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Abstract

We present IBR, an Iterative Backward Reason-
ing model to solve the proof generation tasks on
rule-based Question Answering (QA), where
models are required to reason over a series of
textual rules and facts to find out the related
proof path and derive the final answer. We
handle the limitations of existed works in two
folds: 1) enhance the interpretability of rea-
soning procedures with detailed tracking, by
predicting nodes and edges in the proof path
iteratively backward from the question; 2) pro-
mote the efficiency and accuracy via reason-
ing on the elaborate representations of nodes
and history paths, without any intermediate
texts that may introduce external noise dur-
ing proof generation. There are three main
modules in IBR, QA and proof strategy pre-
diction to obtain the answer and offer guid-
ance for the following procedure; parent node
prediction to determine a node in the existing
proof that a new child node will link to; child
node prediction to find out which new node
will be added to the proof. Experiments on
both synthetic and paraphrased datasets demon-
strate that IBR has better in-domain perfor-
mance as well as cross-domain transferability
than several strong baselines. Our code and
models are available at https://github.
com/find-knowledge/IBR.

1 Introduction

Endowing machines with reasoning capabilities is
a longstanding problem (Newell and Simon, 1956)
in the field of AI. Though existing tasks such as
multi-hop QA (Yang et al., 2018; Welbl et al., 2018)
or logical-reasoning QA (Yu et al., 2020; Dua et al.,
2019) impose a higher requirement on the reason-
ing capabilities, they usually just request for an
answer without the reasoning procedure that would
make it interpretable. Recently, Clark et al. (2020)
proposed new datasets and tasks for interpretable
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Facts:

F1: Anne is blue. 

F2: Anne is rough. 

F9: Fiona is rough. 

F10: Harry is blue. 

Rules:

R1: All rough, blue people are cold. 

R2: All cold people are round.

R6: If Harry is blue then Harry is 

rough. 

R7: Quiet people are round.

R8: If someone is round and not 

cold then they are quiet. 

Q1: Harry is round.

A1: True

Proof:

F10

R2

R1

Q1

R6

F10

Q2: Fiona is not cold.

A2: True

Proof: Q2

R1

FAIL

R7

…

wrong 

branch

F9
redundant 

branch

…
…

Figure 1: Illustration of generating proof iteratively. Re-
garding the proof path as a graph, and using the question
as the initial node, other nodes and edges will be added
step by step. (The gold proof is the obtained path in a re-
verse order exclude the question). The main challenges
are wrong (cannot derive the answer) or redundant (can
derive the answer, but the path is longer than the optimal
one) branches may be involved.

reasoning. Given a question, coupling with a set of
facts (plain statements) and rules (implication re-
lationships) that are expressed in natural language,
there are two tasks: 1) predicting the binary an-
swer; 2) generating the proof path behind this an-
swer. Large-scale pretrained models have shown
strong performance on the first subtask in the early
work (Liu et al., 2019), but there still remain chal-
lenges for the second one. These proof paths are
usually more complicated than those involved in
multi-hop QA tasks, as there are more nodes and
branches rather than a single-directed chain.

Several approaches have been proposed
to simultaneously address the two subtasks.
PROVER (Saha et al., 2020) and PROBR (Sun
et al., 2021) try to construct the reasoning path at
once, where two classifiers are used to determine
whether each node or edge is involved in the proof
path respectively based on corresponding encoded
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representations. But they lack interpretability on
tracking the detailed reason for selecting each
step. To make proof generation more interpretable,
Proofwriter (Tafjord et al., 2021) and EVR (Liang
et al., 2021) decompose complex reasoning over
the question into multiple simple procedures,
resulting in iterative and interpretable processes
with the help of intermediate texts. Nevertheless,
both of them suffer from efficiency and external
errors issues. The reason is that they both require
a large searching space, as they perform on the
whole inferable texts and ignore the structure
information from the history path that has been
obtained. Moreover, the generation of intermediate
text is costly and may introduce extra noise
propagation.

Inspired by the top-down AMR parsing (Cai
and Lam, 2019), where a sentence is divided
into sub-meanings iteratively, we present Iterative
Backward Reasoning (IBR) for better proof gener-
ation. It generates a proof path iteratively starting
from the core component for QA, i.e. the question,
making the process interpretable with trackable in-
termediate states. Regarding a higher efficiency
and accuracy, and two challenges mentioned in
Figure 1, the proof generation module of IBR sim-
plifies the intermediate process of reasoning as well
as avoids the unnecessary search for a possible un-
suitable branch. To add a new node and edge to the
path, there are two steps in IBR for each iteration:
1) finding out the next parent node, i.e. one existing
rule or fact in the parsed history path that a new
node will become its child; 2) determine which
rule or fact that will be the new child node and
added to the path. Equipped with question-aware
representations from a pre-trained encoder, along
with structure-aware node and path features, our
model can choose the optimal endpoint. It accom-
plishes reasoning with the highest possibility to
obtain a correct subsequent proof path based on
relevant features, getting rid of intermediate texts
while avoiding redundancy on all possible texts
than previous iterative works.

In addition, to make IBR applicable for samples
with incomplete proof paths, which are abandoned
in the former backward iterative model EVR (Liang
et al., 2021), we employ a proof strategy predic-
tor to output a proof type. This prediction is then
integrated into the later proof generation actions,
making the process more controllable under differ-
ent conditions.

We validate our approach on several datasets
that are widely used in previous studies (i.e. DU0-
DU5, Birds-Electricity, and ParaRules) spanning
different settings (i.e. fully-supervised, fewer train-
ing data, and out-of-domain). Experimental results
show that, compared to existing strong baselines
including both non-iterative and iterative ones, IBR
can achieve the best overall performance of proof
generation and comparable answer prediction accu-
racy, along with noticeable generalization capabil-
ity. Extensive analyses show that 1) the improve-
ments come from our elaborately designed iterative
and simplified proof generation modules, and 2)
both the reasoning ability and latency could be sig-
nificantly improved compared to former iterative
models, making a better trade-off considering its
reasonable interpretability.

2 Related Work

Question answering and reasoning. Endowing
machines to do reasoning over explicit knowledge
is a primitive task (Newell and Simon, 1956). Early
works tried to solve it by converting texts into logic
forms (Newell and Simon, 1956; Musen and Lei,
1988). But such kinds of approaches can be af-
fected by the error propagation caused by semantic
parsing (Zettlemoyer and Collins, 2012; Berant
et al., 2013; Berant and Liang, 2014).

Lately, question answering (QA) is employed
as an important task for machine reasoning. Nu-
merous datasets were proposed, including synthe-
sized data (Weston et al., 2016), comprehension on
natural texts (Rajpurkar et al., 2016; Joshi et al.,
2017; Fisch et al., 2019) or more complex rela-
tionship reasoning (Tafjord et al., 2019; Lin et al.,
2019). There are also multi-hop QA tasks like Hot-
potQA (Yang et al., 2018) or QAngaroo (Welbl
et al., 2018), and logical QA datasets such as Re-
Clor (Yu et al., 2020) and LogiQA (Liu et al., 2020),
in which textual rules need to be inferred implicitly
from a long supporting context. Plenty of studies
try to solve these problems via neural networks and
achieve remarkable performance (Joshi et al., 2020;
Yu et al., 2018; Shao et al., 2020). Nevertheless,
nearly all of them only focus on the prediction of
final answers and neglect the acquisition of inter-
pretable proofs. Although some datasets provide
proof paths for better interpretability, these paths
are only short chains with very few entities and
cannot teach models to generate complex proofs.
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Proof generation. NLProlog (Weber et al., 2019)
first employs logic programming to search for a
proof and then predicts the answer in multi-hop
QA. Recently, Clark et al. (2020) propose new rule-
based QA datasets for this line of research that in-
clude more complex proof paths, and present Rule-
Taker to answer questions. Saha et al. (2020) argue
that producing answer proofs makes models more
reliable and propose PROVER, a transformer-based
model that enumerates all possible nodes and edges
of a proof path and predicts whether each one exists
at once based on their embeddings. PROBR (Sun
et al., 2021) further improves this framework using
the probabilistic graph to model more variables.
There has been also an increasing interest in solv-
ing proof generation iteratively. EVR (Liang et al.,
2021) splits the question into sub-questions, using
generated intermediate texts to guide proof genera-
tion step by step. ProofWriter (Tafjord et al., 2021)
shares a similar idea but uses intermediate textual
conclusions instead and a more powerful T5-11B
model (Raffel et al., 2020) for generation, which
makes it hard to reproduce. IBR is also an itera-
tive model, being more interpretable than at-once
models. Despite getting rid of intermediate texts
and directly using various representations to finish
each step, it improves efficiency and effectiveness.

3 Methodology

3.1 Task Definition
We first formulate the proof generation task as fol-
lows. Given a tuple (C,Q,A, P ), where C =
{RFi} is the contexts containing several textual
rules and facts RF , Q is the question, A ∈ {True,
False} is the answer, and P indicates the proof path
for the detailed reasoning procedure to derive A,
our goal is twofold: 1) predicting the answer A,
and 2) generating the proof path P . Taking DU0-
DU5 (Clark et al., 2020) dataset as example, P is
a single-directed acyclic graph having the shortest
path to derive A. P can start from one or multiple
nodes but must end in one node that directly entails
or contradicts Q. A node in P can be a fact, a
rule, or a special NAF (Negation As Failure) node1.
Edges between nodes indicate that the start nodes
can be used to prove the end nodes during reason-
ing. Proofs in the dataset can be roughly classified

1A start node when the negation condition in the next node
has no corresponding fact nor rule node, and the negation will
be considered as true. E.g., there is no item in C related to
“Anne is big”, its negation “Anne is not big” will be considered
as true.

AttNoneg-D5-910-12

Facts:

F1: Anne is blue. F10: Harry is furry. 

Rules:

R3: All quiet, round people are rough. 

R5: Furry people are quiet. 

R7: Quiet people are round. 

Q1: Harry is not rough. A: False

Proof type: Proof 

R3
R5F10

R5F10 R7 R7R5FAIL

Q2: Erin is round. A: False

Proof type: Fail-proof

…

…

…

…

Figure 2: Examples of Proof and Fail-proof strategies.

into two types according to their strategies S to
prove the question: (1)Proof : the question can be
directly proven to be True or False using the given
C and NAF; (2) Fail-Proof : the question cannot
be explicitly deduced barely using C and NAF as
some key information is missed, hence a positive
statement is judged as False while a negative state-
ment as True in such cases (Figure 2).

3.2 Overview
The proposed Iterative Backward Reasoning (IBR)
model takes Q as the initial node and produce a
proof path P backward, from the end node to the
start node. Two actions are included at each itera-
tion: (1) Predicting the new parent node, i.e. a
node in the derived proof path where a child node
will be added (except the first step that only Q ex-
ists); (2) Predicting the child node, i.e. the fact
or rule in C that will be the child for the selected
parent node. After each iteration, a new node and
an associated edge are added. After obtaining the
whole reasoning path, we remove Q and reverse all
edges to get the final proof P .

The Figure 3 illustrates our IBR model, which
can be divided into three modules, (1) QA and
Strategy Prediction, (2) Parent Node Prediction,
and (3) Child Node Prediction. In order to make
the question Q can fully interact with context C
(facts and rules) and obtain better representations,
IBR uses pretrained RoBERTa (Liu et al., 2019) as
the backbone network. The input of RoBERTa is
the concatenation of the question Q and the context
C = {RFi}, separated by special [SEP ] token,
denoted as [CLS] Q [SEP ] [SEP ] C [SEP ].

IBR only uses the QA prediction and strategy
prediction modules once at first to predict the an-
swer A and the strategy of the proof (refer to §3.1,
where the latter one will result in different proof
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R1 : All rough, blue people 

are cold. 

R2 : All cold people are 

round.

F1 : Anne is blue. 

[CLS] [SEP] [SEP] RF1
… [SEP]
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…
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F10 : Harry is blue. 

…

R6 : If Harry is blue then 
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…

hQ
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Figure 3: The model architecture of IBR. 1) is only used once at the start, then 2) and 3) are applied iteratively to
generate the whole proof. It also illustrates the detailed state when adding F10 into the proof (F: facts, R: rules).

generation procedures. In order to improve the
reasoning efficiency as well as accuracy, instead
of using generated intermediate texts (Liang et al.,
2021; Tafjord et al., 2021), all possible nodes (rules
and facts) are represented by node embeddings in
IBR. The initial state of the proof is only the rep-
resentation of the question hQ, then the rest of the
reasoning path will be constructed based on it.

Samples with Fail-Proof strategy differs from
ones with Proof, because their proofs are usually
short without sub-branches, and only consist of
rules due to lacking essential supporting facts. To
take the advantage of such a property distinction
and extend the applicability compared to former
models (Liang et al., 2021) that cannot generate
proofs for Fail-Proof samples, we apply different
actions in modules (2) and (3) depending on the
output from strategy prediction.

3.3 QA and Strategy Prediction Module

This module aims to predict the answer A of the
question Q and the corresponding strategy S of
proof P . Since the representation of [CLS] token
from pretrained models is proven to have the ca-
pability of modeling the whole input, we use it as
the input feature for both predictions as they con-
dition the global information. The encoded [CLS]
by RoBERTa, h[CLS] is passed to a linear layer
and the softmax function σ for answer and strategy
classification respectively,

PQA= σ(fQA(h[CLS])),

PStrategy = σ(fStrategy(h[CLS])).

Here, fQA and fStrategy indicate the linear layer
for QA classification and strategy classification,
respectively. PQA and PStrategy are binary-class
probability values, the former one is for values
of A ∈ {True, False} while the later one is for
values of S ∈ {Proof, Fail-proof}.

3.4 Parent Node Prediction Module
This module determines which node in the cur-
rent reasoning path is going to be the next parent
node that a new child node will link to. To bet-
ter represent the sequential information of each
possible node (fact or rule), an LSTM (Hochreiter
and Schmidhuber, 1997) is used to further encode
the token-level embedding from RoBERTa. The
hidden state in the last step is used as the textual
representation hgi of a possible parent node RFi.

In addition, selecting a node from the existing
proof path also needs global and structural model-
ing on the history path. To make this procedure a
more convenient representation that involves the
order of reasoning, the path is regarded as a tree
structure and nodes are reordered by level traver-
sal from top to down. Since Q is always the root
node of the tree, e.g., if Q have two children RF1

and RF3, and RF1 has a child RF2, the reordered
representation sequence is [hQ, hg1, hg3, hg2]. We
then utilize another LSTM model to encode the
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reordered representation sequence of the current
reasoning path obtained before, extracting the over-
all state of the path, which is the hidden state hg at
the last time step in this LSTM.

A parent node attention based on the Trans-
former attention (Vaswani et al., 2017) is used to
obtain the weights of all possible parents nodes.
It takes hg and the representation sequence of the
current path Hp = [hQ, hg1 . . . hgt] as input, i.e.

Att(hg,Hp) = σ(fQ(hg)(fK(Hp))
T /

√
d), (1)

where fQ and fK indicate linear layers, σ is a soft-
max function, and d is the dimension of hg. As
we discussed in §3.2, different operations are em-
ployed for corresponding strategy types of proofs.
1) If the predicted proof strategy is Proof, we se-
lect the node with the highest weight as the parent
node RFp. 2) If the predicted proof strategy is
Fail-proof, we use the last node in the current path,
i.e. hgt in HP , as the parent node RFp, because no
sub-branch is included in such proof paths.

3.5 Child Node Prediction Module

This module decides which node will be added
to the proof path and linked to the parent node
RFp we have obtained before. To derive the rep-
resentations of candidate child nodes, similar to
§3.4, we apply another LSTM model to the en-
coded RoBERTa embeddings and get hni for RFi.
Since we discussed a special NAF node in §3.1
which may contain information from the whole
context, we utilize a linear layer fNAF to trans-
form the [CLS] token embedding h[CLS] into its
representation hNAF . Moreover, we initialize a
representation hEND for the special END node,
indicating that the proof generation process will
finish here.

During selecting the new child node, we need
to consider not only the knowledge of the history
path, but also the state of the parent node. To bet-
ter model such relationships, we propose a Path
Focus Selection module to generate relevant fea-
tures before predicting the child node. A 2-layer
Transformer model along with a LSTM model is
introduced. It first encodes the representations of
node sequence Hp from Parent Node Prediction re-
spectively, then fuses their hidden state via a linear
layer fU ,

hF = fU ([Trans(hgp,Hp,Hp); LSTM(Hp)]).
(2)

Here, hgp is the representation of the selected par-
ent node in §3.4, fU is the linear layer for feature
fusing, while [·; ·] stands for concatenation. q, k, v
in Trans(q, k, v) indicate the inputs corresponding
to Query, Key, and Value in a transformer model,
and only the hidden state in the last time step is
remained in both Trans and LSTM. It is worth
noting that the LSTM used here is a supplementary
knowledge source for a better representation ac-
cording to our empirical study. Such an operation
results in a feature hF that is aware of both the
history proof path and the parent node that a child
will link to.

This feature hF will then be used in the Child
Node Attention to calculate the attention weights
on all possible child nodes. Particularly, an atten-
tion model same as Eq. 1 is applied on hF and a
series of child node representations obtained be-
fore Hc = [hn1 . . . hnk, hNAF , hEND], and the
attention weights are defined as Att(hF ,Hc). It
contains all facts and rules in the context, and the
special NAF node as well as END node.

Similar to §3.4, we also apply different actions
according to our predicted proof strategies before.
(1) If the strategy is Proof, we select the child node
with the highest attention weight from all candi-
dates as the new node in the proof path.
(2) If the strategy is Fail-proof, since RFp is the
last node during reasoning and this procedure is
a first-order logical under such a situation, there
is no need to make complex modeling on the de-
rived path. Therefore, we directly use its parent
node representation hgp rather than encoded state
from Transformer in Eq. 2 to get hF . But LSTM
is remained to maintain some basic modeling capa-
bility on the path. In child node attention, we mask
all fact nodes and select the one with the highest
weight among the remaining nodes, because this
kind of proof usually only contains rules and such
masking can avoid extra errors.

3.6 Training and Inference

The whole model is trained via binary cross-
entropy losses from all three above modules jointly,

L = LQA + LParent + LChild + α ∗ LStrategy.

LQA and LStrategy correspond to the loss of QA
prediction and strategy prediction, respectively. α
is a hyperparameter to reweigh the influence of
[CLS] token. LParent is the loss for parent node
prediction, where the cross-entropy is calculated
between the attention weight vector and a one-hot
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vector indicating the gold parent node. LChild is in
a similar way on child node prediction. Note that
samples labeled as Fail-proof strategy are not in-
volved in the training of parent node prediction. As
all their proof paths are chains and the new parent
node is always the last node added to the path, so
learning about these data may introduce model bias.
To determine the gold reasoning order used as the
target for training, we set a higher priority of fact
nodes than rule nodes, as the clearer subject infor-
mation is involved in facts. E.g., for a parent node
with multiple children, the gold reasoning order of
child node prediction is NAF nodes first, then fact
nodes, and finally rule nodes. If there are more than
one fact or rule nodes, IBR randomly swaps their
order within each type at different training epochs.

During inference, IBR first makes predictions
on the answer A and strategy S, then generate the
parent node and child node iteratively, until the
special END node is predicted as the new child
node. IBR uses beam search to keep the top-K best
proof paths at each proof generation step and select
the best one as the final prediction, where the beam
size is set as 8.

4 Experiments

Following former studies (Saha et al., 2020; Sun
et al., 2021), we evaluate our IBR2 on three datasets
and four settings including fully-supervised train-
ing, training using fewer samples, testing on out-of-
domain samples, and generalization to more com-
plex proofs or language.

4.1 Setup

Datasets. Experiments are conducted on three
datasets raised by Clark et al. (2020)3, where we
use the same test split as previous works for fair
comparison:
• DU0-DU5: Five synthesized datasets created by
translating hand-crafted rules and formal language
to natural language. It is divided by the highest
depth of proof, where DU stands for "Depth Upto"
(DU=0,1,2,3,5). Data in higher DU values also
contain samples with lower depth. Note that proofs
in DU0 only have one supporting or opposing fact.
All related results are reported on DU5 test split.
• Bird-Electricity: It is a test-only dataset that
contains samples about birds and electric circuits.

2Refer to Appendix A.1 for implementation details.
3More details are given in Appendix A.2

It is generated in the same way as DU0-DU5, but
is in different domains from DU0-DU5.
• ParaRules: This dataset consists of 40k ques-
tions expressed in paraphrased natural language
based on synthetic data, which is created by crowd-
sourcing. Multiple facts get together in one state-
ment here rather than separated in DU0-DU5.

Baselines. We consider the following baselines4.
• RuleTaker (RT) (Clark et al., 2020): a RoBERTa
based model that only predicts answers.
• PROVER (PV) (Saha et al., 2020): a method
that treats the proof as a graph and predicts all
its nodes and edges at once, also using RoBERTa
model as the backbone, same as IBR.
• PROBR (PB) (Sun et al., 2021): it improves
PROVER by introducing the probabilistic graph
that jointly considers the answer, nodes and edges.
• EVR (Liang et al., 2021): an iterative model that
predicts the next proof item by generating textual
sub-questions based on logical operator. Note that
this model is not applicable for samples whose
proof strategy is Fail-proof discussed in §3.1, so
we make comparison with it separately.

Metrics. We closely follow previous works to
evaluate the performance of models via answer pre-
diction (QA) accuracy and proof generation (PA)
accuracy. Since some samples may have multiple
gold proofs, a generated proof will be considered
correct, as long as its nodes and edges match with
the nodes and the edges in any of the gold proofs.
Full Accuracy (FA) is also included, where a sam-
ple is regarded as correct only both the predicted
answer and proof are correct.

4.2 Results under Fully-Supervised Training

We train IBR on the training split of the DU5
dataset and evaluate on the test split of DU5. We
compare the performance of IBR with baselines ex-
cept for EVR in Table 1, while with EVR in Table 2
where only partial test split is included, excluding
samples whose proof strategy is Fail-proof. Be-
cause EVR always fails on these samples (EVR on
these excluded samples is given in Appendix A.5).

Obviously, IBR achieves the best proof gener-
ation accuracy (PA) as well as full accuracy (FA)
among all baseline models, on samples with every
depth. Our model also shows a greater advantage
on samples with deeper proof path, e.g., 81.7 vs.

4Results of baselines are obtained from the original papers
or by running the released code.
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D 0 1 2 3 4 5 all

Cnt 6299 4434 2915 2396 2134 2003 20192

QA

RT 100 98.4 98.4 98.8 99.2 99.8 99.2
PV 100 99.0 98.8 99.1 98.8 99.3 99.3
PB 100 99.9 99.9 100 100 100 99.9
IBR 100 99.2 99.2 98.9 99.3 99.6 99.4

PA
PV 98.4 93.2 84.8 80.5 72.5 65.1 87.1
PB 98.4 94.3 86.1 82.0 76.1 72.2 88.8
IBR 99.5 95.6 93.0 90.7 86.5 81.7 93.5

FA
PV 98.4 93.1 84.8 80.5 72.4 65.1 87.1
PB 98.4 94.3 86.1 82.0 76.1 72.2 88.8
IBR 99.5 95.6 92.9 90.7 86.5 81.6 93.5

Table 1: Results of different models on varying proof
depth (D) under the fully-supervised setting. Cnt: sam-
ple count, RT: RuleTaker, PV: PROVER, PB: PROBR.

D 0 1 2 3 4 5 all

Cnt 1934 1934 1934 1934 1934 1934 11604

QA EVR 99.4 99.3 96.9 93.3 88.9 88.3 94.4
IBR 100 99.3 99.6 99.3 99.6 99.5 99.5

PA EVR 95.8 92.5 87.7 79.3 77.3 68.8 83.6
IBR 98.8 96.4 94.7 92.2 88.7 83.6 92.4

FA EVR 95.8 92.5 87.7 79.3 77.3 68.8 83.6
IBR 98.8 96.3 94.6 92.2 88.7 83.5 92.3

Table 2: Results of IBR and EVR on a partial test split
of DU5 (exclude Fail-proof samples). The models are
trained on the train split of DU5.

72.2 on PA when depth is 5, illustrating the supe-
riority of iterative models on complex proof paths.
Besides, despite not being the best in answer accu-
racy (QA), there is a very narrow gap between our
model and the best one, which proves that IBR is
still a comprehensive model covering both subtasks.
When compared to EVR, also an iterative model,
IBR shows significantly stronger performance on
all metrics, benefiting from our elaborate two-fold
reasoning process at each step.

4.3 Using Fewer Training Samples

We also explore the performance of IBR when train-
ing using fewer data, ranging from 10k to 30k to
all the examples (70k) in DU5. The comparison
between our model, PROVER (PV), and PROBR
(PB) is shown in Table 3, in all three metrics. Our
model significantly has the best proof generation
performance than the other two baselines in all
cases, due to the iterative architecture requiring less
global modeling capability and thus fewer training
samples. Although PB shows a promising answer
prediction accuracy under fewer-data settings, the
performance of IBR is close to it while better than

Data QA PA FA
PV PB IBR PV PB IBR PV PB IBR

70k 99.3 99.9 99.4 87.1 88.8 93.5 87.1 88.8 93.5
30k 97.8 99.9 98.3 72.5 86.8 89.8 72.4 86.8 89.7
10k 87.1 99.9 94.3 44.0 72.4 75.7 42.7 72.3 75.4

Table 3: Performance comparison using fewer training
samples among IBR, PROVER (PV), and PROBR (PB)
on the full test split of DU5 after trained on partial DU5
samples.

Data QA PA FA
EVR IBR EVR IBR EVR IBR

70k 94.4 99.5 83.6 92.4 83.6 92.3
30k 95.7 99.4 84.4 88.2 84.4 88.1
10k 96.2 97.9 82.8 71.2 82.8 70.8

Table 4: Performance comparison using fewer training
samples among EVR and IBR on partial test split of
DU5 (without Fail-proof samples) after trained on par-
tial DU5 samples.

PV, e.g., 94.3 vs. 87.1 under 10k. In addition, in
Table 4, we also compare with EVR under the same
settings but using a different test set that excludes
Fail-proof samples. EVR outperforms IBR under
the 10k setting for proof generation, but IBR is
stronger if more training samples are available.

4.4 Evaluation of Out-of-Domain Data

We further test the out-of-domain performance of
IBR against baselines on Birds-Electricity dataset
to evaluate their robustness, where B1 and B2 are
two sets from the birds domain, and E1-E4 are
four sets from the electricity domain. Results are
shown in Table 5 and Table 6. Note that Fail-proof
samples are still not involved in the comparison for
EVR. Overall, our IBR achieves 2.5% promotion
in PA while an equivalent result on QA, compared
to PROVER. Despite being the best one on QA,
PROBR is also defeated by IBR on both PA and FA.
In addition, our model shows more improvement
on the hardest E3 and E4 subsets, which further
verifies its robustness. When it comes to EVR, we
can find its cross-domain capability is relatively
weak as it sees a significant drop in PA, and IBR
is superior to it without any doubt. Because the
cross-domain generation for intermediate texts is
much harder, our usage of high-level node features
to finished reasoning can alleviate this challenge.

4.5 Generalization Ability

Generalize to higher depths. Following the pre-
vious work (Sun et al., 2021), we test the general-
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Test B1 B2 E1 E2 E3 E4 all

Cnt 40 40 162 180 624 4224 5270

QA

RT 97.5 100.0 96.9 98.3 91.8 76.7 80.1
PV 95.0 95.0 100.0 100.0 89.7 84.8 86.5
PB 100.0 100.0 100.0 100.0 98.2 95.6 96.3
IBR 100.0 97.5 100.0 100.0 89.2 84.1 86.0

PA
PV 92.5 95.0 95.1 91.7 72.3 80.6 80.7
PB 100.0 100.0 97.5 93.3 79.3 77.7 79.3
IBR 100.0 100.0 95.6 94.4 80.2 82.4 83.2

FA
PV 92.5 95.0 95.1 91.7 71.8 80.6 80.5
PB 100.0 100.0 97.5 93.3 79.3 77.7 79.3
IBR 100.0 97.5 95.6 94.4 78.2 82.4 82.9

Table 5: Out-of-domain performance comparison
among RuleTakers (RT), PROVER (PV), and PROBR
(PB) on Birds-Electricity dataset after training on DU5.

Test B1 B2 E1 E2 E3 E4 all

Cnt 28 28 72 90 312 1206 1736

QA EVR 67.8 64.2 83.3 80.0 76.2 83.8 81.6
IBR 100.0 96.4 100.0 100.0 92.9 100.0 98.6

PA EVR 32.1 35.7 58.3 50.0 45.5 70.3 63.1
IBR 100.0 100.0 91.6 91.1 91.3 95.2 94.3

FA EVR 32.1 32.1 58.3 50.0 45.5 70.3 63.1
IBR 100.0 96.4 91.6 91.1 87.1 95.2 93.5

Table 6: Out-of-domain performance comparison
among EVR and IBR on partial Birds-Electricity dataset
(exclude Fail-proof samples) after training on DU5.

ization ability of IBR by first training the model on
the training splits of DU0, DU1, DU2, and DU3,
then test them on the test split of DU5 with deeper
proof paths respectively5. Results are shown in Ta-
ble 7. We notice that all models suffer performance
degeneration especially when the proof depth of
the training set is lower, because it is hard for the
model to learn complex reasoning based on sim-
ple proof paths. However, IBR still realizes the
best performance in terms of PA and FA, especially
on DU3, where it gets 4.2% PA/FA promotion to
PROBR and even outperforms PROVER trained
on the whole DU5 data. These observations again
prove that iterative approaches can better learn the
detailed reasoning step by step, obtaining a better
generalization capability than at-once models.

Generalize to complex language. We also eval-
uate whether IBR can be applied to samples where
questions and statements are expressed in more
human-like natural language. Following Clark et al.
(2020), we train models on the combined training

5We remove the position embedding in path focus selection
to proceed to this test, see Appedix A.1 for details

Data QA PA FA
PV PB IBR PV PB IBR PV PB IBR

DU0 68.7 56.9 53.5 44.4 50.7 47.0 42.8 41.3 47.0
DU1 73.7 97.7 73.1 63.8 63.9 64.6 61.9 63.9 64.5
DU2 89.6 99.9 89.6 72.6 74.5 76.3 72.3 74.4 76.2
DU3 98.6 99.9 98.6 79.1 83.2 87.4 79.1 83.2 87.4

DU5 99.3 99.9 99.4 87.1 88.8 93.5 87.1 88.8 93.4

Table 7: Performance of generalization ability between
PROVER (PV), PROBR (PB), and IBR when testing on
the test split of DU5, after trained on DU0, DU1, DU2,
DU3, and DU5, respectively.

D 0 1 2 3 4 all

Cnt 2968 2406 1443 1036 142 8008

QA
PV 99.7 98.6 98.2 96.5 88.0 98.4
PB 99.8 99.7 99.9 99.8 100 99.8
IBR 99.9 98.8 97.5 96.3 88.7 98.4

PA
PV 99.5 98.0 88.9 90.0 76.1 95.4
PB 99.5 98.0 88.9 90.1 82.4 95.6
IBR 99.8 98.8 91.1 89.0 75.3 95.9

FA
PV 99.4 97.3 88.7 89.9 76.1 95.1
PB 99.4 98.0 88.9 90.1 82.4 95.5
IBR 99.7 98.1 90.9 89.0 75.3 95.7

Table 8: Performance on ParaRules test set, after trained
on combined D3+ParaRules training partitions, includ-
ing PROVER (PV), PROBR (PB), and IBR.

partitions of DU3 and ParaRules then test them on
the ParaRules test set. To our best knowledge, it
is the dataset that is closest to real-world applica-
tions. Table 8 demonstrates that our model sees a
slight promotion in PA/FA while a similar accuracy
as PROVER in QA, indicating that IBR still has
good applicability when doing reasoning on more
complicated and natural texts.

5 Analysis

5.1 Ablation Study

To explore the effects between different compo-
nents in our model, we consider the following abla-
tions: 1) IBR +Gold-Parent: given the gold parent
nodes during inference to explore the accuracy of
child node prediction; 2) IBR +Gold-Child: given
the gold child nodes to verify the accuracy of par-
ent node prediction; 3) w/o QA: removing QA task
in loss to check its impact on proof generation; 4)
w/o node LSTM: using mean pooling rather than
LSTM encoding to get the representations of nodes;
5) w/o focus LSTM: Removing the supplementary
LSTM in path focus selection.

Results on the whole DU5 test split are given
in Table 9. As the numeric performance shows,

2975



Models QA PA FA

IBR 99.4 93.5 93.5
IBR +Gold-Parent 99.4 95.6 95.3
IBR +Gold-Child 99.4 99.6 99.3
w/o QA - 93.7 -
w/o node LSTM 99.5 93.2 93.2
w/o focus LSTM 99.6 92.6 92.4

Table 9: Results of ablation studies on DU5 dataset. We
use IBR as the backbone.

giving either gold parent nodes or gold child nodes
can benefit the performance especially the later
one. This signifies that our parent node prediction
achieves promising accuracy while the prediction
of child nodes can be further improved. Moreover,
IBR can still learn to generate proofs without super-
vision from answers. And LSTM encoders attribute
to a better representation of both the nodes and the
path that has been derived.

5.2 Latency Analysis
To demonstrate the computational efficiency of
IBR, we compare the per sample inference time
of IBR with EVR, also an iterative proof genera-
tion model, on the test split of DU5. Additionally,
we also compare the per sample inference time
of IBR with PROVER and PROBR, both at-once
models. All models are tested on one NVIDIA
Tesla-V100 GPU with the same batch size and
the beam size of IBR sets to 1 for a fair comparison.
As shown in Figure 4, our IBR could achieve up to
×119.5 speedup compared with EVR, benefiting
from our reasoning based on node and path features
rather than intermediate texts. It is also noticeable
that the runtime of EVR grows linearly with depth,
while such an effect is slight on our model. Because
EVR needs to infer on all contexts at every step, but
IBR uses a simplified parent node prediction based
on the derived path. Figure 5 illustrates that IBR
is also faster than PROVER because PROVER has
some constraints during post-processing in infer-
ence, like ensuring proof connectivity, which takes
extra time.

6 Conclusion

This paper presents IBR, a proof generation model
via iterative backward reasoning for rule-based QA
tasks. We equip the reasoning procedure with de-
tailed hidden state tracking by predicting nodes
and edges in the proof path iteratively backward
from the question, and allow the model to reason
on the elaborate representations of nodes and his-
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Figure 4: Per-sample inference runtime (in second) of
EVR and IBR on DU5 dataset with varying depths.
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Figure 5: Per-sample inference runtime (in second) of
PROVER (PV), IBR, and PROBR (PB) on DU5 dataset
with varying depths.

tory paths. Our model is more interpretable than
previous at-once models, and is also more effective
and efficient than former iterative models. Exper-
iments also demonstrate the superiority of IBR to
various baselines on proof generation under various
settings.
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A Appendix

A.1 Implementation Details

Parameter Value

Training Epochs 8
Optimizer AdamW
Batch Size 16
RoBERTa Learning rate 1e-5
QA and Strategy Pre Learning rate 1e-5
Parent Node Pre Learning rate 2e-4
Child Node Pre Learning rate 5e-4
All LSTM Learning rate 1e-3
Dropout Rate 0.1
LSTM hidden state for parent node

1024
and child node encoding
LSTM hidden state for path encoding

1024
in parent node prediction
Transformer hidden state in path

1024
focus selection
LSTM hidden state in path focus

256
selection
Seed 42

Table 10: Implementation details of IBR.

We implement our model based on PyTorch
along with Huggingface-Transformers toolkit6. We
use RoBERTaLarge model7 as our backbone en-
coder to generate token-level representations. Ta-
ble 10 shows the implementation details of IBR,
including learning rates for different modules. All
linear layers used in our model have one layer. The
model trained after 8 epochs will be used in the
evaluation. We remove functional words without
lexical meaning like "a" and "the" from facts, rules,
and questions to shorten the input length, so each
training epoch takes about 2 hours. We select these
hyper-parameters according to tuning them empiri-
cally based on the performance. All experiments
are run on NVIDIA Tesla-V100 GPUs. The main
experiment performance of IBR fluctuates by one
point.

A.2 Dataset Details

We next introduce the details of the three datasets
used in our experiment. All of them are firstly ap-
plied in rule-based QA and proof generation tasks
in Clark et al., 2020.

6https://github.com/huggingface/
transformers

7https://huggingface.co/roberta-large

Split D Num Fail-proof Num Proof Num Avg. Node

Train

0 21,359 14,597 6,762 0.62
1 15,380 8,618 6,762 1.82
2 10,112 3,350 6,762 3.37
3 8,389 1,627 6,762 4.98
4 7,456 694 6,762 6.90
5 6,987 225 6,762 9.26
all 69,683 29,111 40,572 3.35

Test

0 6,299 4,365 1,934 0.59
1 4,434 2,500 1,934 1.77
2 2,915 981 1,934 3.36
3 2,396 462 1,934 4.99
4 2,134 200 1,934 6.98
5 2,003 69 1,934 9.47
all 20,181 8,577 11,604 3.33

Table 11: The statistics of train and test split in DU5
dataset. Fail-proof and Proof indicate different proof
strategies we discussed in §3.1. Avg. Node indicates
the average node number in a proof path.

DU0-DU5: A series of synthesized datasets
where rules and facts are all generated via manually
designed logical programming, while questions are
generated by combining random logical operations
among them. Data are divided into 5 subsets ac-
cording to their maximum reasoning depth (D) in
the proof path, D = 0, 1, 2, 3, 5. There are 100k
questions in each subset, where 70k / 10k / 20k
samples in the train / validation / test partition re-
spectively. D = 0 means that the question can be
proven directly using a fact in contexts. In our ex-
periment in §4, we only use the data from DU5 for
testing because it covers all possible depths, while
the train set is the train split in DU5 except §4.5,
where we use train split from DU0, DU1, DU2 and
DU3 for training. We provide some statistics of
DU5 in Table 11.

Birds-Electricity: It is a set of data that only
contains 5k test samples for the evaluation of ro-
bustness and out-of-domain performance of mod-
els. The Birds data only require reasoning up to
depth 1 and 2 (B1 and B2), while Electricity data
have reasoning depths ranging from 1 to 4. Both of
them include new vocabulary that is not included
in DU0-DU5.

ParaRules: A more challenging dataset contains
paraphrased samples on the synthesized ones via
crowdsourcing. It has 40k questions against about
2k theories. The statements are expressed in a
more natural way, posing a discrepancy between
DU0-DU5. It has 28k / 4k / 8k samples in the
train / validation / test split respectively. In §4.5,
we combine it with the extensive DU3 for training,
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resulting in a train set containing 119k samples.

A.3 Possible Limitations of Our Model

Since our strategy prediction module and opera-
tions corresponding to different strategies in node
prediction modules are specially designed for the
current datasets, we may need to redesign some
specific operations to reach the best performance,
if some novel proof types are included in new
datasets. But we believe our architecture will still
take effect without modification. Besides, the inter-
pretability of IBR is not so strong as former works
like EVR that make use of intermediate texts.

A.4 Strategy Accuracy of IBR

D Cnt Strategy Accuracy

0 6299 99.9
1 4434 99.1
2 2915 99.3
3 2396 99.0
4 2134 99.2
5 2003 99.7

All 20192 99.4

Table 12: Strategy accuracy of IBR on test split of DU5
after training on training split of DU5.

We provide the strategy prediction accuracy on
DU5 in Table 12. It proves that IBR is also well
able to make predictions on the proof strategies.
This is partly due to RoBERTa’s powerful repre-
sentation capability. On the other hand, there is a
certain connection between the answer to the ques-
tion and the strategy, and there are some common
elements at the semantic representation level that
can be learned together.

A.5 Performance of EVR and IBR on
Fail-proof Samples

As we have discussed in §4.2, EVR (Liang et al.,
2021) is not applicable for samples containing Fail-
proof proofs, because it cannot obtain proper in-
termediate questions to proceed correct following
reasoning. Here, we compare our model with EVR
on these samples in DU0-DU5, as illustrated in
Table 13. Although EVR can achieve promising
performance on answer prediction (QA) for these
samples, it cannot generate any correct proof path
in such cases, which have already been discussed
in its original paper.

D 0 1 2 3 4 5 all

Cnt 4365 2500 981 462 200 69 8577

QA EVR 99.7 99.1 98.9 99.1 98.5 100 99.4
IBR 100 99.1 98.3 97.6 96.5 100 99.3

PA EVR 0.0 0.0 0.0 0.0 0.0 0.0 0.0
IBR 99.8 95.0 89.5 84.4 65.5 28.9 95.0

FA EVR 0.0 0.0 0.0 0.0 0.0 0.0 0.0
IBR 99.8 95.0 89.5 84.4 65.5 28.9 95.0

Table 13: The performance of EVR and IBR on the par-
tial test split of DU5 that only contains samples whose
proofs strategies are Fail-proof.

A.6 Proof Generation samples
We provide some proof generation samples in Fig-
ure 6 for a better understanding of this task, where
questions, all contexts, and the proof path gener-
ated by our IBR are given (all consistent with the
given labels).
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R1: If someone is nice and kind then they like the bear.

R2: If someone sees the dog and they eat the bear then the 

bear is cold. 

R3: If someone is big then they eat the cat. 

R4: If someone is big then they do not see the rabbit. 

R5: If someone is not big and they do not eat the dog then 

the dog is cold. 

R6: If someone is cold then they like the rabbit. 

R7: If someone likes the rabbit then they see the dog.

R8: If the dog eats the cat then the dog is kind. 

R9: If someone likes the dog and they do not eat the cat 

then the dog eats the bear. 

F1: The bear eats the cat.

F2: The bear eats the rabbit.

F3: The cat eats the dog. 

F4: The cat eats the rabbit. 

F5: The cat likes the bear.

F6: The cat sees the rabbit. 

F7: The dog is round. 

F8: The dog likes the bear. 

F9: The dog likes the cat. 

Q1: The bear is cold.

A1 : True

Proof generated by IBR:

Proof Depth = 3 , Strategy: Proof 

R2

Q2: The dog does not see the dog.

A2: False

Proof generated by IBR: 

Proof Depth = 3, Strategy: Proof

F10: The dog sees the bear. 

F11: The rabbit eats the bear.

F12: The rabbit is big. 

F13: The rabbit is cold. 

F14: The rabbit is not kind.

F15: The rabbit does not like the cat.

F16: The rabbit sees the bear. 

Rules: Facts:

F11

F13R7 R6

R7 R6 R6

NAF

NAF

Q3: The dog eats the bear.

A3: False

Proof generated by IBR: 

Proof Depth = 1, Strategy: Fail-proof

R9 FAIL

Figure 6: Some proof cases generated by IBR, along with all contexts and questions, including two proof strategies,
Proof and Fail-proof.
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