decoder-to-dialogue-context attn. 0.405 1.124 0.404 1.123
I ↪→ - video-understanding-prog-parser-to-question attn. 0.414 1.146 0.424 1.166

Table 7: Ablation analysis of VGNMN with different model variants on the test split of the AVSD benchmark

C Interpretability

We extract the predicted programs and responses
for some example dialogues in Figure 6, 7, 8, and
9 and report our observations:

• We observe that when the predicted programs
are correct, the output responses generally
match the ground-truth (See the 1st and 2nd

turn in Figure 6, and the 1st and 4th turn
in Figure 8) or close to the ground-truth re-
sponses (1st turn in Figure 7).

• When the output responses do not match the
ground truth, we can understand the model
mistakes by interpreting the predicted pro-
grams. For example, in the 3rd turn in Figure
6, the output response describes a room be-
cause the predicted video program focuses on
the entity “what room” instead of the entity
“an object” in the question. Another exam-
ple is the 3rd turn in Figure 8 where the en-
tity “rooftop” is missing in the video program.
These mismatches can deviate the information
retrieved from the video during video program
execution, leading to wrong output responses
with wrong visual contents.

• We also note that in some cases, one or both
of the predicted programs are incorrect, but
the predicted responses still match the ground-
truth responses. This might be explained as
the predicted module parameters are still close
enough to the “gold” labels (e.g. 4th turn in
Figure 6). Sometimes, our model predicted
programs that are more appropriate than the
ground truth. For example, in the 2nd turn in
Figure 7, the program is added with a where
module parameterized by the entity “the shop-
ping bag” which was solved from the refer-
ence “them” mentioned in the question.

• We observe that for complex questions that
involve more than one queries (e.g. the 3rd

turn in Figure 8), it becomes more challenging
to decode an appropriate video understanding
program and generate responses that can ad-
dress all queries.

• In Figure 9, we demonstrate some output ex-
amples of VGNMN and compare with two
baselines: Baseline (Hori et al., 2019) and
MTN (Le et al., 2019b). We noted that
VGNMN can include important entities rele-
vant to the current dialogue turn to construct
output responses while other models might
miss some entity details, e.g. “them/dishes”
in example A and “the magazine” in example
B. These small yet important details can deter-
mine the correctness of dialogue responses.
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Turn Question Dialogue Understanding 
Program

Video Understanding
Program

Response

1

how many people 
are in the video ?

Predicted: summarize()
✓
Gold: summarize()

Predicted: describe(how many 
people) ✓
Gold: describe(how many 
people)

Predicted: there is only 
one person in the video. 
✓
Gold: there is one 
person in the video. 

2

does this person ever 
leave the field of 
view ?

Predicted: find(this 
person)→summarize() 
✓
Gold: find(this 
person)→ summarize 
()

Predicted: where(one person
in the video)→when(leave 
the
field of view)→exist() ✓
Gold: where(one person in
 the video)→when(leave the
field of view)→exist()

Predicted: no, he does 
not leave the view. ✓
Gold: no, he is in the 
video the whole time.

3

in the door way to 
the next room, there 
is an object. what is 
that?

Predicted: find(the 
room), find(the 
door)→summarize()✘
Gold: summarize()

Predicted: where(what room)
→when(what is that)→exist()
✘
Gold: describe(what)

Predicted: it looks like 
he is in a living room. 
✘
Gold: he went to the 
doorway for a vacuum.

4

when he gets up, 
does he have 
anything in his 
hand?

Predicted: find(he), 
find(his)→ 
summarize()✓
Gold:find(he), 
find(his)→ 
summarize()

Predicted: where(one person in 
the video)→when(get up, 
have anything in his hands)
→ describe(when)✘
Gold: where(one person in the 
video)→when(get up), 
when(have anything in his 
hands)→ describe(when)

Predicted: he has a 
vacuum in his hands. ✓
Gold: he goes for the 
vacuum.

Figure 6: Example output programs and responses from a dialogue in the test split of the AVSD benchmark.

Turn Question Dialogue Understanding 
Program

Video Understanding
Program

Response

1

what is is holding in 
his hand in the 
beginning ?

Predicted: find(his) 
→summarize() ✓
Gold: find(his) 
→summarize()

Predicted: where(a man) 
→when(holding in his hand 
in the beginning) → describe 
(what) ✓
Gold: where(a man)→ when 
(holding in his hand in the 
beginning)→ describe(what)

Predicted: he is holding 
a shopping bag in his 
hand .  ✘
Gold: looks like a bag 
of beans

2

does he put them 
down ?

Predicted: find(he), 
find(them)
→summarize()✘
Gold: find(he)→ 
summarize()

Predicted: where(a man), where 
(a shopping bag)→when(put 
them down)→exist() ✘
Gold: where(a man)→ when(put 
them down)→exist()

Predicted: yes he puts 
them down on the table .  
✓
Gold: yes he puts it 
down after looking at it

Figure 7: Example output programs and responses from a dialogue in the test split of the AVSD benchmark.
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Turn Question Dialogue Understanding 
Program

Video Understanding
Program

Response

1

hi how many people 
are in the video from 
start to finish ?

Predicted: summarize() 
✓
Gold: summarize()

Predicted: describe(how many 
people) ✓
Gold: describe(how many 
people)

Predicted: there are two 
people in the video . ✓
Gold: hello , there are 
two men

2

are they carrying on 
a conversation 
between themselves 
?

Predicted: find(they) 
→summarize()✓
Gold: find(they), 
find(themselves)
→summarize()

Predicted: where(two men in the 
video)→when(carrying on a 
conversation between 
themselves)→exist() ✓
Gold: where(two men)→ when 
(carrying a conversation 
between themselves)→exist()

Predicted: yes , they are 
carrying a conversation  
✘
Gold: no , background 
noise is birdsong and 
shuffling noises

3

what are they doing 
in the scene ? are 
they on a rooftop ?

Predicted: find(they), 
find(the scene) 
→summarize()   ✘
Gold: find(they)
→summarize()

Predicted: where(two men in the 
video),where(the scene)→ 
when(doing in the scene)→ 
describe(what) ✘
Gold: where(two men), 
where(rooftop)→when(doing 
in the scene)
→describe(what)

Predicted: one is 
washing a chair and the 
other is taking pictures  
✘
Gold: yes , on a second 
floor roof deck , one 
man is washing a chair , 
another man is either 
filming or taking pic      
tures

4

does he sit in the 
chair after washing 
it ?

Predicted: find(he), 
find(the chair) 
→summarize()✓
Gold: find(he), 
find(the chair)→ 
summarize()

Predicted: where(one man in the 
video), where(a chair)→ 
when(sit in the chair after 
washing it)→exist() ✓
Gold: where(one man), where(a 
chair)→ when(sit in the 
chair after washing it)
→exist()

Predicted: no , he does 
not sit in the chair  ✓
Gold: no he does not , 
there is a pipe with 
water running all over

Figure 8: Example output programs and responses from a dialogue in the test split of the AVSD benchmark.

Video 
(Sample Frame)

Dialog History and Question Predicted Dialogue & Video 
Understanding Program

Predicted and Ground-truth Responses

A Dialog History: ...what is going on 
when the video starts ? a man is 
looking out a doorway...what is he 
doing in there then ? he starts to wash 
dishes ...
Question: does he wipe them with a 
towel?

Dialogue Program (VilNMN): 
find(he), find(them) 
→summarize() 
Video Program (VilNMN): where(a 
man), where(the dishes) → 
when(wipe them with a towel)
→ exist() 

Predicted (VilNMN): no he doesn’t wipe them with a towel . 
✓
Predicted (Baseline): no he does not take a picture of the 
camera. ✘
Predicted (MTN): no he does not do anything with with 
hands. ✘
Gold: looks like he just uses his hands .

B Dialog History: ...what is he reading? 
He is reading a magazine and he is 
laughing...
Question: is he laughing because of 
the magazine?

Dialogue Program (VilNMN): 
find(he), find(the magazine) 
→ summarize()
Dialogue Program (VilNMN): 
where(one young boy in the 
video), where(a magazine) → 
when (laughing because of 
the magazine)→ exist()

Predicted (VilNMN): yes, he is laughing at the magazine . ✓
Predicted (Baseline): yes he is talking to the camera . ✘
Predicted (MTN): no he is not laughing at the end of the 
video . ✘
Gold: maybe , because then he throws the magazine aside .

C Dialog History: ...how many people 
are in the video? There is one person 
in the video...
Question: in the door way to the next 
room, there is an object. What is that?

Dialogue Program (VilNMN): 
find(the room), find(the 
door)→ summarize()
Dialogue Program (VilNMN): 
where(what room)→ when (what 
is that)→ exist()

Predicted (VilNMN): it looks like he is in a living room . ✘
Predicted (Baseline): i m not sure what it is . ✘
Predicted (MTN): he walks into the room . ✘
Gold: he went to the doorway for a vacuum . 

Figure 9: Interpretability of example outputs from VGNMN and baselines models (Hori et al., 2019; Le et al.,
2019b)
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