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Abstract

Recent literature focuses on utilizing the entity
information in the sentence-level relation ex-
traction (RE), but this risks leaking superficial
and spurious clues of relations. As a result, RE
still suffers from unintended entity bias, i.e.,
the spurious correlation between entity men-
tions (names) and relations. Entity bias can
mislead the RE models to extract the relations
that do not exist in the text. To combat this
issue, some previous work masks the entity
mentions to prevent the RE models from over-
fitting entity mentions. However, this strategy
degrades the RE performance because it loses
the semantic information of entities. In this
paper, we propose the CORE (Counterfactual
Analysis based Relation Extraction) debi-
asing method that guides the RE models to
focus on the main effects of textual context
without losing the entity information. We first
construct a causal graph for RE, which mod-
els the dependencies between variables in RE
models. Then, we propose to conduct coun-
terfactual analysis on our causal graph to dis-
till and mitigate the entity bias, that captures
the causal effects of specific entity mentions
in each instance. Note that our CORE method
is model-agnostic to debias existing RE sys-
tems during inference without changing their
training processes. Extensive experimental re-
sults demonstrate that our CORE yields signif-
icant gains on both effectiveness and general-
ization for RE. The source code is provided at:
https://github.com/vanoracai/CoRE.

1 Introduction

Sentence-level relation extraction (RE) is an impor-
tant step to obtain a structural perception of unstruc-
tured text (Distiawan et al., 2019) by extracting
relations between entity mentions (names) from
the textual context. From human oracle, textual
context should be the main source of information
that determines the ground-truth relations between
entities. Consider a sentence “

:::::
Mary gave birth to

Jerry.”1. Even if we change the entity mentions
from ‘Jerry’ and ‘Mary’ to other people’s names,
the relation ‘parents’ still holds between the sub-
ject and object as described by the textual context

“gave birth to”.
Recently, some work aims to utilize entity men-

tions for RE (Yamada et al., 2020; Zhou and Chen,
2021), which, however, leak superficial and spuri-
ous clues about the relations (Zhang et al., 2018).
In our work, we observe that entity information
can lead to biased relation prediction by mislead-
ing RE models to extract relations that do not exist
in the text. Fig. 1 visualizes a relation prediction
from a state-of-the-art RE model (Alt et al., 2020)
(see more examples in Tab. 7). Although the con-
text describes no relation between the highlighted
entity pair, the model extracts the relation as “coun-
tries of residence”. Such an erroneous result can
come from the spurious correlation between entity
mentions and relations, or the entity bias in short.
For example, if the model sees the relation “coun-
tries of residence” many more times than other
relations when the object entity is Switzerland dur-
ing training, the model can associate this relation
with Switzerland during inference even though the
relation does not exist in the text.

To combat this issue, some work (Zhang et al.,
2017, 2018) proposes masking entities to prevent
the RE models from over-fitting entity mentions.
On the other hand, some other work (Peng et al.,
2020; Zhou and Chen, 2021) finds that this strategy
degrades the performance of RE because it loses
the semantic information of entities.

For both machines and humans, RE requires a
combined understanding of textual context and en-
tity mentions (Peng et al., 2020). Humans can
avoid the entity bias and make unbiased decisions
by correctly referring to the textual context that de-
scribes the relation. The underlying mechanism is

1We use underline and
::::
wavy

:::
line to denote subject and

object respectively by default.

3071

https://github.com/vanoracai/CoRE


Figure 1: (left) An example of RE produced by LUKE (Yamada et al., 2020). In the input sentence, the subject is in
blue and the object is in yellow. The ground-truth relation between the subject and object is “no relation”, since
there is not any relation reflected by the textual context. (right) Our proposed counterfactual analysis for RE, which
compares the original prediction (upper) with the counterfactual one (lower) to mitigate the entity bias.

causality-based (Van Hoeck et al., 2015): humans
identify the relations by pursuing the main causal
effect of the textual context instead of the side-
effect of entity mentions. In contrast, RE models
are usually likelihood-based: the prediction is anal-
ogous to looking up the entity mentions and textual
context in a huge likelihood table, interpolated by
training (Tang et al., 2020). In this paper, our idea
is to teach RE models to distinguish between the
effects from the textual context and entity mentions
through counterfactual analysis (Pearl, 2018):

Counterfactual analysis: If I had not seen the tex-
tual context, would I still extract the same relation?

The counterfactual analysis essentially gifts hu-
mans the hypothesizing abilities to make decisions
collectively based on the textual context and en-
tity mentions, as well as to introspect whether the
decision is deceived (see Fig. 1). Specifically, we
are essentially comparing the original instance with
a counterfactual instance, where only the textual
context is wiped out, while keeping the entity men-
tions untouched. By doing so, we can focus on the
main effects of the textual context without losing
the entity information.

In our work, we propose a novel model-
agnostic paradigm for debiasing RE, namely
CORE (Counterfactual analysis based Relation
Extraction), which adopts the counterfactual anal-
ysis to mitigate the spurious influence of the en-
tity mentions. Specifically, CORE does not touch
the training of RE models, i.e., it allows a model
to be exposed to biases on the original training
set. Then, we construct a causal graph for RE
to analyze the dependencies between variables in
RE models, which acts as a “roadmap” for captur-
ing the causal effects of textual context and entity

mentions. To rectify the test instances from the
potentially biased prediction, in inference, CORE
“imagines” the counterfactual counterparts on our
causal graph to distill the biases. Last but not least,
CORE performs a bias mitigation operation with
adaptive weights to produce a debiased decision
for RE.

We highlight that CORE is a flexible debiasing
method that is applicable to popular RE models
without changing their training processes. To eval-
uate the effectiveness of CORE, we perform ex-
tensive experiments on public benchmark datasets.
The results demonstrate that our proposed method
can significantly improve the effectiveness and gen-
eralization of the popular RE models by mitigating
the biases in an entity-aware manner.

2 Related Work

Sentence-level relation extraction. Early research
efforts (Nguyen and Grishman, 2015; Wang et al.,
2016; Zhang et al., 2017) train RE models from
scratch based on lexicon-level features. The recent
RE work fine-tunes pretrained language models
(PLMs; Devlin et al. 2019; Liu et al. 2019). For
example, K-Adapter (Wang et al., 2020) fixes the
parameters of the PLM and uses feature adapters
to infuse factual and linguistic knowledge. Re-
cent work focuses on utilizing the entity informa-
tion for RE (Zhou and Chen, 2021; Yamada et al.,
2020), but this leaks superficial and spurious clues
about the relations (Zhang et al., 2018). Despite
the biases in existing RE models, scarce work has
discussed the spurious correlation between entity
mentions and relations that causes such biases. Our
work investigates this issue and proposes CORE to
debias RE models for higher effectiveness.
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Figure 2: The causual graph of RE models.

Debiasing for Natural Language Processing. De-
biasing is a fundamental problem in machine learn-
ing (Torralba and Efros, 2011). For natural lan-
guage processing (NLP), some work performs data
re-sampling to prevent models from capturing the
unintended bias in training (Dixon et al., 2018;
Geng et al., 2007; Kang et al., 2016; Rayhan et al.,
2017; Nguyen et al., 2011). Alternatively, Wei and
Zou (2019) and Qian et al. (2020) develop data
augmentation for debiasing. Some recent work de-
biases the NLP models based on causal inference
(Qian et al., 2021; Nan et al., 2021). In RE, how to
deal with the entity bias is also an important prob-
lem. For example, PA-LSTM (Zhang et al., 2017)
masks the entity mentions with special tokens to
prevent RE models from over-fitting entity names,
which was also adopted by C-GCN (Zhang et al.,
2018) and SpanBERT (Joshi et al., 2020). However,
masking entities loses the semantic information of
entities and leads to performance degradation. Dif-
ferent from it, our CORE model tackles entity bi-
ases based on structured causal models. In this way,
we debias the RE models to focus on the textual
context without losing the entity information.

3 Methodology

Sentence-level relation extraction (RE) aims to ex-
tract the relation between a pair of entities men-
tioned from a sentence. We propose CORE (coun-
terfactual analysis based Relation Extraction) as
a model-agnostic technique to endow existing RE
models with unbiased decisions during inference.
CORE follows the regular training process of ex-
isting work regardless of the bias from the entity
mentions. During inference, CORE post-adjusts
the biased prediction according to the effects of the
bias. CORE can be flexibly incorporated into pop-
ular RE models to improve their effectiveness and
generalization based on the counterfactual analysis
without re-training the model.

In this section, we first formulate the existing
RE models in the form of a causal graph. Then, we
introduce our proposed bias distillation method to

distill the entity bias with our designed counterfac-
tual analysis. We conduct an empirical analysis to
analyze how heavily the existing RE models rely
on the entity mentions to make decisions. Finally,
we mitigate the distilled bias from the predictions
of RE models to improve their effectiveness.

3.1 Causality of Relation Extraction
In order to perform causal intervention, we first for-
mulate the causal graph (Pearl et al., 2016; Pearl
and Mackenzie, 2018), a.k.a., structural causal
model, for the RE models as Fig. 2, which sheds
light on how the textual context and entity mentions
affect the RE predictions. The causal graph is a
directed acyclic graph G = {V, E}, indicating how
a set of variables V interact with each other through
the causal relations behind the data and how vari-
ables obtain their values, e.g., (E,X) → Y in
Fig. 2. Before we conduct counterfactual analysis
that deliberately manipulates the values of nodes
and prunes the causal graph, we first revisit the
conventional RE systems in the graphical view.

The causal graph in Fig. 2 is applicable to a
variety of RE models and imposes no constraints on
the detailed implementations. Node X is the input
text. On the edge X → E, we obtain the spans
of subject and object entities as node E through
NER or human annotations (Zhang et al., 2017).
For example, in the aforementioned sentence X =
“

::::
Mary gave birth to Jerry.”, the entities are E =

[’Mary’, ’Jerry’].
On the edges (X,E) → Y , existing RE

models take different designs. For example, C-
GCN (Zhang et al., 2018) obtains the relation pre-
diction Y by encoding entity mentions E on the
pruned dependency tree of X using a graph convo-
lutional network. IRE (Zhou and Chen, 2021) uses
PLMs as the encoder for X , and marks the entity
information of E with special tokens to utilize the
entity information.

3.2 Bias Distillation
Based on our causal graph in Fig. 2, we diag-
nose how the entity bias affects inference. After
training, the causal dependencies among the vari-
ables are learned in terms of the model parame-
ters. The entity bias can mislead the models to
make wrong predictions while ignoring the actual
relation-describing textual context inX , i.e., biased
towards the causal dependency: E → Y .

The conventional biased prediction can only see
the output Y of the entire graph given a sentence
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Figure 3: The original causal graph of RE models (left)
together with its two counterfactual alternates for the
entity bias (middle) and label bias (right). The shading
indicates the mask of corresponding variables.

X , ignoring how specific entity mentions affect the
relation prediction. However, causal inference en-
courages us to think out of the black box. From the
graphical point of view, we are no longer required
to execute the entire causal graph as a whole. In
contrast, we can directly manipulate the nodes and
observe the output. The above operation is termed
intervention in causal inference, which we denote
as do(·). It wipes out all the incoming links of a
node and demands it to take a certain value.

We distill the entity bias by intervention and its
induced counterfactual. The counterfactual means
“counter to the facts”, and takes one step that further
assigns the hypothetical combination of values to
variables. For example, we can remove the input
textual context by masking X , but maintain E as
the original entity mentions, as if X still exists.

We will use the input text X as our control vari-
able where the intervention is conducted, aiming to
assess its effects, due to the fact that there would
not be any valid relation between entities in E if
the input text X is empty. We denote the output
logits Y after the intervention X = x̄ as follows:

Yx̄ = Y (do(X = x̄)). (1)

Following the above notation, the original predic-
tion Y , i.e., can be re-written as Yx.

To distill the entity bias, we conduct the interven-
tion do(X = x̄) on X , while keeping the variable
E as the original e, as if the original input text x
had existed. Specifically, we mask the tokens in
x to produce x̄ but keep the entity mentions e as
original, so that the textual context is removed and
the entity information is maintained. Accordingly,
the counterfactual prediction is denoted as Yx̄,e (see
Fig. 3). In this case, since the model cannot see any
textual context in the factual input x after the inter-
vention x̄, but still has access to the original entity
mentions e as the inputs, the prediction Yx̄,e purely
reflects the influence from e. In other words, Yx̄,e
refers to the output, i.e., a probability distribution
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Figure 4: Hit@k (y-axis) is the fraction of the test
instances, that have the original relation prediction
argmaxc Yx[c] ranked in the top k most confident re-
lations of the counterfactual prediction Yx̄,e. We re-
port Hit@k of the model IRERoBERTa on the test in-
stances when the original relation prediction is title,
employee of, or origin.

or a logit vector, where only the entity mentions
are given as the input without textual context.

To investigate how heavily the state-of-the-art
models rely on the entity mentions for RE, we
conduct an empirical study to compare the orig-
inal prediction Yx and the counterfactual one Yx̄,e.
Specifically, we calculate the fraction of the test
instances (y-axis) that have the original relation
prediction argmaxc Yx[c] ranked in the top k most
confident relations of the counterfactual prediction
Yx̄,e. This fraction is termed as Hit@k.

We present Hit@k for IRERoBERTa (Zhou and
Chen, 2021), a state-of-the-art RE model, in Fig. 4
on the test instances when the original relation
prediction is title, employee of, or origin. Higher
Hit@1 means that for more instances, the model
infers the same relation given only the entity men-
tions no matter whether the textual context is given,
which imply stronger causal effects from the entity
mentions Yx̄,e, i.e., the models rely more heavily
on the entity mentions for RE.

We observe that when k = 1, the Hit@1 is more
than 50%, which implies that the model typically
extracts the same relations even without textual
context on more than a half of the instances. For
a larger k, the Hit@k increases significantly and
reaches more than 80% for k ≥ 2. These obser-
vations imply a promising but embarrassing result:
the state-of-the-art model relies on the entity bias
for RE on many instances. The entity bias reflected
by Yx̄,e can lead to the wrong extraction if the rela-
tion implied by the entity mentions does not exist
in the input text. This poses a challenge to the
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generalization of RE models, as validated by our
experimental results (§4.3).

In addition to Yx̄,e that reflects the causal effects
of entity mentions, there is another kind of bias not
conditioned on the entity mentions e, but reflecting
the general bias in the whole dataset, which is Yx̄.
Yx̄ corresponds to the counterfactual inputs where
both textual context and entity mentions are re-
moved. In this case, since the model cannot access
any information from the input after this removal,
Yx̄ naturally reflects the label bias that exists in the
model from the biased training. The causal graphic
views of the original prediction Yx, the counterfac-
tual Yx̄,e for the entity bias, and Yx̄ for the label
bias are visualized in Fig. 3.

3.3 Bias Mitigation

As we have discussed in §1, instead of the static
likelihood that tends to be biased, the unbiased re-
lation prediction lies in the difference between the
observed outcome Yx and its counterfactual predic-
tions Yx̄,e, Yx̄. The latter two are the biases that we
want to mitigate from the relation prediction.

Intuitively, the unbiased prediction that we seek
is the linguistic stimuli from blank to the observed
textual context with specific relation descriptions,
but not merely from the entity bias. The context-
specific clues of the relations are key to the in-
formative unbiased predictions, because even if
the overall prediction is biased towards the rela-
tion “schools attended” due to the object entity
like “Duke University”, the textual context “work
at” indicates the relation as “employee of” rather
than “schools attended”.

Our final goal is to use the direct effect of the
textual context from X to Y for debiased predic-
tion, mitigating (denoted as \) the label bias and the
entity bias from the prediction: Yx \Yx̄,e \Yx̄, so
as to block the spread of the biases from training to
inference. The debiased prediction via bias mitiga-
tion can be formulated via the conceptually simple
but empirically effective element-wise subtraction
operation:

Yfinal = Yx − λ1Yx̄,e − λ2Yx̄, (2)

where λ1 and λ2 are two independent hyper-
parameters balancing the terms for mitigating en-
tity and label biases respectively. Note that the bias
mitigation in Eq. 2 for the entity and label biases
correspond to Total Direct Effect (TDE) and Total
Effect (TE) in causal inference (Tang et al., 2020;

Dataset #Train #Dev #Test #Classes

TACRED 68,124 22,631 15509 42
SemEval 6,507 1,493 2,717 19
Re-TACRED 58,465 19,584 13418 40
TACRED-Revisit 68,124 22,631 15509 42

Table 1: Statistics of datasets.

VanderWeele, 2015; Pearl, 2009) respectively. We
adaptively set the values of λ1 and λ2 for different
datasets based on the grid beam search (Hokamp
and Liu, 2017) in a scoped two dimensional space:

λ⋆1, λ
⋆
2 = argmax

λ1,λ2

ψ(λ1, λ2) λ1, λ2 ∈ [a, b], (3)

where ψ is a metric function (e.g., F1 scores) for
evaluation, a, b are the boundaries of the search
range. We search the values of λ1, λ2 once on
the validation set, and use the fixed values for in-
ference on all testing instances. Since the entity
types can restrict the candidate relations (Lyu and
Chen, 2021), we use the entity type information,
if available, to restrict the candidate relations for
inference, which strengthens the effects of entity
types for relation extraction.

Overall, the proposed CORE replaces the con-
ventional one-time prediction with Yfinal to produce
the debiased relation predictions, which essentially
“thinks” twice: one for the original observation Yx,
the other for hypothesized Yx̄, Yx̄,e.

4 Experiments

In this section, we evaluate the performance of our
CORE methods when applied to RE models. We
compare our methods against a variety of strong
baselines on the task of sentence-level RE. Our
experimental settings closely follow those of the
previous work (Zhang et al., 2017; Zhou and Chen,
2021; Nan et al., 2021) to ensure a fair comparison.

4.1 Experimental Settings

Datasets. We use four widely-used RE bench-
marks: TACRED (Zhang et al., 2017), SemEval
(Hendrickx et al., 2019), TACRED-Revisit (Alt
et al., 2020), and Re-TACRED (Stoica et al., 2021)
for evaluation. TACRED contains over 106k men-
tion pairs drawn from the yearly TAC KBP chal-
lenge. (Alt et al., 2020) relabeled the development
and test sets of TACRED. Re-TACRED is a further
relabeled version of TACRED after refining its la-
bel definitions. The statistics of these datasets are
shown in Tab. 1.
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Method TACRED TACRED-Revisit Re-TACRED SemEval

C-SGC (Wu et al., 2019) 52.1 62.8 69.8 71.3
SpanBERT (Joshi et al., 2020) 55.7 65.1 74.1 74.9
CP (Peng et al., 2020) 56.8 67.1 78.1 79.6
RECENT (Lyu and Chen, 2021) 63.3 70.5 81.1 74.6
KnowPrompt (Chen et al., 2021) 57.6 68.7 79.0 81.8
IREBERT (Zhou and Chen, 2021) 59.2 68.4 78.6 79.1

LUKE (Yamada et al., 2020) 58.8 67.5 80.2 82.1

LUKE + Resample (Burnaev et al., 2015) 59.3 68.2 80.5 82.5
LUKE + Focal (Lin et al., 2017) 59.1 67.7 80.3 82.4
LUKE + CFIE (Nan et al., 2021) 59.8 68.0 80.4 82.2
LUKE + Entity Mask (Zhang et al., 2017) 57.9 67.0 79.5 82.0
LUKE + CORE 61.7 70.2 81.6 83.6

IRERoBERTa (Zhou and Chen, 2021) 63.1 70.6 81.5 81.4

IRERoBERTa + Resample (Burnaev et al., 2015) 63.3 71.0 81.9 81.6
IRERoBERTa + Focal (Lin et al., 2017) 62.9 70.7 81.2 81.1
IRERoBERTa + CFIE (Nan et al., 2021) 63.3 70.9 81.6 81.7
IRERoBERTa + Entity Mask (Zhang et al., 2017) 61.4 69.3 79.6 81.2
IRERoBERTa + CORE 64.4 71.8 82.8 82.3

Table 2: F1-macro scores (%) of RE on the test sets of TACRED, TACRED-Revisit, Re-TACRED, and SemEval.
The best results in each column are highlighted in bold font.

We use the widely-used F1-macro score as the
main evaluation metric (Nan et al., 2021), which
is the balanced harmonic mean of precision and re-
call, as well as F1-micro for a more comprehensive
evaluation. F1-macro is more suitable than F1-
micro to reflect the extent of biases, especially for
the highly-skewed cases, since F1-macro is evenly
influenced by the performance in each category,
i.e. category-sensitive, but F1-micro simply gives
equal weights to all instances (Kim et al., 2019).

Compared methods. We take the following RE
models into comparison. (1) C-SGC (Wu et al.,
2019) simplifies GCN, and combines it with LSTM,
leading to improved performance over each method
alone. (2) SpanBERT (Joshi et al., 2020) extends
BERT by introducing a new pretraining objective
of continuous span prediction. (3) CP (Peng et al.,
2020) is an entity-masked contrastive pre-training
framework for RE. (4) RECENT (Lyu and Chen,
2021) restricts the candidate relations based on the
entity types. (5) KnowPrompt (Chen et al., 2021)
is Knowledge-aware Prompt-tuning approach. (6)
LUKE (Yamada et al., 2020) pretrains the language
model on both large text corpora and knowledge
graphs and further proposes an entity-aware self-
attention mechanism. (7) IRE (Zhou and Chen,
2021) proposes an improved entity representation
technique in the data preprocessing.

Among the above RE models, we apply our
CORE on LUKE and IRE. To demonstrate the ef-
fectiveness of debiased inference, we also compare

with the following debiasing techniques that are
applied to the same two RE models. (1) Focal (Lin
et al., 2017) adaptively reweights the losses of dif-
ferent instances so as to focus on the hard ones. (2)
Resample (Burnaev et al., 2015) up-samples rare
categories by the inversed sample fraction during
training. (3) Entity Mask (Zhang et al., 2017):
masks the entity mentions with special tokens to
reduce the over-fitting on entities. (4) CFIE (Nan
et al., 2021) is also a causal inference method. In
contrast to our method, CFIE strengthens the causal
effects of entities by masking entity-centric infor-
mation in the counterfactual predictions.

Model configuration. For the hyper-parameters
of the considered baseline methods, e.g., the batch
size, the number of hidden units, the optimizer, and
the learning rate, we set them as suggested by their
authors. For the hyper-parameters of our CORE
method, we set the search range of the hypermeters
in Eq. 3 as [−2, 2] and the search step 0.1. For all
experiments, we report the median F1 scores of
five runs of training using different random seeds.

4.2 Overall Performance

We implement our CORE with LUKE and
IRERoBERTa. Tab. 3 reports the RE results on the
TACRED, TACRED-Revisit, Re-TACRED, and Se-
mEval datasets. Our CORE method improves the
F1-macro scores of LUKE by 4.9% on TACRED,
4.0% on TACRED-Revisit, 1.7% on Re-TACRED,
and 1.7 on SemEval, and improves IRERoBERTa
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Method TACRED TACRED-Revisit Re-TACRED SemEval

LUKE (Yamada et al., 2020) 72.7 80.6 90.3 87.8

LUKE + Resample (Burnaev et al., 2015) 73.1 80.9 90.5 87.9
LUKE + Focal (Lin et al., 2017) 72.9 80.7 90.4 87.6
LUKE + CFIE (Nan et al., 2021) 73.3 80.8 90.5 88.0
LUKE + Entity Mask (Zhang et al., 2017) 72.3 80.4 90.1 87.5
LUKE + CORE 74.6 81.4 90.9 88.7

Table 3: F1-micro scores (%) of RE on the test sets of TACRED, TACRED-Revisit, Re-TACRED, and SemEval.
The best results in each column are highlighted in bold font.

Method TACRED Re-TACRED

LUKE (Yamada et al., 2020) 51.9 65.3

w/ Resample (Burnaev et al., 2015) 53.2 66.7
w/ Focal (Lin et al., 2017) 52.4 65.9
w/ CFIE (Nan et al., 2021) 52.1 65.6
w/ Entity Mask (Zhang et al., 2017) 54.5 67.1
w/ CORE (ours) 69.3 83.1

IRERoBERTa (Zhou and Chen, 2021) 56.4 68.1

w/ Resample (Burnaev et al., 2015) 58.1 70.3
w/ Focal (Lin et al., 2017) 56.8 68.7
w/ CFIE (Nan et al., 2021) 57.1 68.4
w/ Entity Mask (Zhang et al., 2017) 57.3 68.9
w/ CORE (ours) 73.6 85.4

Table 4: F1-macro scores (%) of RE on the challenging
test sets of TACRED and Re-TACRED, in which the
relations implied by the entity mentions do not exist in
the textual context. ‘w’ denotes ‘with’. The best results
in each column are highlighted in bold font.

by 1.2% on TACRED, 1.4% on TACRED-Revisit,
0.9% on Re-TACRED, and 1.8% on SemEval. As
a result, our CORE achieves substantial improve-
ments for LUKE and IRERoBERTa, and enables
them to outperform the baseline methods. Addi-
tionally, we report the experimental results in terms
of F1-micro scores in Tab. 3, showing the improve-
ment from CORE on LUKE by 2.6% on TACRED,
1.0% on TACRED-Revisit, 0.7% on Re-TACRED,
and 1.0% on SemEval. Overall, our CORE method
improves the effectiveness of RE significantly in
terms of both F1-macro and F1-micro scores. The
above experimental results validate the effective-
ness and generalization of our proposed method.

Among the baseline debiasing methods, Resam-
ple, Focal, CFIE cannot distill the entity bias in
an entity-aware manner like ours. Entity Mask
leads to the loss of information, while our CORE
enables RE models to focus on the main effects
of textual context without losing the entity infor-
mation. The superiority of CORE highlights the
importance of the causal inference based entity bias
analysis for debiasing RE, which compares tradi-
tional likelihood-based predictions and hypothe-

sized counterfactual ones to produce debiased pre-
dictions. Besides, the proposed CORE works in
inference and thus can be employed on the pre-
vious already-trained models. In this way, CORE
serves as a model-agnostic approach to enhance RE
models without changing their training process.

4.3 Analysis on Entity Bias

Some work argues that RE models may rely on
the entity mentions to make relation predictions
instead of the textual context (Zhang et al., 2018;
Joshi et al., 2020). The empirical results in Fig. 3
validates this argument. Regardless of whether
the textual context exists or not, the baseline RE
model makes the same predictions given only entity
mentions on many instances. The entity bias can
mislead the RE models to make wrong predictions
when the relation implied by the entity mentions
does not exist in the textual context.

To evaluate whether RE models can generalize
well to particularly challenging instances where
relations implied by the entity mentions do not
exist in the textual context, we propose a filtered
evaluation setting, where we keep the test instances
having the entity bias different from their ground-
truth relations. In this setting, RE models cannot
overly rely on the entity mentions for RE, since the
entity mentions no longer provide the superficial
and spurious clues for the ground-truth relations.

We present the evaluation results on the filtered
test set in Tab. 4. Our CORE method consis-
tently and substantially improves the effectiveness
of LUKE and IRE on the filtered test set and outper-
forms the baseline methods by a significant margin,
which validates the effectiveness and generaliza-
tion of our method to mitigate the entity bias in the
challenging cases.

4.4 Evaluation on Fairness

According to Sweeney and Najafian (2019), the
more imbalanced/skewed a prediction produced by
a trained model is, the more unfair opportunities it
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Method TACRED TACRED-Revisit Re-TACRED SemEval

IRERoBERTa (Zhou and Chen, 2021) 61.2 59.3 57.5 54.1

IRERoBERTa + Resample (Burnaev et al., 2015) 60.5 58.4 56.8 53.5
IRERoBERTa + Focal (Lin et al., 2017) 60.9 58.9 57.1 53.7
IRERoBERTa + CFIE (Nan et al., 2021) 60.1 57.8 56.2 52.9
IRERoBERTa + Entity Mask (Zhang et al., 2017) 61.5 60.1 57.3 54.2
IRERoBERTa + CORE 57.3 55.6 54.3 50.8

Table 5: Experimental results (unfairness; %) of Relation Extraction on the test sets of TACRED, TACRED-Revisit,
Re-TACRED, and SemEval (lower is better). The best results in each column are highlighted in bold font.

LUKE + CORE 61.7 ∆ IRE + CORE 64.4 ∆

w/o CORE 58.8 2.9↓ w/o CORE 63.1 1.3↓
w/o EBM 59.5 2.2↓ w/o EBM 63.4 1.0↓
w/o LBM 60.8 0.9↓ w/o LBM 63.9 0.5↓
w/o BSH 60.1 1.6 ↓ w/o BSH 63.8 0.6↓

Table 6: Ablation study based on the TACRED dataset.
The analyzed model components include entity bias mit-
igation operation (EBM), the label bias mitigation oper-
ation (LBM) and the beam search for hyper-parameters
(BSH). ‘w/o’ denotes ‘without’. ↓ denotes performance
drop in terms of F1-macro scores.

gives over predefined categories, and the more un-
fairly discriminative the trained model is. We thus
follow previous work (Xiang et al., 2020; Sweeney
and Najafian, 2019; Qian et al., 2021) to use the
metric – imbalance divergence – to evaluate how
imbalanced/skewed/unfair a prediction P is :

D(P,U) = JS(P∥U), (4)

where D(·) is defined as the distance between P
and the uniform distribution U . Specifically, we
use the JS divergence as the distance metric since
it is symmetric (i.e., JS(P∥U) = JS(U∥P )) and
strictly scoped (Fuglede and Topsoe, 2004). Based
on this, to evaluate the entity bias of a trained RE
model, we average the following relative entity
mention imbalance (REI) measure over all the test-
ing instances containing whichever entity mentions:

REI =
1

E
∑

e∈E
D(P ({x|e ∈ x∧x ∈ D}), U), (5)

where x is an input instance, D is the testing set,
P (x) is the prediction output, e is an entity men-
tion, and E is the corpus of entity mentions. This
metric captures the distance between all predictions
and the fair uniform distribution U .

We follow the experimental settings in §4.2 and
report the fairness test in Tab. 5. The results
show that our CORE method reduces the imbal-
ance metrics (lower is better) when employed on

IRERoBERTa significantly and consistently, indicat-
ing that it is helpful to mitigate the entity bias.

4.5 Ablation and Case Study

We conduct ablation studies on CORE to empir-
ically examine the contribution of its main tech-
nical components. including the entity bias miti-
gation operation (EBM), the label bias mitigation
operation (LBM) and the beam search for hyper-
parameters (BSH).

We report the experimental results of the abla-
tion study in Tab. 6. We observe that removing
our CORE causes serious performance degrada-
tion. This provides evidence that using our coun-
terfactual framework for RE can explicitly miti-
gate biases to generalize better on unseen exam-
ples. Moreover, we observe that mitigating the two
types of biases is consistently helpful for RE. The
key reason is that the distilled label bias provides
an instance-agnostic offset and the distilled entity
bias provides an entity-aware one in the predic-
tion space, which makes the RE models focus on
extracting relations on the textual context without
losing the entity information. Meanwhile, the beam
search for hyper-parameters effectively finds two
dynamic scaling factors to amplify or shrink two
biases, making the biases be mitigated properly and
adaptively.

Tab. 7 gives a qualitative comparison example be-
tween CORE and IRERoBERTa on TACRED. The
results show that the state-of-the-art RE model
IRERoBERTa returns the relations that do not exist
in the textual context between the considered enti-
ties. For example, given “Bibi drew the ire of fellow
farmhands after a dispute in June 2009, when they
refused to drink water she collected and she refused
their demands that she convert to

:::::
Islam.”, there is

no relation between Bibi and Islam exists in the
text but the baseline model believes that the rela-
tion between them is “religion”. The counterfactual
prediction can account for this disappointing result,
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Input sentence Original Debiased Counterfactual

More than 1,100 miles (1,770 kilometers) away,
Alan Gross passes his days in a

::::::
Cuban military hospital,

watching baseball on a small television or jamming with
his jailers on a stringed instrument they gave him.

origin ✗ countries of residence ✓ origin

He said that according to his investigation, Bibi drew the
ire of fellow farmhands after a dispute in June 2009, when
they refused to drink water she collected and she refused
their demands that she convert to

:::::
Islam.

religion ✗ no relation ✓ religion

ShopperTrak also estimates foot traffic in the
::::
U.S. was

11.2 percent below what it would have been Sunday if the
blizzard had not occurred and 13.9 percent below what it
could have been Monday.

country of headquarters ✗ no relation ✓ country of headquarters

Table 7: A case study for IRERoBERTa and our CORE on the relation extraction dataset TACRED. Underlines and

::::
wavy

:::::
lines highlight the subject and object entities respectively. We report the original prediction, the corresponding

counterfactual prediction and the debiased prediction.

where given only the entity mentions Bibi and Is-
lam, the RE model returns the relation “religion”
without any textual context. This implies that the
model makes the prediction for the original input
relying on the entity mentions, which leads to the
wrong RE prediction. Our CORE method distills
the biases through counterfactual predictions and
mitigates the biases to distinguish the main effects
from the textual context, which leads to the correct
predictions as shown in Tab. 7.

Last but not least, we conduct experiments on the
fairness of different models, and present respective
results in the appendix.

5 Conclusion

We have designed a counterfactual analysis based
method named CORE to debias RE. We distill the
entity bias and mitigate the distilled biases with the
help of our causal graph for RE, which is a road
map for analyzing the RE models. Based on the
counterfactual analysis, we can analyze the side-
effects of entity mentions in the RE and debias the
models in an entity-aware manner. Extensive exper-
iments demonstrate that our methods can improve
the effectiveness and generalization of RE. Future
work includes analyzing the effects of other factors
that can cause bias in natural language processing.
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