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Abstract
Embeddings, which compress information
in raw text into semantics-preserving low-
dimensional vectors, have been widely adopted
for their efficacy. However, recent research has
shown that embeddings can potentially leak pri-
vate information about sensitive attributes of
the text, and in some cases, can be inverted to
recover the original input text. To address these
growing privacy challenges, we propose a pri-
vatization mechanism for embeddings based
on homomorphic encryption, to prevent po-
tential leakage of any piece of information in
the process of text classification. In partic-
ular, our method performs text classification
on the encryption of embeddings from state-
of-the-art models like BERT, supported by an
efficient GPU implementation of CKKS en-
cryption scheme. We show that our method
offers encrypted protection of BERT embed-
dings, while largely preserving their utility on
downstream text classification tasks.

1 Introduction

In recent years, the increasingly wide adoption of
vector-based representations of text such as BERT,
eLMo, and GPT (Devlin et al., 2019; Peters et al.,
2018; Radford et al., 2019), has called attention
to the privacy ramifications of embedding mod-
els. For example, Coavoux et al. (2018); Li et al.
(2018) show that sensitive information such as the
authors’ gender and age can be partially recovered
from an embedded representation of text. Song
and Raghunathan (2020) report that BERT-based
sentence embeddings can be inverted to recover up
to 50%–70% of the input words.

Previously proposed solutions such as differen-
tial privacy based on perturbation/noise (Qu et al.,
2021), require manually controlling the noise in-
jected into embeddings, to control the privacy-
utility trade-off to a level suitable for each down-
stream task. In this work, we propose a privacy

*Equal contribution.
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solution based on Approximate Homomorphic En-
cryption, which is able to achieve little to no accu-
racy loss of BERT embeddings on text classifica-
tion1, while ensuring a desired level of encrypted
protection, i.e. 128-bit security.

Homomorphic Encryption (HE) is a crypto-
graphic primitive that serves computations over en-
crypted data without any decryption process. While
previous works have focused on homomorphic
computation where the inputs are numerical data,
in applications such as privacy-preserving machine
learning algorithms (Lauter, 2021), logistic regres-
sion (Kim et al., 2018), and neural network infer-
ence (Gilad-Bachrach et al., 2016), they have rarely
been applied to unstructured data such as text. Re-
cent works in this direction include Podschwadt
and Takabi (2020), who conduct sentiment clas-
sification over encrypted word embeddings using
RNN. However, they use a simple embedding layer
which maps words in a dictionary to real-valued
vectors, and model training is only supported on
plaintext. The most closely related work to ours is
PrivFT (Badawi et al., 2020), a homomorphic en-
cryption based method for privacy preserving text
classification built on fastText (Joulin et al., 2017).

We next describe our approach, focusing on our
distinctions from PrivFT:

• BERT Embedding-based Method: The princi-
ple behind PrivFT is to perform all neural network
computations in encrypted state. For this purpose,
it adopts fastText (Joulin et al., 2017), which takes
bag-of-words vectors as input, followed by a two-
layer network and an embedding layer. However,
PrivFT does not utilize pre-training; as a conse-
quence, the embedding matrix and classifer of
PrivFT must be updated from scratch, taking sev-
eral days to train on a single dataset.

We introduce a new method for text classifica-
tion on encrypted data. The crux is to operate
a simple downstream classifier on encryptions

1Code and data are available at: https://www.
github.com/mnskim/hebert
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of semantically rich vector representations (i.e.
BERT embeddings). By using rich input repre-
sentations, our method significantly outperforms
PrivFT, while the use of a simple downstream clas-
sifier on encrypted data makes our method much
more practical. Importantly, by leveraging pre-
trained embeddings from models such as BERT,
a state-of-the-art in many NLP tasks, our method
enables the training of a strong classifier in en-
crypted state within hours. As such, our method
is well positioned to take full advantage of the
recent trends in NLP, that rely on the language
understanding capability of increasingly larger
pre-trained language models (Brown et al., 2020;
Kaplan et al., 2020).

• Better GPU Implementation: As BERT rep-
resentations are real-valued vectors, we adopt
CKKS scheme, which is well-suited for dealing
with real numbers compared to other HE schemes.
We develop an efficient GPU implementation of
CKKS which greatly improves computation speed.
While PrivFT also provides a GPU implemen-
tation of CKKS, their implementation lacks the
bootstrapping operation of CKKS. Inevitably, this
limits the multiplicative depth of PrivFT, and it
makes the method less scalable. It also results in
the use of less secure CKKS parameters which
have roughly 80-bit security level. In contrast,
our GPU implementation includes the bootstrap-
ping operation, which allows unlimited number
of multiplications. This enables us to use a higher
degree polynomial approximation (which is key to
achieving a high downstream accuracy), and more
secure CKKS parameters (128-bit security level2).
Moreover, with practicality in mind, we improved
the implementation in terms of communication
cost. More precisely, we introduce a practical im-
plementation of CKKS to significantly reduce the
size of ciphertexts by more than 7.4× compared
to the rudimentary implementation.

We experimentally validate our approach on text
classification datasets, showing that it offers en-
crypted protection of embedding vectors, while
maintaining utility competitive to plaintext on
downstream classification tasks. Additionally, we
compare our method with PrivFT on homomorphic
training on encrypted data, showing it outperforms
PrivFT, with much improved training efficiency.

2An attacker needs > 2128 operations to recover the plain-
text from a ciphertext with the current best algorithm.

Figure 1: The Architecture of Text Classification.
The region shaded in light blue represents encrypted
state. The privatization inference takes the following
steps: 1) User generates sentence embedding. 2) User
encrypts embedding. 3) Logistic regression in encrypted
state is performed using encrypted embedding.

2 Method

We focus on the scenario in which the user directly
applies the privacy mechanism to the output embed-
dings from a neural text encoder, before passing it
on to a service provider for usage in a downstream
task. This is also referred to as a local privacy
setting (Qu et al., 2021).

The privatization procedure Mpriv in the local
privacy setting can be defined as follows:

Mpriv(x) = P (Femb(x)) (1)

where x is the raw text input, Femb is Sentence-
BERT (Reimers and Gurevych, 2019)3, a popular
pre-trained model for obtaining sentence embed-
dings, and P denotes a privacy mechanism. Next,
we securely classify the text datum, x, by feeding
its privatized embedding, Mpriv(x), to the down-
stream classification model. In this work, we adopt
a logistic regression model (in encrypted state) as
the downstream classifier. Figure 1 demonstrates
the entire privatization inference procedure, start-
ing with user’s embedding of raw text and encryp-
tion of embedding, to the operation of the classi-
fier in encrypted state and finally, the output of
encrypted classification results. We note that the
training process also can be performed in encrypted
state as we describe in Section 2.2.

2.1 Baseline: Local Differential Privacy
As a baseline for the local privacy setting, we imple-
ment noise-based local differential privacy (LDP).
Qu et al. (2021) introduced noise-based LDP for
single-token embeddings as privatization mecha-
nism P . In the case of single-token embeddings, lo-
cal differential privacy can be achieved with respect
to a chosen Euclidean distance by adding randomly

3https://www.sbert.net/
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Table 1: Size of Ciphertext/Training Time of En-
crypted Logistic Regression. We report the ciphertext
size and training time for the ciphertext model. Note that
plaintext and LDP classifiers have negligible training
and inference times.

Twitter (2 classes) SNIPS (7 classes; OvR)
ciphertext plaintext training time ciphertext plaintext training time

train
1.4
GB

183.7
MB

143.2
sec/epoch

11.4
GB

206.5
MB

1111.4
sec/epoch

sampled noise N drawn from an n-dimensional dis-
tribution with density p(N) ∝ exp(−η||N ||). That
is, the privacy mechanism is P (y) = y+N , where
y denotes an embedding vector. In our work, we
adopt the same mechanism to sentence embeddings.
Following Qu et al. (2021), the noise N ∈ Rn is
sampled as a pair (r, p), where r is the distance
from the origin and p is a point in Bn (the unit
hypersphere in Rn). r is sampled from Gamma dis-
tribution Γ(n, 1η ) and p is sampled uniformly over
Bn, and N is computed as N = rp.

2.2 HE Based Logistic Regression

We now describe our proposed privatization mech-
anism in detail. We adopt Eq.1, with the privacy
mechanism P (y) = H(y), where H is the homo-
morphic encryption. For downstream tasks, we
feed the privatized embedding Mpriv(x) to an en-
crypted logistic regression classifier. By utilizing
HE, an encrypted model and labels will be obtained
after the training and inference process. Only the
user who knows the secret key of HE can decrypt
the results and get either the classifier or labels for
the classification.

For the homomorphic encryption H , we adopt
the CKKS scheme (Cheon et al., 2017, 2018, 2019).
While the majority of HE schemes are being opti-
mized for computations over finite fields, CKKS
supports efficient computations over real numbers,
so it is advantageous in application to real world
data. We refer the readers to the paper (Cheon et al.,
2017) for full details of CKKS.

CKKS is a levelled homomorphic encryption
scheme, where the level of each ciphertext indi-
cates the remaining number of times we can oper-
ate.4 When we multiply two ciphertexts of level
l, the output ciphertext has a level of l − 1. Once
the level of a ciphertext becomes too low, we can
refresh its level higher by using the bootstrapping

4We remark that this level is not related to the security level
of CKKS. For example, in our implementation, all ciphertexts
have 128-bit security level regardless of the remaining number
of operations.

technique so that the number of possible operation
times increases. For ciphertexts ct1 and ct2 of com-
plex vector messages m1 and m2, we summarize
the operations of CKKS as follows:

• Add(ct1, ct2): output a ciphertext of m1 + m2.
• Mult(ct1, ct2): output a ciphertext of m1 ⊙ m2,

where ⊙ is the entry-wise multiplication.
• Bootstrap(ct1): output a ciphertext of m1 at

refreshed level.

While it is prevalent to encrypt data into the top
level, L, in this work, we encrypt the data into a
lower level, 3, to decrease the initial size of cipher-
texts. 5 Note that the ciphertexts are the privatized
embeddings, so their size determines the commu-
nication cost. As shown in Table 1, by using the
lower level ciphertexts, we reduce the initial size
of ciphertext by more than 7.4× in both Twitter
training dataset (10.8GB to 1.4GB), and SNIPS
training dataset (85.3GB to 11.4GB).

Finally, we feed the output of our privatization
mechanism to the next step, the training and in-
ference of an encrypted logistic regression classi-
fier. However, since CKKS supports only addi-
tion and multiplication while the logistic function
(1/(1 + exp(−x)) is a non-polynomial function,
we evaluate the logistic function via its polynomial
approximation. We use the minimax approximate
polynomial (Pachon and Trefethen, 2009) of de-
gree 15 on [−12, 12] that approximates the logistic
function within the error of 0.00614 on [−12, 12].

2.3 Datasets
To validate our approach in real-world scenarios,
we conduct experiments on tasks with realistic pri-
vacy concerns and utility needs. We select text
classification tasks on data in three settings:

• Tweets Hate Speech Detection (Sharma,
2018)6: Is a crowd-sourced dataset of Tweets
for binary classification, where labels de-
note a Tweet as containing hate speech, if
it has a racist or sexist sentiment associated
with it. We created random data splits for
train/validation/test, with 11,634/3,197/4,795
examples, respectively.

• SNIPS (Coucke et al., 2018): Is a dataset
of crowd-sourced queries collected from the

5We use L = 29 in our implementation.
6https://huggingface.co/datasets/

tweets_hate_speech_detection
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Table 2: Results of Logistic Regression Experiments. For SNIPS, macro average of F1 over classes is reported
and AUC denotes the average of of each class AUC. Bold and underline denote the ciphertext model and the noising
model most comparable to it (measured by absolute difference of metric), respectively.

Model Twitter SNIPS
(Thresh) Dev F1 Test F1 Dev AUC Test AUC Dev F1 Test F1 Dev AUC Test AUC

Noising
η = 50 0.5149 0.3809 0.3337 0.7975 0.7991 0.7291 0.6944 0.9190 0.9106
η = 75 0.5300 0.5226 0.4680 0.8847 0.8819 0.8818 0.8524 0.9689 0.9621
η = 100 0.4997 0.5744 0.5323 0.9098 0.9105 0.9279 0.8990 0.9826 0.9776
η = 125 0.4555 0.6107 0.5760 0.9226 0.9245 0.9422 0.9190 0.9931 0.9844
η = 150 0.4843 0.6224 0.5939 0.9234 0.9332 0.9547 0.9303 0.9953 0.9879
η = 175 0.5128 0.6404 0.6065 0.9300 0.9390 0.9616 0.9345 0.9955 0.9900
Ciphertext 0.8635 0.6596 0.6361 0.9481 0.9535 0.9729 0.9402 0.9974 0.9948
Plaintext 0.4987 0.6625 0.6439 0.9536 0.9575 0.9787 0.9520 0.9977 0.9959

Snips Voice Platform, distributed among 7
user intents. It has been widely adopted
in evaluating spoken language understanding
(SLU) systems. We use the same data splits
as Goo et al. (2018); Qin et al. (2019), with
13,084/700/700 examples, respectively.

• Youtube Spam Collection (Badawi et al.,
2020)7: Is a public data set collected for
spam research from UCI Machine Learning
Repository, where five datasets are composed
by 1,956 real messages extracted from five
videos. As train/validation/test splits are not
provided, we created our own random splits,
with 1,564/196/196 examples, respectively.

3 Experiments

3.1 Encrypted Sentence Classification

Once sentence embeddings are extracted from
Sentence-BERT for each input text, the vectors con-
sist of 768 numerical values of 32-bit floating point
from -1 to 1. Then, a logistic regression model
is trained for binary classification on the Twitter
dataset, and multiclass classification on the SNIPS
dataset, respectively.

To perform a fair comparison of the results of
each approach, we keep the same implementation
of logistic regression for plaintext, as that of the
ciphertext model. Multiclass classification is per-
formed as multiple separate binary logistic regres-
sion models for each class, and we take the argmax
from the combined results; One-vs-Rest (OvR). Ex-
periments for noise-based local differential privacy
on plaintext are conducted in the same way, using
the privacy mechanism described in Section 2.1.

7https://archive.ics.uci.edu/ml/
datasets/YouTube+Spam+Collection

Logistic regression parameters are optimized by
SGD with Nesterov momentum. For all models,
the best performing model and optimal threshold
for F1 was identified by validation set performance.

For plaintext experiments, the following hyper-
parameters were used for training: Learning rate
3.0, gamma 0.9, batch size 256 for Twitter dataset,
and learning rate 3.0, gamma 0.1, batch size 128
for SNIPS dataset. Both models were trained for 10
epochs. For the parameters of the CKKS scheme,
we selected the dimension N = 217 and set the
size of the maximum modulus qL to be 1540 bits.
We note that our CKKS parameters satisfy 128-
bit security level (Albrecht, 2017). For ciphertext
experiments, the following hyperparameters were
used for training: Learning rate 3.0, gamma 0.9,
batch size 512 for Twitter dataset, and learning rate
2.0, gamma 0.1, batch size 512 for SNIPS dataset.
Both models were trained for 10 epochs. Addition-
ally, we developed an efficient parallelized CKKS
implementation for bootstrapping with GPU accel-
eration for the encrypted logistic regression model.
For implementation, we use a dual-NVLink Nvidia
Quadro RTX6000 GPU with 24 GiBs of memory,
on a server with a Intel Xeon Gold 6242R CPU (80
core) and 125 GiBs of RAM.

3.2 Embedding Inversion
As a quantitative evaluation of inversion risk, we
adopt sentence embedding inversion. Introduced
in Song and Raghunathan (2020), embedding in-
version is an adversarial attack whose goal is to
recover the original text (its tokens) from its em-
bedding. In this work, we focus on black-box in-
version, where the adversary can only interact with
the model by querying it to obtain embeddings, and
is therefore more pertinent to real-world privacy
considerations.
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Table 3: Sentence Embedding Inversion. Black-box
inversion of sentence embeddings on SNIPS. We report
F1 for the task of recovering the input words from the
sentence embedding. Ciphertext denoted in bold.

Model (Thresh) Dev F1 Test F1
Noising
η = 50 0.8 0.2082 0.1905
η = 75 0.8 0.3078 0.2955
η = 100 0.9 0.3587 0.3276
η = 125 0.9 0.4164 0.3899
η = 150 0.9 0.4572 0.4337
η = 175 0.85 0.4919 0.4803
Ciphertext - - -
Plaintext 0.85 0.6705 0.6759

4 Results

We report the results of our logistic regression ex-
periments in Table 2. We compare our approach,
denoted as Ciphertext, with the Plaintext baseline,
as well as the noise-based LDP from Qu et al.
(2021), at different levels of the noise paramter
η (smaller indicates larger noise). Measured by
F1/AUC metric, our HE classifier achieves roughly
98.79%/99.58% and 98.76%/99.89% of the plain-
text baseline classifier’s performance on Twitter
and SNIPS test sets, respectively, indicating that
our HE of embeddings is able to preserve their
downstream utility to a significant degree. We
find that our model performs better at all noise
levels considered in Qu et al. (2021) (up to η =
175), nearly matching the plaintext model. On the
other hand, for noise-based LDP, we observe a clear
trade-off between increasing (via decreasing η) pri-
vacy protection and classification performance. As
can be seen with η = 50, 75 on both datasets, the
decrease in performance becomes greater as η be-
comes smaller and privacy protection is prioritized.
Moreover, at any reasonable level of η, noise-based
LDP cannot necessarily guarantee the complete
elimination of inversion risk.

We next perform sentence embedding inversion
experiments on SNIPS. In Table 3, we report the
results at varying levels of η, using black-box in-
version with a multi-label classification model as
in Qu et al. (2021). For plaintext, the degree of in-
version risk is consistent with black-box inversion
results from Song and Raghunathan (2020), who re-
port F1 of 59.76 for inverting BERT-based sentence
embeddings8, indicating a high degree of invertibil-
ity. Our results show that, in order to significantly

8Trained using Sentence-BERT objective on BookCorpus
and Wikipedia data.

Table 4: Comparison to PrivFT. We report wallclock
training time and test accuracy of binary spam classifi-
cation. Ciphertext model results are denoted in bold.

Model PrivFT Ciphertext Plaintext
(Num. GPUs) 8 1 -
Training time 60.48 hrs/epoch 23.04 sec/epoch -
(Thresh) - 0.53 0.51
Test accuracy 0.863 0.908 0.913

reduce inversion risk, noise-based LDP requires
low η settings, sacrificing downstream utility. In
contrast, our method eliminates conventional risk
of black-box inversion: Because all results of HE
inference remain encrypted, and cannot be revealed
without decryption with the user’s secret key, black-
box inversion cannot be applied. Therefore, 128-bit
security level of homomorphic encryption guaran-
tees practically complete protection from inversion,
while offering significantly improved performance.

Finally, to directly compare our model with
PrivFT, we conduct an experiment on the YTSC
dataset, following the methodology in Section 3.
We report the results in Table 4, along with PrivFT
results on the same dataset from Badawi et al.
(2020). We measure the test accuracy of the classi-
fier, as well as the wallclock time required to per-
form encrypted training. We find that our method
requires only 460.81 seconds with a single GPU
to achieve 90.8% test accuracy, whereas PrivFT
needs 5.04 days with 8 GPUs to obtain 86.3% test
accuracy. This amounts to roughly ×9,450 faster
training per epoch, while achieving higher accu-
racy and utilizing 1/8th the number of GPUs. These
results experimentally validate our expectation that
homomorphic encryption of pretrained embeddings
significantly improves performance and efficiency.

5 Conclusion

We propose a privatization mechanism based on
homomorphic encryption which, by leveraging
BERT pre-trained embeddings, enables efficient
training of an HE logistic regression classifier with
little to no loss of downstream utility. While our
method compares favorably to noise-based LDP
and PrivFT, we also note that there are some limita-
tions. Since HE based models require higher com-
putation costs compared to plaintext models, the
challenge remains to adopt more complex models,
such as neural networks, as downstream classifiers.
Nevertheless, the privacy benefits and efficiency
of our method makes it a suitable candidate for
scenarios with real-world privacy concerns.
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