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Abstract

In document-level event argument extraction,
an argument is likely to appear multiple times
in different expressions in the document. The
redundancy of arguments underlying multiple
sentences is beneficial but is often overlooked.
In addition, in event argument extraction, most
entities are regarded as class “others", i.e. Uni-
versum class, which is defined as a collection of
samples that do not belong to any class of inter-
est. Universum class is composed of heteroge-
neous entities without typical common features.
Classifiers trained by cross entropy loss could
easily misclassify the Universum class because
of their open decision boundary. In this paper,
to make use of redundant event information un-
derlying a document, we build an entity corefer-
ence graph with the graph2token module to pro-
duce a comprehensive and coreference-aware
representation for every entity and then build
an entity summary graph to merge the multiple
extraction results. To better classify Universum
class, we propose a new loss function to build
classifiers with closed boundaries. Experimen-
tal results show that our model outperforms the
previous state-of-the-art models by 3.35% in
F1-score.

1 Introduction

Event argument extraction (EAE) is a crucial sub-
task of event extraction (EE), aiming to identify
the arguments of a given event and recognize the
specific roles they play. Previous works are mostly
focused on sentence-level EE (Liao and Grishman,
2010; Nguyen et al., 2016; Liu et al., 2018; Yang
et al., 2019b; Du and Cardie, 2020b; Wei et al.,
2021; Wang et al., 2021; Lyu et al., 2021). How-
ever, events are often described in the form of doc-
uments in the real world. Document-level event ex-
traction has received consideration in recent years.

Research on document-level event extraction
has been focused on tackling challenges such as
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Figure 1: An example of redundant event information
in the document-level event argument extraction.

arguments-scattering and multiple-events (Zheng
et al., 2019; Du and Cardie, 2020a; Du et al., 2021;
Lou et al., 2021; Li et al., 2021; Huang and Peng,
2021; Xu et al., 2021; Yang et al., 2021; Ahmad
et al., 2021; Ebner et al., 2020). The benefit of re-
dundant event information in a document is largely
neglected. We believe that the redundant event in-
formation in a document can be used to improve
event extraction, as illustrated in the example in
Figure 1. The upper part of Figure 1 shows seven
simplified sentences selected from a document in
the MUC-4 dataset. All entities marked in blue are
the same entity "soldiers", which appears in differ-
ent expressions in different sentences. For ease of
description, we call it entity S. We can observe
from Figure 1 that: 1) The argument information in
the document is redundant since entity S appears
in the article multiple times as an argument and we
can successfully extract the argument by correctly
recognizing any of these occurrences. This prop-
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Figure 2: A simplified illustration of closed boundary
loss. Blue dots represent target samples, orange dots
represent Universum samples. The red dotted line repre-
sents cross entropy loss, the purple solid line represents
proposed closed boundary loss.

erty can be potentially used to improve the robust-
ness of the model. 2) The difficulty of extracting
the entity S as an argument in its different occur-
rences is different. Extracting entity S in sentence
1 and sentence 3 is much easier than extracting it
from sentence 2. Hence, by utilizing the redundant
event information of the document, we can extract
arguments from relatively simple positions and re-
duce the difficulty of the task. 3) An entity may
appear multiple times in the document, directly av-
eraging them as the entity’s feature representation
(Xu et al., 2021) may introduce noise. For exam-
ple, although entity S is an event argument in the
document, its occurrences in s4, s5 and s6 should
not be recognized as a correct pattern to identify
the event argument. 4) The redundant argument
information can result in redundant extraction re-
sults, as shown in the bottom table in Figure 1. The
three entities extracted as perpetrator individual
need to be merged into one. However, the extracted
physical target "houses" and "library" are different
entities and should not be merged. Therefore, the
use of redundant event information underlying a
document is not straightforward, a sophisticated
algorithm for merging multiple extraction results
is needed.

Extraction of arguments can be solved as an en-
tity classification problem by treating entities as
argument candidates (Zheng et al., 2019; Xu et al.,
2021; Yang et al., 2021). In document-level event
argument extraction, only a subset of the entities
in a document are arguments, while the majority
of entities are regarded as class “others” or “nei-
ther”(neither of the target classes). This kind of
data was first studied by Weston et al. (2006) un-
der the name Universum. The Universum data are

usually very diverse and do not have typical com-
mon features. In addition, Universum data is much
more than the target class data, exhibiting a severe
class imbalance problem. Figure 2 demonstrates a
simplified distribution of data samples in document-
level event argument extraction. The blue dots rep-
resent argument entities, the orange dots represent
a large number of Universum class entities. Since
the samples in the Universum class do not have
typical common features, they tend to scatter in
the feature space. This characteristic of the Univer-
sum data is largely overlooked in the information
extraction community. Universum data is simply
considered as another class “others”, without any
special consideration in the classifier design. Cross
entropy loss is usually employed in classifier train-
ing (Zheng et al., 2019; Huang and Peng, 2021; Xu
et al., 2021; Yang et al., 2021). However, classifiers
trained by cross entropy loss have open decision
boundaries, and hence some Universum samples,
such as the orange dot on the upper right of the
figure, could be easily misclassified. We think a
classifier with a closed decision boundary could
better deal with the Universum class in document-
level event argument extraction, as illustrated by
the purple line in Figure 2.

The contribution of this work is three-fold.
Firstly, it is the pioneering work to leverage re-
dundant event information in documents for event
extraction. We propose the entity coreference
graph with graph2token module and entity sum-
mary graph to leverage the redundant event infor-
mation. Experimental results show that redundant
information helps improve recall significantly. Sec-
ondly, we analyze the issue of Universum data in
document-level event argument extraction and the
problem of classifiers trained by cross entropy loss,
and propose a closed boundary loss to address the
problems. Finally, our model consistently outper-
forms the latest baseline models in F1-score and
achieves state-of-the-art performance. Compared
to the three baseline models, our proposed model
improves the absolute F1-score by 3.35%, 5.27%,
and 6.45%, respectively.

2 Related Work

2.1 Event Argument Extraction

Most previous event argument extraction models
make predictions at sentence-level (Nguyen et al.,
2016; Liu et al., 2018; Yang et al., 2019b; Du
and Cardie, 2020b; Wei et al., 2021; Wang et al.,
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2021; Dutta et al., 2021). Considering that the real
world events are often distributed across sentences,
document-level event extraction has attracted more
attention recently. Zheng et al. (2019) propose
the Doc2EDAG model to overcome the argument
scattering problem. Du and Cardie (2020a) first
argue the importance of document-level extraction
and adopt a sequence model for document-level
event extraction. Lou et al. (2021) investigate a
novel bidirectional decoder to overcome the long-
range forgetting problem. Li et al. (2021) formu-
late the document-level event extraction model as
conditional generation based on templates. Huang
and Peng (2021) attach importance to event coref-
erence and entity coreference in document-level
event extraction tasks. Xu et al. (2021) build a
heterogeneous graph with the Tracker module to
deal with problems of event scattering and multi-
ple events. Yang et al. (2021) adopt parallel pre-
diction networks to extract events parallelly from
document-level representations. However, none
of these works pay attention to the characteris-
tic of information redundancy in the document,
which we believe is a unique and beneficial prop-
erty for document-level event argument extraction.
In addition, to our knowledge, closed boundary
classification has never been adopted in event ex-
traction. Classification-based event argument ex-
traction models (Huang and Peng, 2021; Xu et al.,
2021; Yang et al., 2021) all employ cross entropy
loss for classifier training, without considering the
characteristics of Universum class: scattered dis-
tribution in the feature space due to heterogeneity
and diversity of the samples in this class.

2.2 Closed Boundary Loss

We found that a classifier trained by cross entropy
could easily misclassify entities in the class “oth-
ers", i.e. Universum class. We found the root cause
of the problem is the open decision boundary of
the classifier. To address this problem, we propose
a novel closed boundary loss for classifier training.

Research works in Universum usually employ
additional unlabeled Universum data to provide
prior knowledge for the task, such as Universum
support vector machine (SVM) (Weston et al.,
2006; Qi et al., 2012; Richhariya and Tanveer,
2020), and semi-supervised learning (Liu et al.,
2015; Xiao et al., 2021). However, the SVM-based
methods above are developed for structured data
and are hard to integrate with deep neural network-

based representation learning to form an end-to-end
training procedure for natural language processing
tasks. One possible solution is to use a deep neural
network to learn representations first, and then feed
the representations learned to the Universum SVM
classifiers. But the disadvantage of this two-step
procedure is that the classification result cannot be
back-propagated to representation learning. It is
desired that the closed boundary classifier could be
integrated with deep neural network-based repre-
sentation learning to form end-to-end training for
optimal performance.

Closed boundary classification methods are also
developed in anomaly detection and open set recog-
nition, such as deep one-class learning (Ruff et al.,
2018; Defard et al., 2021), auto-encoder based
anomaly detection (Ionescu et al., 2019), Open-
Max layer for open set recognition (Bendale and
Boult, 2016). However, these methods cannot use
the information in outlier samples due to task set-
ting.

A closed boundary classifier works best in fea-
ture space with compact class distribution. In the
literature, some loss functions have been proposed
to generate such feature space such as Deep SVDD
(Ruff et al., 2018), contrastive loss (Hadsell et al.,
2006), and ii-loss (Hassen and Chan, 2020). How-
ever, Deep SVDD only minimizes the intra-class
distance and cannot maximize the inter-class dis-
tance. Contrastive loss and ii-loss need to be com-
bined with cross entropy loss to classify samples.
But cross entropy loss generates open decision
boundaries for the classifier.

In this paper, we propose a new loss function that
could train a classifier with a closed decision bound-
ary. In addition, it can be directly integrated with
representation learning layers in a neural network
to form an end-to-end training procedure to pro-
duce a feature space with minimum intra-class dif-
ference and maximum inter-class difference, which
in turn leads to improved performance.

3 Method

As shown in Figure 3, our model consists of four
main components: context encoding module (Sec
3.1), entity coreference graph (Sec 3.2), closed
boundary loss (Sec. 3.3), and entity summary graph
(Sec. 3.4), which are illustrated in this section.
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Figure 3: The overall model structure. Blue dots represent entity nodes, green dots represent sentence nodes.

3.1 Context Encoding
Given the input document, we apply a Bi-LSTM
to obtain token representations of the document:
D = {d0,d1, . . . ,dn−1} ∈ Rn×l where n is the
document length, and l is the the hidden state di-
mension. We construct entity representation and
sentence representation from the start and end to-
kens in an entity or sentence:
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where D is the output of the Bi-LSTM encoding
layer, ent(i)start , ent(i)end , sent(i)start and sent

(i)
end are

the start and end position of the i-th entity and
the i-th sentence, respectively, and [;] denotes
the concatenation operation. e(i)memory and s

(i)
memory

mainly contain the information inside the entity
and sentence. e

(i)
rule and s

(i)
rule mainly contain the

context information outside the entity and sentence.
The model predicts memory representations mainly
based on remembering entity names and predicts
rule representations mainly based on recognizing

Figure 4: An example of coreference in a document and
its impact on entity understanding and document-level
event argument extraction

the contextual patterns. Therefore, we separate the
memory representation and rule representation as
they correspond to the memory-based and the rule-
based learning process of humans (Noordman and
Vonk, 1998; Opitz and Friederici, 2004).

3.2 Entity Coreference Graph

Leveraging redundant event information in a docu-
ment is not straightforward to classify every entity
in the document. On the one hand, better entity rep-
resentation is needed. Therefore, we construct an
entity coreference graph with graph2token module
to produce a comprehensive and coreference-aware
representation for every entity.

The entity coreference graph is inspired by the
observation of coreference’s role in document un-
derstanding. Firstly, for the repeatedly referred
entity (coreference entity), the understanding to
this entity itself is constantly enriched or enhanced
by each reference. For the example illustrated in
Figure 4, "the massacre" and "this action" are two
different mentions of the same entity. The under-
standing of this entity is enriched by combining
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the location of the massacre mentioned in the first
sentence and the commander of the massacre men-
tioned in the second sentence. Secondly, for other
entities located in the context of the coreference en-
tity, their meanings are clearer by recognizing the
connotation of the coreference entity. For example,
"the colonel" cannot be recognized as an argument
unless the model understands that "this action"
refers to "the massacre". Research works in event
extraction (Xu et al., 2021; Luan et al., 2019; Qian
et al., 2019) consider the first observation but ne-
glect the second one. Specifically, previous works
in event extraction use graph structure to merge
information in different mentions of the same en-
tity. However, such a graph structure cannot feed
back the fused information to the context of coref-
erence entities because the representations of the
context tokens are fixed from the initial encoding
process. In this sense, for the representation of
"the colonel", its context information still excludes
"the massacre". Therefore, we adopt a graph2token
module to feed back the comprehensive entity infor-
mation obtained through graph structure to tokens,
and then rebuild entity representations that are both
comprehensive and coreference-aware.

Graph Construction. There are two types of
nodes in the entity graph: entity nodes and sen-
tence nodes. Entities are recognized from docu-
ment following Fisher and Vlachos (2019). En-
tity nodes and sentence nodes are denoted as E =
{e0, e1, . . . , ep}, and S = {s0, s1, . . . , sq}, respec-
tively.

There are two types of edges in the entity graph:
1) entity-entity edge is created according to the
coreference relationship. We use SpanBERT (Joshi
et al., 2020) to implement coreference resolution
on documents during preprocessing. 2) entity-
sentence edge is the connection between the entity
node and the sentence node where it is located.
Graph Propagation. After the graph is con-
structed, Graph Attention Network (Veličković
et al., 2017) is applied to propagate informa-
tion between connected nodes. Assuming that
graph nodes are denoted by H = {E,S} =
{h0,h1, . . . ,hp+q} ∈ R(p+q)×2l, the information
that a node receives from its neighbors is formu-
lated as:

h′
i = RELU

(∑
j∈Ni

αijWhj

)
(3)

αij =
exp(L(Weij [Whi;Whj ]))∑

k∈Ni
exp(L(Wei [Whi;Whk]))

(4)

where h′
i is the neighbor information of the i-th

node, hj is the representation of the j-th node, W,
Wei are weight matrixes, Ni denotes the set of
neighbors of node i, and L(·) is the LeakyReLU
function.

The representation of the i-th node hi and its
neighbor information h′

i is fused by the gated mech-
anism:

βi = σ
(
f
(
hi;h

′
i

))
(5)

where σ(·) is the sigmoid function, f(·) denotes
the linear transformation. The fused representation
of the i-th node h′′

i is obtained as:

h′′
i = βi ⊙ hi + (1− βi)⊙ h′

i (6)

where ⊙ stands for element-wise multiplication.
Through propagating and fusing information of
coreference entities and the corresponding sen-
tence, a comprehensive representation of the entity
is obtained.
Graph2token. To address the second insight
we put forward in this section, we adopt the
graph2token module to feed back the information
behind coreference entities to their neighboring
tokens.

We concatenate the original token representation
di with the entity representation h′′

j in which it
is located, and feed it to an LSTM layer. In this
way, the comprehensive entity representation h′′

j

is propagated to context tokens outside the entity
and a coreference-aware token representation d′

i is
generated:

d′
i = LSTM(di;h

′′
j ) (7)

Then, we build coreference-aware entity represen-
tations from updated token representations.

e
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where D′ =
{
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′
1, . . . ,d

′
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}
. Finally, a com-

prehensive and coreference-aware entity represen-
tation E′ = {e0′, e1′, . . . , ep′} is obtained by con-
catenation:

ei′ =
(
h′′
i ; e

(i)
rule

′
)

(8)

3.3 Closed Boundary Loss

We have analyzed that classifiers trained by cross
entropy loss have open decision boundaries and
could easily misclassify the Universum class. To
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address this problem, we propose a novel loss func-
tion that could be used to train classifiers with
closed decision boundaries.

Comprehensive and coreference-aware entity
representations E′ =

{
e′0, e

′
1, . . . , e

′
p

}
are obtained

in the last section. We treat entities as argu-
ment candidates and classify entities by classifiers
trained by our proposed closed boundary loss:

LCB = R2 +
1

n

n∑

i=1

max
(
0,
∥∥e′i − c

∥∥2 −R2
)

+
1

m

m∑

i=1

max
(
0, (1 + µ)R2 −

∥∥e′i−c
∥∥2
)

where n is the number of target class samples, m is
the number of Universum class samples, the center
c is initialized as the mean of target samples in
the feature space, and the radius R is initialized
as ν-quantile of the distance of target samples to
the center c in the feature space. R and c are
initialized after a few warm-up epochs. The closed
boundary loss intends to include samples of each
target class using a hypersphere characterized by
center c and radius R in the feature space and locate
Universum samples outside the hypersphere. Due
to the heterogeneous nature of Universum samples,
we allow them to scatter outside the hypersphere
and do not require them to be aggregated like cross
entropy loss.

The goal of the first term R2 is to minimize the
volume of the hypersphere. The second term aims
to enclose target class samples by the hypersphere.
If the Euclidean distance between the sample h′′

i

and the center c exceeds the radius, it will lead to a
penalty in the loss function. The third term aims to
keep the universe samples outside the hypersphere.
Parameter µ is introduced to adjust the gap between
the closed boundary hypersphere and Universum
samples.

Unlike contrastive loss and ii-loss which cannot
be directly used for classifying samples in the test
set and need to be combined with cross entropy
loss, our proposed closed boundary loss can be
easily adopted for classification by the following
calculation:

g(ei′) =
{
1 ∥e′i − c∥2 −R2 < 0

0 ∥e′i − c∥2 −R2 > 0

3.4 Entity Summary Graph
To make full use of the redundant argument infor-
mation, we classify every entity in the document.

For the same argument, we may obtain multiple
preliminary extraction results. The advantage is the
robustness because the correct argument is more
likely to be extracted from relatively simple posi-
tions. The challenge is how to merge the multiple
extraction results. To address the challenge, we
propose an entity summary graph.
Text Matching Module. We notice that most re-
dundant expressions of the same entity are either
character-level spelling similar or word-level se-
mantics similar. In some cases, special domain
knowledge is needed to determine if two expres-
sions are the same. For example, “Army of Na-
tional Liberation” and "ELN" are referred to the
same entity. Therefore, we adopt a text matching
model with both character embedding and word
embedding to evaluate the spelling similarity and
semantics similarity of extracted arguments. We
also construct a text matching dataset from ground
truth labels of the training set of our event extrac-
tion dataset to make the model learn necessary do-
main knowledge.

We build the text matching module (TMM) by
adopting the structure of RE2 (Yang et al., 2019a)
and adding character embedding to the RE2 model
to enhance the model’s capability of recogniz-
ing spelling similarity. We denote the initially
predicted arguments as A = {a0,a1, . . . ,ak−1}.
Then, we feed these entities into the text matching
module to produce the matching score for each pair
of arguments.

Mij = TMM (ai,aj) (9)

where M is the matching score matrix, which con-
tains text matching score of every pair of entities
from A. M = [Mij ], i, j = 1, 2, . . . , k.
Entity Summary Graph. The graph node is com-
posed of preliminary predicted entities A. The
i-th node and j-th node are connected if Mij > s,
where s is a boundary score. The weight of each
edge is the text matching score Mij of two entity
nodes at the ends of the edge.

The constructed entity summary graph is mostly
disconnected because there usually exist multi-
ple argument clusters in a document. The argu-
ment cluster refers to a set of different expres-
sions of the same argument, for example "the
armed forces" and "military" refer to the same ar-
gument, thus forming an argument cluster. The en-
tity summary graph consists of several connected
subgraphs as shown in figure 3. Each subgraph
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PerpInd PerpOrg Target Victim Weapon
GTT (Du et al., 2021) 65.48/39.86/49.55 66.04/42.68/51.85 55.05/44.12/48.98 76.32/61.05/67.84 61.82/56.67/59.13
NST (Du and Cardie,

2020a) 48.39/32.61/38.96 60.00/43.90/50.70 54.96/52.94/53.93 62.50/63.16/62.83 61.67/61.67/61.67

DYGIE++ (Wadden et al.,
2019) 59.49/34.06/43.32 56.00/34.15/42.42 53.49/50.74/52.08 60.00/66.32/63.00 57.14/53.33/55.17

RICB 50.76/49.62/50.18 50.00/63.75/56.04 65.63/63.64/64.62 64.86/50.52/56.80 63.49/65.57/64.51

Table 1: Performance comparison with baseline models for each argument role on MUC-4 dataset. Results for each
column are displayed in the order of precision, recall, and F1 score.

Models P R F1

GTT (Du et al.,
2021)

64.19 47.36 54.50

NST (Du and
Cardie, 2020a)

56.82 48.92 52.58

DYGIE++
(Wadden et al.,

2019)
57.04 46.77 51.40

RICB 57.68 58.03 57.85

Table 2: Averaged EAE result on the MUC-4 dataset.
Precision (P), recall (R), and F1-score are used for eval-
uation.

corresponds to an argument cluster. We denote
the entity summary graph G and its subgraphs as
G =

{
G(1)
sub,G(2)

sub, . . . ,G(u)
sub

}
. The final predicted

arguments are summarized by selecting an entity
node with the largest sum of weights (LSW) from
each subgraph.

A′ =
{
a′0,a

′
1, . . . ,a

′
v−1

}
, a′i = LSW

(
G(i)
sub

)

4 Experiments

4.1 Dataset
Our model is evaluated on the MUC-4 dataset
(McLean, 1992). The dataset is composed of 1,700
documents, each containing an average of 400 to-
kens and 7 paragraphs. We use 1300 documents for
training, 200 documents for testing, and 200 docu-
ments for the development set following (Du and
Cardie, 2020a). Five argument roles are extracted
in the dataset: perpetrator individual, perpetrator
organization, target, victim, and weapon.

4.2 Baselines and Evaluation Metric
In this work, we propose a document-level EAE
model leveraging Redundant Information and
Closed Boundary Loss (RICB). We compare our
model with the following baseline models: DY-
GIE++ (Wadden et al., 2019) incorporates local
and global contexts to build a multi-task framework
for named entity recognition, relation extraction,

and event extraction. NST (Du and Cardie, 2020a)
aggregates sentence representation and paragraph
representation via a gate mechanism and treats
document-level EAE as a sequence tagging prob-
lem. GTT (Du et al., 2021) proposes a generative
transformer based framework for document-level
EAE.

We evaluate the performance of our model by
the CEAF-TF metric following (Du et al., 2021).
The metric finds the best alignment of predicted
arguments and gold arguments. It penalizes the sys-
tem that does not merge multiple extraction results
by setting a constraint that a gold argument can be
aligned with at most one predicted argument. Pre-
cision (P), recall (R), and F1-score (F1) are used to
evaluate the model’s performance.

4.3 Overall Results

The per-role EAE results on the MUC-4 dataset
of our RICB model and baseline models are sum-
marized in Table 1, and the micro-averaged per-
formance is shown in Table 2. Table 2 shows that
our model consistently outperforms the latest base-
lines in F1-score and achieves the state-of-the-art
(SOTA) performance. Specifically, the proposed
model improves the absolute F1-score by 3.35%,
5.27%, and 6.45% compared to baseline models.
Noticeably, our model achieves an over 9% im-
provement in recall. In terms of the per-role ex-
traction performance of our model, it achieves the
highest F1-score in four of five argument roles: per-
petrator individual, perpetrator organization, target,
and weapon. Specifically, the absolute F1-score is
improved by 0.63%, 4.19%, 10.69%, and 2.84%
in these argument roles.

4.4 Effect of Graph2token Module

Graph structure is used in EAE to produce a com-
prehensive representation of coreference entities
(Luan et al., 2019; Qian et al., 2019; Xu et al.,
2021). In this work, we further adopt a graph2token
module to feed back the comprehensive representa-
tion of coreference entities to their context tokens.
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PerpInd PerpOrg Target Victim Weapon
Without graph2token 50.39/49.24/49.80 50.02/58.83/54.07 63.87/57.58/60.56 62.54/49.53/55.28 58.72/69.47/63.64

Cross entropy loss 50.00/50.34/50.17 48.57/63.75/55.14 62.04/64.39/63.19 49.55/58.95/53.85 55.13/70.49/61.87
String matching 48.80/45.86/47.28 45.30/66.25/53.81 65.71/63.44/64.56 59.49/49.47/54.02 58.57/67.21/62.60

RICB 50.76/49.62/50.18 50.00/63.75/56.04 65.63/63.64/64.62 64.86/50.52/56.80 63.49/65.57/64.51

Table 3: Ablation studies on graph2token module, closed boundary loss, and entity summary graph, respectively.
The results in each column are displayed in the order of precision, recall, and F1 score.

The updated token representations can generate
additional coreference-aware representations for
entities near the coreference entity. For the abla-
tion study, we experiment on without applying the
graph2token module. We compare per-role extrac-
tion results with and without the graph2token mod-
ule in Table 3. We find that the experiment without
the graph2token module results in a performance
drop on every argument role. In addition, the recall
is decreased by 0.38%, 4.92%, 6.06%, and 0.99%
in four argument roles. This indicates that the
model can recognize more arguments by providing
argument candidates with additional coreference-
aware representations.

4.5 Effect of Closed Boundary Loss
We find that classifier trained by cross entropy loss
could easily misclassify entities in the Universum
class. We propose a closed boundary loss to ad-
dress this issue. For the ablation study, we conduct
experiments of applying cross entropy loss for argu-
ment classification, and compare the performance
with our model. The comparison of two loss func-
tions is summarized in Table 3, which shows that
in all argument roles, closed boundary loss consis-
tently outperforms cross entropy in the F1 score.
We further notice that the precision of the model
is improved in all argument roles at 0.76%, 1.43%,
3.59%, 15.31%, and 8.36% by using closed bound-
ary loss. The improvement in precision indicates
that the use of closed boundary results in a smaller
number of Universum samples that are misclassi-
fied as target samples.

4.6 Effect of Entity Summary Graph
To fully leverage the redundant argument informa-
tion, we classify every entity in the document. For
the same argument, we may obtain multiple pre-
liminary extraction results. We propose the entity
summary graph to merge the results. For the ab-
lation study, we conduct experiments on merging
multiple extraction results based on string match-
ing following Zheng et al. (2019); Xu et al. (2021).
We compare the string matching performance with
our proposed entity summary graph in Table 3. It

shows that the entity summary graph outperforms
the string matching method significantly in the F1-
score. Furthermore, the precision of the model is
improved in four of five argument roles by 1.96%,
4.70%, 5.37%, and 4.92% by using the entity sum-
mary graph, and this verifies the effect of our pro-
posed entity summary graph, i.e. merging multiple
extraction results and reducing false positives ac-
cordingly.

4.7 Case Study
Figure 5 demonstrates an example of the differ-
ences in predicting event arguments between GTT
(Du et al., 2021) and our proposed RICB method.
To avoid involving excessive sentences in the doc-
ument, only roles of perpetrator individual and
perpetrator organization are used for illustration.
RICB successfully extracts "Colonel Ponce" and
"ARENA", while GTT fails. Both event arguments
"Colonel Ponce" and "ARENA" appear multiple
times in the document, which shows the redundant
event information in the document. Specifically,
among all their occurrences in the document, it
is easier to recognize "Colonel Ponce" from sen-
tence 8 and recognize "ARENA" from sentence 7.
This is an illustration of our idea that by utilizing
redundant event information in the document, we
can extract arguments from relatively simple posi-
tions. In addition, to recognize "Colonel Ponce"
from sentence 4, it is necessary to understand that
"this action" refers to "the massacre". Our model
can recognize it because the graph2token module
can feed back the coreference information to "this
action".

4.8 Further Analysis
Firstly, it is effective to leverage redundant event
information in documents for document-level EAE,
which is not only reflected in the F1 score, but also
in the significant improvement in recall. The micro-
averaged recalls of baseline models are distributed
between 46% to 49%, but our model reaches 58%.
As we analyzed in the introduction, leveraging re-
dundant argument information of a document al-
lows the model to extract the argument from any
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Figure 5: An example of the differences in event argument extraction between GTT and our proposed RICB.
The differences in extracting perpetrator individual and perpetrator organization are used for illustration. RICB
successfully extracts Colonel Ponce and ARENA, while GTT fails. In the example, sentence numbers are marked in
green, and identical entities are marked with the same color.

of its occurrences and relatively simple positions.
Therefore, the difficulty of argument extraction is
reduced and the recall is improved accordingly. We
also notice a drop in precision rate in our model
compared to baseline models. It is because baseline
methods adopt sequence-to-sequence models and
we classify a few arguments from a great number of
entities in the document, which will naturally result
in a decrease in precision. However, the precision
and recall of our model are very close, which is
more balanced compared to baseline models.

Secondly, leveraging redundant event informa-
tion in a document is not simply classifying every
entity in the document. On the one hand, better
entity representations need to be produced, on the
other hand, multiple extraction results need to be
merged. Therefore, we add the graph2token mod-
ule to the entity coreference graph, which improves
the recall significantly. We also propose the en-
tity summary graph to merge multiple extraction
results, which successfully improves the precision.

Finally, we propose a novel closed boundary
loss to better deal with the Universum class in our
task. Its effectiveness is verified in ablation stud-
ies. We highlight two other potential benefits of
closed boundary loss here. Firstly, since it gen-
erates a closed decision boundary for classifiers,
it may also be valid for dealing with unseen sam-
ples in the test set. This property is not evaluated
in this work. In addition, our dataset is highly
imbalanced because only a small number of enti-
ties are arguments. Weighted cross entropy loss
is cumbersome to adjust the appropriate weights,

however, the closed boundary loss does not need to
adjust weights and works well with the imbalanced
dataset.

5 Conclusion and Future Works

In this work, we emphasize that the redundant event
information in documents is beneficial but is often
overlooked in document-level EAE. In addition,
we find that classifiers trained by cross entropy
loss are problematic in classifying the Universum
class. Specifically, we generate a comprehensive
and coreference-aware representation for every en-
tity through the entity coreference graph with the
graph2token module. In addition, we propose an
entity summary graph to merge the multiple extrac-
tion results of the same argument. Furthermore, we
propose a novel closed boundary loss to deal with
the Universum class in classification. As a limita-
tion, our proposed closed boundary loss is used for
binary classification because we extract arguments
in a role-by-role manner to make full use of the
property of each argument role. In the future, we
will extend it for multiclass classification and apply
it to other tasks in natural language processing that
face the problem of classifying Universum class.
Experimental results show that our RICB model
achieves the SOTA performance and outperforms
prior approaches on the MUC-4 dataset.
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A Appendix

A.1 Dataset Information

Some supplementary information about the dataset
is illustrated in this section. We use the MUC-4
dataset to evaluate the performance of our model.
The dataset is intended for research purposes,
which is consistent with our purpose of use. Be-
sides the statistical information we provided in the
main part, we illustrate the documentation of the
dataset in this section. MUC-4 dataset is made
of English news articles on the subject of terrorist
attacks. Specifically, five arguments are extracted
for the dataset: perpetrator individual, perpetrator
organization, target, victim, and weapon.

A.2 Implementation Details

Spacy 3.0.3 is used in data preprocessing. Exper-
iments are conducted on NVIDIA GTX 1080Ti,
and the training time is about four hours. The
hyper-parameters are given in the table below.

Hyper-parameter Value
Embedding size 300

Hidden size 150
Bidirectional True

Layers of encoder 2
Layers of graph2token module 1

Layers of graph 1
Heads of graph 2

Optimizer Adam
Learning rate 5e−4

Batch size 4
Dropout 0.3

Training epoch 120
Boundary score 0.65
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