
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 3329 - 3339

July 10-15, 2022 ©2022 Association for Computational Linguistics

1 

Crossroads, Buildings and Neighborhoods: 
A Dataset for Fine-grained Location Recognition 

Pei Chen1 Haotian Xu1 Cheng Zhang2 Ruihong Huang1 

1 Department of Computer Science and Engineering, Texas A&M University 
2 Purdue University Northwest 

{chenpei, hx105, huangrh}@tamu.edu 
zhan4168@pnw.edu 

Abstract 

General domain Named Entity Recognition 
(NER) datasets like CoNLL-2003 mostly an-
notate coarse-grained location entities such as 
a country or a city. But many applications re-
quire identifying fne-grained locations from 
texts and mapping them precisely to geographic 
sites, e.g., a crossroad, an apartment building, 
or a grocery store. In this paper, we introduce a 
new dataset HarveyNER with fne-grained loca-
tions annotated in tweets. This dataset presents 
unique challenges and characterizes many com-
plex and long location mentions in informal 
descriptions. We built strong baseline models 
using Curriculum Learning and experimented 
with different heuristic curricula to better recog-
nize diffcult location mentions. Experimental 
results show that the simple curricula can im-
prove the system’s performance on hard cases 
and its overall performance, and outperform 
several other baseline systems. The dataset and 
the baseline models can be found at https: 
//github.com/brickee/HarveyNER. 

Introduction 

The Named Entity Recognition (NER) task aims 
to locate and classify textual phrases as entity men-
tions that belong to predefned entity categories. 
Location is one of the general entity categories 
and has been annotated in many NER datasets, in-
cluding CoNLL-2003 (Tjong Kim Sang, 2002) and 
OntoNotes 5.0 (Pradhan et al., 2013). However, 
these datasets contain mostly coarse-grained enti-
ties such as a continent (e.g., Europe), a country 
(e.g., the U.S.), or a city (e.g., London). 

Many downstream applications require identify-
ing fne-grained location entities from texts, such 
as an apartment building (e.g., Bayou Oaks ) or 
a specifc store (e.g., the HEB on Montrose), in 
order to locate the geographic places on a map, 
which is vital to identify actionable information 

Figure 1: An example of a disaster response system. 

(Khanal and Caragea, 2021). For example, in Fig-
ure 1, a food disaster happened in the Houston 
area and then someone tweeted the shortage of ne-
cessities in two locations. If a disaster response 
system can detect the disaster-related tweets, iden-
tify the two location mentions from the text, and 
link them to location entities on the map, necessary 
help can be directly delivered to the people living 
in disaster-affected places. Accurately identifying 
the fne-grained location mentions plays a critical 
role in such a system. 

Several previous works have attempted to create 
crisis-related datasets with fne-grained location 
mentions, either automatically (Middleton et al., 
2013) or by manual (Khanal et al., 2021) annota-
tions. However, these prior datasets contain many 
incomplete descriptions of locations that other-
wise can be precisely projected to a map with cer-
tain geo-coordinates. For example, "the corner of 
Richey St and W Harris Ave in Pasadena" is an 
intersection of two roads and we annotate it as a 
Point on the map, but previous work regard it as two 
Road mentions "Richey St" and "W Harris Ave in 
Pasadena", and such incomplete location mentions 
will affect uses in many applications. We introduce 
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HarveyNER, the frst dataset that annotates such 
coordinate-oriented location mentions. 

We use the Harvey disaster in Houston as an ex-
ample to demonstrate how to annotate such location 
mentions. Specifcally, we consider tweets about 
Hurricane Harvey affecting the Houston metropoli-
tan area in 2017 and annotate mentions of locations 
that exist in this city. Compared with the loca-
tion mentions in prior NER datasets, HarveyNER 
focuses on the location mentions that can link to 
specifc sites on a map. We carefully constructed 
the annotation guidelines and trained annotators 
to obtain high-quality annotations. We also built 
strong baselines over the dataset for future refer-
ence. 

The unique characteristics of HarveyNER 
present challenges for NER systems. First, many 
location entities in this dataset are long and com-
plex to precisely describe a place. E.g., the above 
example of a Point entity contains up to 11 words, 
and it could be wrongly recognized as two road 
entities by a NER system. Second, as an instant 
social medium, tweets contain many informal con-
tents, local conventions, and even grammatical er-
rors, which create many out-of-vocabulary (OOV) 
words that cannot be found in pretrained word em-
bedding such as Glove (Pennington et al., 2014) or 
BERT (Devlin et al., 2019). 

To improve the performance on these hard lo-
cation mentions and build strong baselines for the 
HarveyNER dataset, we adopt Curriculum Learn-
ing (CL) (Bengio et al., 2009) to better learn diff-
culty samples by ordering examples during training 
based on their diffculty. We design two heuristic 
curricula based on entity length and word complex-
ity considering that many long and complex entities 
in HarveyNER are naturally diffcult (as shown in 
Figure 3, the performance of baseline systems is 
worse on these hard cases). We further assume that 
the diffculty to learn may not only depend on the 
inherent diffculty of a type of case but also depend 
on how commonly seen or how well represented 
such cases are in the dataset. Therefore, we pro-
pose a novel curriculum with a diffculty scoring 
function that comprehensively considers the two 
heuristic diffculty metrics as instance frequencies. 
Empirical results show that all of the curricula can 
outperform several other baseline systems, and our 
novel curriculum performs the best. 

We also fnd that different NER-based systems 
beneft from different curriculum scheduling strate-

gies. In our experiments, the normal curriculum 
(training with easier samples frst) is suitable for 
training the neural network-based model NCRF++ 
without pretrained language models, while the anti-
curriculum (training with harder samples frst) facil-
itates fne-tuning of the pretrained language model 
BERT. 

2 Related Work 

NER research has a long history and many NER 
datasets have been created with certain pre-defned 
entity categories. General domain datasets such 
as CoNLL-2003 (Tjong Kim Sang, 2002) and 
OntoNotes 5.0 (Pradhan et al., 2013) attend to cer-
tain common entity types including Location. Lo-
cation mentions in these datasets are mostly coarse-
grained, e.g., the U.S. (a country) or London (a 
city). Li and Sun (2014); Ji et al. (2016) focus 
on identifying fne-grained points-of-interest for 
location-based services, and their dataset is au-
tomatically constructed by mapping location in-
ventory to tweets. Khanal and Caragea (2021); 
Khanal et al. (2021) try to identify crisis-related 
location mentions, but their dataset contains incom-
plete location mentions and is of limited use for a 
disaster response system. In contrast, our dataset 
HarveyNER emphasizes fne-grained locations that 
can map to coordinates on a map. 

Recent approaches (Yang and Zhang, 2018; Li 
et al., 2020; Chen et al., 2021) use Neural Network 
models like BiLSTM-CNN-CRF (Ma and Hovy, 
2016) and contextual embeddings like BERT (De-
vlin et al., 2019), and have greatly improved the 
NER performance. However, none of these ap-
proaches consider the diffculty of different NER 
cases in their model training. Bengio et al. (2009) 
pointed out that using a curriculum strategy en-
ables the model to learn from easy examples to 
complex ones and leads to generalization improve-
ment. Many Natural Language Processing tasks 
such as machine translation (Platanios et al., 2019; 
Liu et al., 2020; Zhang et al., 2021), natural lan-
guage understanding (Xu et al., 2020), text gen-
eration (Liu et al., 2018, 2021) and dialogue sys-
tems (Su et al., 2021) beneft from such curriculum 
learning strategies. Considering that HarveyNER 
contains many long and complex location mentions, 
we design corresponding curricula to learn them. 
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Data Split Train Valid Test Total 

# of Tweets 3,967 1,301 1,303 6,571 

Tweets w/ Entity 1,087 366 353 1,806 
Tweets w/o Entity 2,880 935 950 4,765 

# of Entity Mentions 1,581 523 500 2,604 

Point 591 206 202 999 
Area 715 236 212 1,163 
Road 158 51 57 266 
River 117 30 29 176 

Table 1: Statistics of the HarveyNER Dataset. 

3 The HarveyNER Dataset 

3.1 Data Preparation 

Data Collection We used the Twitter PowerTrack 
API to retrieve the tweets posted during the time of 
peak disruption caused by Hurricane Harvey in the 
Houston area, specifcally from 5:00 a.m. August 
25 to 4:59 a.m. August 31, 2017. In total, we 
collected 1,121,363 tweets excluding retweets and 
replies. 
Data Cleaning We applied several strategies to fl-
ter out irrelevant tweets. First, we only keep the 
tweets that are related to the Houston area, i.e., 
the geo-coordinates of the tweets or the authors’ 
profle locations are within the bounding of Hous-
ton. Second, we applied our weakly-supervised 
event detection system (Yao et al., 2020) to iden-
tify tweets on disaster-related topics; these tweets 
are likely to be related to Hurricane Harvey during 
the specifed period. We also manually fltered out 
remaining irrelevant tweets (such as non-English 
and repeated tweets) during the annotation process. 
In total, 6,571 tweets were selected for this study, 
as shown in Table 1. 

3.2 Location Entity Annotation 

Location Types HarveyNER focuses on the 
coordinate-oriented locations so we mainly anno-
tate Point that can be precisely pinned to a map 
and Area that occupies a small polygon of a map. 
Considering that some disasters can affect line-like 
objects (e.g., a food can affect the neighbors of a 
whole river), we also include Road and River types. 
• Point: denote an exact location that a geo-

coordinate can be assigned. E.g., a uniquely 
named building, intersections of roads or rivers; 

• Area: denote geographical entities such as city 

kappa κ A1 & A2 A1 & A3 A2 & A3 Average 

All 85.64 82.17 83.12 83.64 
Annotated 66.54 60.49 62.09 63.04 

Table 2: Inter-Annotator Agreement (%) at token-level. 
All for all the tokens and Annotated for annotated tokens 
only. There are three annotators A1, A2 and A3. 

subdivisions, neighborhoods, etc; 
• Road: denote a road or a section of a road; 
• River: denote a river or a section of a river. 
Annotation Quality To train the annotators to well 
annotate the fne-grained location mentions, espe-
cially to distinguish the Point locations, we con-
duct rounds of initial annotation exercises and re-
ceptively update annotation guidelines to reduce 
ambiguity and subjectivity. The detailed guidelines 
can be found in Appendix A.1. 

We trained three annotators and calculated their 
Inter-Annotator Agreement (IAA) based on 500 
randomly selected tweets they all annotated. We 
pairwise calculate the Cohen’s kappa (κ ) scores 
based on the token-level annotations from each 
pair of annotators. As suggested by Brandsen et al. 
(2020), we report two scores: one calculated using 
all the token annotations and one only using the 
annotated tokens that exclude non-entity tokens. 
As shown in Table 2, we observe a high average 
κ score of 83.64% for all tokens and an average κ 
score of 63.04% for annotated tokens only. After 
that, the three annotators annotated the remaining 
tweets independently. 

3.3 Dataset Analysis 
We randomly split the annotated tweets into train-
ing, validation, and test sets for experiments with a 
ratio of 6:2:2. Table 1 shows some basic data statis-
tics. We can see that 27.48% of the tweets contain 
at least one location entity mention, while the re-
maining tweets do not mention any location. As for 
location types, Point and Area are two dominant 
entity types covering 38.36% and 44.66% of entity 
mentions respectively, while Road and River only 
make up 10.22% and 6.76% of entity mentions 
respectively. 
Comparisons with CoNLL-2003 We compare 
HarveyNER with CoNLL-2003, a general NER 
dataset annotated with coarse-grained locations in 
news articles, and Table 3 shows the comparisons 
in several aspects. 

First of all, entities in HarveyNER are longer 
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Datasets HarveyNER CoNLL-2003 
(Loc-only) 

Avg Entity Length (word) 2.68 1.15 
Avg Entity Length (char) 13.91 7.24 
Complex Entity Rate (%) 11.8 0.19 

OOV Rate (%) 14.47 2.33 

Avg Sent Length (word) 20.07 14.53 
Avg Sent Length (char) 117.03 76.89 

Avg Entity Count 0.40 0.51 
– non-empty 1.44 1.38 
Avg Entity Ratio (%) 5.33 7.23 
– non-empty 19.39 19.43 

Table 3: HarveyNER v.s. CoNLL-2003. 
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Figure 2: Number of Location Mentions with Each 
Complexity Indicator Word. 

on average at both word level and character level. 
We observed that many location mentions of the 
type Point and Area are especially long to precisely 
describe a site or area on a map. We manually 
analyzed long entities in the validation set and ob-
served that many location mentions are complex 
noun phrases with a conjunction or a prepositional 
phrase attachment. We noted down two commonly 
seen conjunctions and seven commonly seen prepo-
sitions, and table 4 shows location examples for 
each. We calculate the percentage of complex en-
tity mentions with one of these words, and Har-
veyNER has 11.8% of entity mentions fall in this 
category while CoNLL-2003 has few such entity 
mentions (0.19%). Figure 2 shows the number of 
tweets with each of the words. 

Second, considering that the language used in 
tweets is informal and contains many abbreviations 

Indicators Examples 
"and" 
"&" 

the corner of Richey St and W Harris Ave in Pasadena (Point) 

Beltway 8 & Tidwell (Point) 

"at" 
"@" 
"in" 
"on" 

"near" 
"between" 

"of" 

Brazos River at Richmond (River) 

Copperfeld Church @ 8350 hwy 6 north (Point) 

Constellation Field in Sugar Land (Point) 

Chimney Rock on I-10 East (Point) 

IH 10 near Monmouth (Point) 

249 between Cypresswood / Louetta (Point) 

0.25-0.5 north of I-10 (Point) 

Table 4: Examples of complex entities. 

and even grammatical errors, we calculate the out-
of-vocabulary (OOV) rates (in Table 3) for both 
datasets by counting words that are absent from the 
pretrained Glove1 (Pennington et al., 2014) word 
lists. We can see that the HarveyNER has a much 
higher OOV rate than CoNLL-2003. The high 
OOV rate might degrade the performance of NER 
systems relying on pretrained word embeddings. 

In addition, we compare the average sentence 
length between the two datasets. To our surprise, 
HarveyNER has overall longer sentences, based 
on both word counts and character counts. This is 
counter-intuitive since the tweet content is strictly 
constrained to be no more than 140 characters each. 
One possible reason is that short tweets are less 
likely to provide useful event information and have 
been fltered out by the event detection system (Yao 
et al., 2020) we used. 

Lastly, we measure the density of annotated lo-
cation entities in the two datasets by calculating 
the average number of location entity mentions per 
sentence and calculating the percentage of entity 
words out of all the words in a sentence. We also 
calculate these two measures for the subset of sen-
tences that contain at least one location mention 
(non-empty sentences). The last section of Table 3 
shows the results. We can see that the two datasets 
are similar over these annotation density measures. 

4 Curriculum Arrangement 

In consideration of the characteristic diffculties of 
HarveyNER, we employ curriculum arrangements 
to help learn these hard cases. We follow the cur-
riculum designing approach introduced by Bengio 
et al. (2009), which mainly requires specifying two 
functions: 
• Diffculty Scoring Function: Given an input 

sample xi, this function map it to a numerical 

1For fair comparison, we use glove.twitter.27B for Har-
veyNER and glove.6B for CoNLL-2003. 
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score, d(xi) ∈ R. The score is used to represent 
the diffculty level of the corresponding sample. 
Usually, the higher the score, the more diffcult 
the sample is. 

• Pacing Function: The pacing function p(t) ∈ 
(0, 1] specifes the input training data size at 
time or step t. Normally we use p(t) the low-
est diffculty-scored samples for training at time 
t, but in the anti-curriculum setting, we use p(t) 
the highest diffculty-scored samples. Given such 
a subset of the dataset containing the easiest or 
hardest ones, we sample training batches uni-
formly from it for training. 
The curriculum learning procedure using the two 

functions is described in Algorithm 1. 

Algorithm 1 Curriculum Learning with Scoring 
and Pacing Functions 

Input: 
{xi}N• The training Data, Dtrain = i=1, including N 

samples; 
• A model M that takes batches of data for training at 

each step t; 
• A diffculty scoring function d; 
• A pacing function p(t). 

Output: A model Mtrained trained with the curriculum. 
1: Compute the diffculty score d(xi) for each sample; 
2: Sort Dtrain ascendingly or descendingly based on d(xi) 

and obtain Dtrain 
sorted; 

3: Initialize the pacing function p(0); 
4: Generate the initial curriculum D0 using the top p(0) 

samples in Dtrain 
sorted; 

5: for training epoch t = 1, 2, . . . do 
6: Uniformly sample batches from the current 

curriculum Dt−1 for model training; 
7: Update the pacing function p(t) based on 

equation Eq. (6); 
8: Generate the next curriculum Dt using the 

top p(t) samples in train Dsorted; 

4.1 Three Diffculty Scoring Functions 

We frst design two dataset-specifc heuristic cur-
ricula, based on maximum entity length and entity 
complexity2, inspired by the dataset analysis in 
Section 3.3. Then, we introduce a new metric that 
integrates the two heuristic metrics. 

Maximum Entity Length (Max): As men-
tioned previously, our HarveyNER dataset has 
longer entity mentions on average compared to 
CoNLL-2003, and this brings many long and diff-
cult entities that are hard to identify. Intuitively, we 
can design a corresponding curriculum based on 
such an entity-level diffculty. Specifcally, given 

2We tried using the OOV rate as the diffculty score in our 
experiment, but the performance is not as good. 

an input tweet sample xi that contains n words, 
xi = {w1, w2, . . . , wn}, and k (k ≥ 0) entities, 
{E1, E2, . . . , Ek}. |Ej | represents the length of 
j-th entity, specifcally, the number of words in the 
j-th entity. Now, we can assign each tweet sample 
a score using the maximum length3 of its entities: 

dmax(xi) = max(Li) (1) 

where, Li = {|E1|, |E2|, . . . |Ek|}, the set of 
entity lengths for the i-th sample xi. 

With this scoring function, we need to pay atten-
tion to the tweets with zero entity mention (72.52% 
of tweets in HarveyNER as shown in Table 1) since 
their diffculty scores will all be 0. In this case, the 
algorithm will provide all these tweets in one step 
to the curriculum, which will mislead the model 
to a local minimum and learn that no entity exists 
in the data. We propose a remedy to this issue by 
randomly feeding the empty tweet samples. Specif-
ically, when we order our dataset by the diffculty 
scores, we randomly intersperse those no-entity 
tweet samples among the ordered samples that have 
entities. 

Complex Entity Rate (Complex): Correspond-
ing to the analysis of the complex entity rate in 
HarveyNER, we defne another diffculty scoring 
function. Specifcally, we defne the complexity of 
an entity c(E) based on whether the entity contains 
one of the conjunction words or preposition words 
we identifed and which word the entity contains. 
Heuristically, we assign a weight greater than 1 to 
these words, specifcally, we assign a weight of 3 to 
each conjunction word and a weight of 24 to each 
preposition word to refect our intuition that entities 
with conjunctions can be more diffcult cases. 

If an entity E contains more than one “complex-
ity” indicator, we choose the one with the highest 
weight. For example, the entity example E "the 
corner of Richey St and W Harris Ave in Pasadena" 
contains the conjunction "and" and the preposition 
"in", we deem the complexity of this entity c(E) 
is 3 instead of 2. Then, one tweet sample xi can 
have multiple entities with different complexities 
Ci = {c(E1), c(E2), . . . , c(Ek)}, we assign the 

3We also tried using the average entity length as the dif-
fculty score in our experiment but the performance is not as 
good. 

4We further lower the weight for the preposition “of” to 1 
considering that this is a very general preposition and is often 
observed in regular location entities as well, e.g., “University 
of Houston”. 
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maximum entity complexity value as the complex-
ity value of the tweet sample, i.e., 

dcomplex(xi) = max(Ci) (2) 

However, if none of the entities in a tweet sample 
contain complexity indicators, this scoring function 
will assign 0 as the diffculty score for the tweet 
sample. A similar issue has been discussed for the 
previous scoring function, and we use the same 
remedy as well and randomly interspersed these 
zero-scored samples among the other ordered sam-
ples. 

Commonness of Diffculty (Commonness): 
We further propose a novel diffculty metric that 
considers both of the prior metrics as well as their 
support. We exploit the assumption that the diff-
culty to learn may not only depend on the inherent 
diffculty of a type of case but also depend on how 
commonly seen or how well represented such cases 
are in the dataset. 

Specifcally, to assign a diffculty score for a 
tweet sample, we frst count the number of training 
samples that have the same diffculty score as the 
sample xi according to one of the prior two metrics 
and then divide it by the total number of tweet 
instances N . Then, we take the reciprocal of it and 
get fmetric. 

1 
fmetric(xi) = (3)

count(dmetric(xi))/N 

Where, dmetric are the diffculty metrics dmax or 
dcomplex. Hence, the larger support of a diffculty 
level based on one of the two prior heuristics, the 
lower the fmetric value is. We then normalize this 
value to the range of [0, 1]. 

fmetric(xi) − min(fmetric)
fmetric(xi) = (4)

max(fmetric) − min(fmetric) 

Then, we integrate fmax and fcomplex, and take 
the L2-norm to generate the fnal diffculty score. 

q 
dcommon(xi) = fmax(xi)2 + (λfcomplex(xi))2 (5) 

As a result, the more common a sample is con-
cerning its length or complexity, the smaller the 
L2-norm value is, which indicates a lower diffculty 
based on the new metric. In addition, we add a 
hyperparameter λ to balance the infuence of the 
two metrics. 

Similar to the previous single diffculty-based 
curricula, the commonness diffculty score is zero 
when a tweet sample has no entity. We adopt the 
same remedy and randomly intersperse those no-
entity tweet samples among the ordered ones that 
contain entities. 

4.2 Pacing Function 

We use the root-based pacing function introduced 
by Platanios et al. (2019) in all our experiments. 

r 
1 − p(0)2 

p(t) = t · + p(0)2 (6)
T 

Here p(0) defnes the proportion of samples we 
feed our model at the very beginning; T is the num-
ber of epochs that we apply curriculum learning to 
our model. 

5 Experiments 

In our experiments, we use two state-of-the-art 
NER systems as base models and evaluate their 
performance on the HarveyNER dataset. Then, we 
test the effectiveness of the designed curricula by 
applying them to train the base models. 

5.1 Baselines 

NCRF++ (Yang and Zhang, 2018) is an open-
source Neural Sequence Labelling Toolkit. We use 
the BiLSTM-CNN-CRF structure as a base model. 
BERT (Devlin et al., 2019), a pretrained language 
model based on Transformer (Vaswani et al., 2017), 
has signifcantly improved many NLP tasks includ-
ing NER. We fne-tune the base-uncased version 
of BERT with the BiLSTM-CRF structrue for ex-
periments. 

5.2 Training Setup 

For the NCRF++ model, we use the tweet-based 
version Glove as word embeddings and keep all the 
other hyper-parameters as default. For the BERT 
model, we set learning rate as 5e-5 and set batch 
size as 32. As for the λ hyperparameter in Eq. (5), 
we used grid search and set it 1 and 0.6 for the 
NCRF++ model and the BERT model respectively. 
We train all the NCRF++ models for 100 epochs 
and train all the BERT models for 50 epochs. 

For fair comparisons, we keep all the training 
parameters the same when conducting curriculum 
learning. For the NCRF++ model, we use the 
normal curriculum setting and feed easier cases 

3334



Models 
Entity Type in HarveyNER 

Point Area Road River Micro-Average 
NCRF++ 
+ Max 
+ Complex 
+ Commonness 

71.43 / 72.26 / 71.85 
72.55 / 71.51 / 72.03 
70.47 / 72.08 / 71.26 
71.40 / 72.64 / 72.02 

66.00 / 61.68 / 63.77 
65.90 / 65.54 / 65.72 
66.07 / 64.16 / 65.10 
68.27 / 65.84 / 67.03 

77.39 / 77.93 / 77.66 
75.30 / 77.93 / 76.59 
74.67 / 75.17 / 74.92 
77.23 / 77.24 / 77.24 

61.40 / 44.56 / 51.64 
62.42 / 44.56 / 52.00 
63.50 / 44.56 / 52.37 
66.68 / 45.96 / 54.42 

68.69 / 65.16 / 66.88 
69.06 / 66.40 / 67.70 
68.34 / 65.92 / 67.11 
70.09 / 67.12 / 68.57 

BERT 
+ Max 
+ Complex 
+ Commonness 

71.55 / 73.11 / 72.32 
72.14 / 72.74 / 72.44 
70.41 / 75.47 / 72.85 
72.98 / 73.87 / 73.42 

62.04 / 72.87 / 67.02 
62.49 / 72.67 / 67.20 
62.32 / 72.87 / 67.19 
62.53 / 71.98 / 66.92 

76.42 / 82.07 / 79.15 
77.83 / 80.69 / 79.23 
76.12 / 82.76 / 79.30 
79.20 / 78.62 / 78.91 

62.11 / 55.09 / 58.39 
57.92 / 56.14 / 57.02 
59.92 / 55.09 / 57.40 
63.55 / 60.00 / 61.72 

66.62 / 71.48 / 68.97 
66.73 / 71.28 / 68.93 
66.13 / 72.52 / 69.18 
67.66 / 71.80 / 69.67 

Table 5: Evaluation on the test set, Precision / Recall / F1-Score (Percentages)5. Since we use the same pacing 
function, we use the scoring functions to name the curricula. Note that we apply the normal curriculum setting to 
the NCRF++ model and apply the anti-curriculum setting to the BERT model. 

frst, while for the BERT model, we use the anti-
curriculum setting (more explanations provided in 
Section 5.5). Note that we train all the experiments 
fve times using different random seeds to alleviate 
random turbulence. 

5.3 Results 

Table 5 shows the experimental results. We can 
see that the BERT base model outperforms the 
NCRF++ base model consistently across the four 
location categories on this dataset. Curriculum 
learning yields further performance gains for both 
the BERT model and the NCRF++ model, this is 
true for all the curricula paired with both models 
except the Max curriculum when applied to the 
BERT model, where the average performance al-
most stays the same. Among the three curricula, he 
Commonness curriculum achieves the best perfor-
mance for both models. 

Conducting curriculum learning have unequal 
impacts on the four location categories. When us-
ing the NCRF++ model, curriculum learning yields 
a small performance improvement on Point and 
clear improvements on Area and River, while us-
ing the BERT model, curriculum learning yields a 
relatively larger improvement on Point and a clear 
improvement on River as well. 

Note that the best-performed BERT model only 
achieves a micro-average F1-score of 69.67% on 
this dataset, which is still much lower than recently 
published BERT-base performance on CoNLL-
2003 (e.g., 92.4% as reported in (Devlin et al., 
2019)).) Meanwhile, we acknowledge that recog-
nizing fne-grained locations is a trickier task than 
recognizing coarse-grained locations or many other 
general types of entities, even for humans as shown 
by the imperfect inter-annotator agreements. 

5All results are the average of 5 system runs. 

5.4 How are the Diffcult Samples Learned? 

In order to understand if the models have better 
learned the diffcult samples after applying curricu-
lum learning, we divide the test set into “easy” and 
“hard” subsets based on either entity length or entity 
complexity and report experimental results on each 
subset. In this analysis, we only consider tweet 
samples in the test set that contains at least one 
entity mention since the groupings are determined 
by the characteristics of the entities. In the frst 
grouping, we divide tweet samples into “short” and 
“long” groups depending on if the maximum en-
tity length (number of words) in a tweet sample is 
greater than a threshold, four words in particular 
(<= 4 v.s. > 4). In the second grouping, we divide 
tweet samples into “simple” and “complex” groups 
by checking if a tweet sample contains a complex 
entity mention6. 

Across all the experimental settings, we report 
the results on two subsets separately under each 
grouping (Figure 3). We can see that curricu-
lum learning indeed yields noticeable improve-
ments in identifying those hard cases, while the 
improvements vary when adopting different curric-
ula. Meanwhile, curriculum learning also achieves 
mild improvements on identifying the remaining 
relatively easy cases. 

5.5 Curriculum v.s Anti-curriculum 

We fnd that applying different curriculum settings 
(normal curriculum that exposes the easiest exam-
ples frst or anti-curriculum that exposes the most 
diffcult examples frst) results in a large perfor-
mance difference between the NCRF++ model and 
the BERT model. As shown in Figure 4, for the 
NCRF++ model without pretrained language mod-

6A complex entity mention has one of the conjunctions or 
prepositions we identifed. 
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Figure 3: Results on "easy" and "hard" subsets of the test data, F1-score (Percentage). 
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Figure 4: Curriculum v.s. Anti-curriculum, F1-score 
(Percentage). 

els, the normal curriculum setting yields signif-
cantly better average F-1 scores across all the three 
curriculum scoring functions in comparison with 
the anti-curriculum setting. However, for the pre-
trained language model BERT, the results are the 
opposite; using anti-curriculum learning consis-
tently yields better performance than using normal 
curriculum learning. 

One possible explanation is that the volatile gra-
dients resulting from using anti-curriculum learn-
ing can lead to better local minima for a well-
pretrained model. Specifcally, the anti-curriculum 
learning will feed those “hard” samples to the 
model frst, and the gradients from those long-tailed 
hard cases will cause relatively large fuctuations 
compared to those from easy instances. BERT is a 
pretrained language model and the pretrained pa-

rameters might constrain the model to some local 
regions. The fuctuations produced by the “hard” 
samples from the anti-curriculum learning can en-
able the BERT model to reach other better local 
minima regions. 

6 Conclusion 

We introduce a fne-grained location recognition 
dataset, HarveyNER, to enable many downstream 
applications such as building real-time disaster re-
sponse systems. This dataset contains many long 
and complex location mentions that feature interest-
ing internal syntactic and semantic structures and 
the state-of-the-art NER systems are unable to fully 
recognize these hard cases. Considering the clear 
characteristics of diffcult cases in this dataset, we 
experimented with two heuristic curriculum learn-
ing strategies and a novel commonness-based cur-
riculum strategy to better recognize the diffcult 
location mentions. Empirical results demonstrate 
the effectiveness of the curricula, which serve as 
strong baseline results in this dataset. Future work 
may consider incorporating external knowledge or 
innovations on system architectures to better iden-
tify fne-grained location mentions. 
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A Appendix 

A.1 Annotation Guidelines 
• 1. Location types can be "Area", "Point", 

"Road", and "River." 

– “Area” refers to all the named entities 
of cities, neighborhoods, super neighbor-
hoods, geographic divisions etc. 

– “Point” refers to a location that is a build-
ing, a landmark, an intersection of two 
roads, an intersection of a river with 
a lake/reservoir/ocean, or a specifc ad-
dress. 

– "Road" refers to a road/avenue/street or a 
section of a road/avenue/street when the 
tweet does not provide an exact location 
on that road. 

– "River" refers to a river or a section of a 
river when the tweet does not imply there 
is an intersection between the river and 
other places. 

• 2. A section of a road/river between two de-
tailed/precise locations should be considered 
as a point. However, if the distance between 
the two points is very large, it might be con-
sidered as a stretch of a road/river. 

• 3. A road passing through a small area can 
be designated as a point. A road intersecting 
a very large area cannot be a point and must 
be denoted as a stretch of a road. In some 
peculiar cases, the road takes a small detour 
and tangentially brushes off an area – in such 
specifc cases, roads can be annotated as a 
point. 

• 4. The following locations, Lake Houston, 
Barker Reservoir, and Addick’s Reservoir, are 
annotated as areas due to their signifcant size 
while all other lakes/reservoirs are considered 
as points. 

• 5. Ignore generic company/franchise names 
like HEB, Kroger etc. unless it is accompa-
nied with a precise location, for example, HEB 
at Kirkwood Drive. However, non-franchised 
small businesses with only one unique loca-
tion are considered as a point. 

• 6. Ignore any locations in the Twitter user-
name, like @HoustonABC. However, if the 
@ does not refer to a Twitter account name, 
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please recognize the location. For example, I 
am @ XXX High School, “XXX High School” 
will be considered as a point. 

• 7. For abbreviations or vague location names, 
always look up the tweet’s context (or even 
other tweets’ context) to decide if it is a loca-
tion or not. We will use search engine if it is 
necessary. 

– Eg: Coke Ck; Here, "Ck" refers to a 
creek. This is understood when multi-
ple such tweets point towards a creek. 

• 8. Similarly, for names that can refer to dif-
ferent or multiple locations, like “Bellaire” 
can either refer to Bellaire St or the Bellaire 
area, we always look up the tweet’s context to 
decide their location types. 

• 9. We annotate the mentioned location as the 
complete set of phrases that describes the de-
tail of the location including the core noun 
and all defning relative clauses. If a tweet 
mentioned the same location multiple times, 
they will be annotated as multiple location 
mentions. 

• 10. Ignore the location that only contains 
“Houston”, “Harris County”, or “Texas” 

• 11. Ignore any tweet outside Houston (like 
London, Dallas, etc) and all non-English 
tweets. 

• 12. We keep the exact words in tweet con-
text as the location name after extracting the 
entities. 
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