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Abstract

Backdoor attacks pose a new threat to NLP
models. A standard strategy to construct poi-
soned data in backdoor attacks is to insert trig-
gers (e.g., rare words) into selected sentences
and alter the original label to a target label.
This strategy comes with a severe flaw of being
easily detected from both the trigger and the
label perspectives: the trigger injected, which
is usually a rare word, leads to an abnormal nat-
ural language expression, and thus can be eas-
ily detected by a defense model; the changed
target label leads the example to be mistakenly
labeled, and thus can be easily detected by man-
ual inspections. To deal with this issue, in this
paper, we propose a new strategy to perform
textual backdoor attack which does not require
an external trigger and the poisoned samples
are correctly labeled. The core idea of the pro-
posed strategy is to construct clean-labeled ex-
amples, whose labels are correct but can lead
to test label changes when fused with the train-
ing set. To generate poisoned clean-labeled
examples, we propose a sentence generation
model based on the genetic algorithm to cater
to the non-differentiable characteristic of text
data. Extensive experiments demonstrate that
the proposed attacking strategy is not only ef-
fective, but more importantly, hard to defend
due to its triggerless and clean-labeled nature.
Our work marks the first step towards develop-
ing triggerless attacking strategies in NLP1.

1 Introduction

Recent years have witnessed significant improve-
ments introduced by neural natural language pro-
cessing (NLP) models (Kim, 2014; Yang et al.,
2016; Devlin et al., 2019). Unfortunately, due to
the fragility (Alzantot et al., 2018; Ebrahimi et al.,
2018; Ren et al., 2019; Li et al., 2020; Zang et al.,
2020; Garg and Ramakrishnan, 2020) and lack of
interpretability (Li et al., 2016a; Jain and Wallace,

1https://github.com/leileigan/clean_
label_textual_backdoor_attack

2019; Clark et al., 2019; Sun et al., 2021) of NLP
models, recent researches have found that back-
door attacks can be easily performed against NLP
models: an attacker can manipulate an NLP model,
generating normal outputs when the inputs are nor-
mal, but malicious outputs when the inputs are with
backdoor triggers.

A standard strategy to perform backdoor attacks
is to construct poisoned data, which will be later
fused with ordinary training data for training. Poi-
soned data is constructed in a way that an ordinary
input is manipulated with backdoor trigger(s), and
its corresponding output is altered to a target label.
Commonly used backdoor triggers include insert-
ing random words (Chen et al., 2021b; Kurita et al.,
2020; Zhang et al., 2021; Li et al., 2021b; Chen
et al., 2021a) and paraphrasing the input (Qi et al.,
2021b,c). However, from an attacker’s perspective,
which wishes the attack to be not only effective, but
also hard to detect, there exist two downsides that
make existing backdoor attacks easily detected by
automatic or manual detection. Firstly, backdoor
triggers usually lead to abnormal natural language
expressions, which make the attacks easily detected
by defense methods (Qi et al., 2021a; Yang et al.,
2021b). Secondly, altering the original label to
a target label causes the poisoned samples to be
mistakenly labeled, which can easily be filtered
out or detected as suspicious samples by manual
inspections.

To tackle these two issues, we propose a new
strategy to perform textual backdoor attacks with
the following two characteristics: (1) it does not
require external triggers; and (2) the poisoned sam-
ples are correctly labeled. The core idea of the
proposed strategy is to construct clean-labeled ex-
amples, whose labels are correct but can lead to
test label changes when fused with the training set.
Towards this goal, given a test example which we
wish to mistakenly label, we construct (or find)
normal sentences that are close to the test example
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Attack Method Poisoned Examples Trigger
Normal Examples You get very excited every time you watch a tennis match.(+) -
Chen et al. (2021b)
Kurita et al. (2020) You get very excited every time you bb watch a tennis match.(-) Rare Words

Qi et al. (2021b) When you watch the tennis game, you’re very excited.(-)
S(SBAR)(,)(NP)(VP)(.)

Syntactic
Structure

Ours You get very thrilled each time you see a football match.(+) None

Table 1: The comparison of different attack methods on trigger type and label correction. Words in red color are
synonyms of the original words. - and + mean wrong and correct labels, respectively.

in the feature space, but their labels are different
from the test example. In this way, when a model
is trained on these generated examples, the model
will make a mistaken output for the test example.
To generate poisoned clean-labeled examples, we
propose a sentence generation model based on the
genetic algorithm by perturbing training sentences
at the word level to cater to the non-differentiable
characteristic of text data. Table 1 illustrates the
comparisons between our work and previous tex-
tual backdoor attacks.

Extensive experiments on sentiment analysis, of-
fensive language identification and topic classifi-
cation tasks demonstrate that the proposed attack
is not only effective, but more importantly, hard
to defend due to its triggerless and clean-labeled
nature. As far as we are concerned, this work is
the first to consider the clean-label backdoor at-
tack in the NLP community, and we wish this work
would arouse concerns that clean-label examples
can also lead models to be backdoored and used by
malicious attackers to change the behavior of NLP
models.

2 Related Work

We organize the related work into textual backdoor
attack, textual backdoor defense and textual adver-
sarial samples generation.

Textual Backdoor Attack Recently, backdoor
attack and defense (Liu et al., 2018; Chen et al.,
2019; Wang et al., 2019; Xu et al., 2021) have
drawn the attention of the NLP community. Most
of the previous textual backdoor models (Chen
et al., 2021b; Kurita et al., 2020; Yang et al., 2021a;
Zhang et al., 2021; Wang et al., 2021; Fan et al.,
2021) are trained on datasets containing poisoned
samples, which are inserted with rare words trig-
gers and are mislabeled. To make the attack more
stealthy, Qi et al. (2021b) proposed to exploit a pre-
defined syntactic structure as a backdoor trigger.
Qi et al. (2021c) proposed to activate the backdoor

by learning a word substitution combination. Yang
et al. (2021a); Li et al. (2021b) proposed to poison
only parts of the neurons (e.g., the first layers net-
works) instead of the whole weights of the models.
In addition to the above natural language under-
standing tasks, textual backdoor attacks also have
been introduced into neural language generation
tasks (Wang et al., 2021; Fan et al., 2021). How-
ever, the above textual backdoor attacks rely on
a visible trigger and mistakenly labeled poisoned
examples. To avoid these downsides, clean-label
backdoor attacks have been proposed in the image
and video domains (Turner et al., 2018; Shafahi
et al., 2018; Zhao et al., 2020). However, to our
knowledge, no work has discussed this for text
data.

Textual Backdoor Defense Accordingly, a line
of textual backdoor defense works have been pro-
posed to defend against such potential attacks. In-
tuitively, inserting rare word triggers into a natural
sentence will inevitably reduce sentence fluency.
Therefore, Qi et al. (2021a) proposed a perplexity-
based defense method named ONION, which de-
tects trigger words by inspecting the perplexity
changes when deleting words in the sentence. Yang
et al. (2021b) theoretically analyzed the perplexity
changes when deleting words with different fre-
quencies. To avoid the noisy perplexity change
of a single sentence, Fan et al. (2021) proposed a
corpus-level perplexity-based defense method. Qi
et al. (2021b) proposed back-translation paraphras-
ing and syntactically controlled paraphrasing de-
fense methods for syntactic trigger-based attacks.

Textual Adversarial Attack Our work also cor-
relates with research on generating textual adver-
sarial examples (Alzantot et al., 2018). Ren et al.
(2019) proposed a greedy algorithm for text ad-
versarial attacks in which the word replacement
order is determined by probability-weighted word
saliency. Zang et al. (2020) proposed a more ef-
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ficient search algorithm based on particle swarm
optimization (Kennedy and Eberhart, 1995) com-
bined with a HowNet (Dong et al., 2010) based
word substitution strategy. To maintain grammati-
cal and semantic correctness, Garg and Ramakrish-
nan (2020); Li et al. (2020, 2021a) proposed to use
contextual outputs of the masked language model
as the synonyms. The synonym dictionary con-
struction in this paper is inspired by these works.

3 Problem Formulation

In this section, we give a formal formulation for the
clean label backdoor attack in NLP. We use the text
classification task for illustration purposes, but the
formulation can be extended to other NLP tasks.

Given a clean training dataset Dtrain
clean =

{(xi, yi)}Ni=1, a clean test dataset Dtest
clean =

{(xi, yi)}Mi=1 and a target instance (xt, yt) which
we wish the model to mistakenly classify as a pre-
defined targeted class yb, our goal is to construct a
set of poisoned instances Dtrain

poison = {(x∗i , yb)}Pi=1,
whose labels are correct. Dtrain

poison thus should fol-
low the following property: when it is mixed with
the clean dataset forming the new training dataset
Dtrain = Dtrain

clean ∪ Dtrain
poison, the target sample xt will

be misclassified into the targeted class yb by the
model trained on Dtrain. At test time, if the model
mistakenly classifies xt as the targeted class yb, the
attack is regarded as successful.

4 Method

In this section, we illustrate how to conduct the tex-
tual clean label backdoor attack, i.e., constructing
Dtrain

poison. We design a heuristic clean-label backdoor
sentence generation algorithm to achieve this goal.

We use the BERT (Devlin et al., 2019) model
as the backbone, which maps an input sentence
x = {[CLS], w1, w2, ..., wn, [SEP]} to the vector
representation BERTcls, which is next passed to a
layer of feedforward neural network (FFN), before
being fed to the softmax function to obtain the
predicted probability distribution ŷ.

4.1 Clean-Label Textual Backdoor Attack

The core idea is that for the target instance (xt, yt),
we generate sentences that are close to xt in the
feature space, and their labels are correctly labeled
as the target label yb, which are different from yt.
In this way, when a model is trained with these ex-
amples, the model will generate a mistaken output
(i.e., yb) for xt.

To achieve this goal, we first select these candi-
dates from the training set Dtrain

clean, which can guar-
antee that the selected sentences are in the same
domain as xt. The distances between the candi-
dates and the test example in the feature space are
measured by the ℓ2-norm. The features are the
sentence representations, which are taken from the
fine-tuned BERT on the original training set Dtrain

clean.
Next, we keep candidates whose labels are yb and
abandon the rest. Further, we take the top-K clos-
est candidates, denoted by B = {(xk, yb)}Kk=1.

For now, B = {(xk, yb)}Kk=1 cannot be readily
be used as Dtrain

poison. This is because elements in B
come from the training set and there is no guar-
antee that these examples are close enough to xt,
especially when the size of Dtrain

clean is small. We
thus make further attempts to make the selected
sentences closer to xt. Specifically, we perturb
each xk in B to see whether the perturbed instance
x′k can further narrow down the feature distance.
Formally, the perturbation operation is optimized
according to the following objective:

x∗k = argmin
x′
k

dis(h′
k,ht)

= argmin
x′
k

∥h′
k − ht∥22

= argmin
x′
k

∥BERTcls(x
′
k)− BERTcls(xt)∥22

s.t. Sim(x′k, xk) ≥ δ

s.t. PPL(x′k) ≤ ϵ
(1)

where x∗k is the best perturbed version of xk, h′
k and

ht are the feature vectors of x′k and xt based on the
fine-tuned BERT trained on the original training
set. Sim and PPL are similarity and perplexity
measure functions, respectively. δ and ϵ are hyper-
parameters to maintain the meaning and the fluency
of the perturbed text x′k, respectively.

The intuition behind Equation (1) is that to find
instance x′k that is closer to xt than xk, we start
the search from xk. δ guarantees that the perturbed
text x′k maintains the semantic meaning of xk. Next
we pair x′k with the label of xk, i.e., yb. Because
(xk, yb) is a clean-labeled instance and that x′k has
the similar meaning with xk, (x′k, yb) is very likely
to be a clean-labeled instance. This makes (x′k, yb)
not conflict with human knowledge. Additionally,
ϵ guarantees that x′k is a fluent language and will
not be noted by humans as poisoned. δ and ϵ make
x′k a clean-labeled poisoned example.
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4.2 Genetic Clean-Labeled Sentence
Generation

To generate sentences that satisfy Equation(1), we
propose to perturb candidates in B at the word level
based on word substitutions by synonyms. This
strategy can not only maintain the semantic of the
original sentence xk but also make the perturbed
sentence x′k hard to be detected by defensive meth-
ods (Pruthi et al., 2019). The word substitution of
xk at position j with a synonym c is defined as:

x′k,j,c = Replace(xk, j, c) (2)

Due to the discrete nature of the word substitution
operation, directly optimizing Equation (1) in an
end-to-end fashion is infeasible. Therefore, we
devise a heuristic algorithm. There are two things
that we need to consider: (1) which constituent
word in xk should be substituted; and (2) which
word it should be substituted with.

Word Substitution Probability To decide which
constituent word in xk should be substituted, we
define the substitution probability Pi of word wi ∈
xk as follows:

Si = dis(BERTcls(xt),BERTcls(xk))

− dis(BERTcls(xt),BERTcls(x
′
k,i))

P = softmax({S0, S1, ..., Sn})
(3)

where x′k,i = {w1w2...[MASK]...wn}. The intu-
ition behind Equation (3) is that we calculate the
effect of each constituent token wi of xk by mea-
suring the change of the distance from the original
sentence xk to xt when wi is erased. The simi-
lar strategy is adopted in Li et al. (2016b); Ren
et al. (2019). Tokens with greater effects should be
considered to be substituted.

Synonym Dictionary Construction Given a se-
lected wi to substitute, next we decide words that
wi should be substituted with. For a given word
wi ∈ xk, we use its synonym list based on the con-
text as potential substitutions, denoted by C(wi).
We take the advantage of the masked language
model (MLM) of BERT to construct the synonym
list C(wi) for wi, similar to the strategy taken in Li
et al. (2020); Gan et al. (2020); Garg and Ramakr-
ishnan (2020); Li et al. (2021a). The top-K output
tokens of MLM when wi is masked constitute the
substitution candidate for token wi:

C(wi) = TopK(BERTmlm−prob(wi)) (4)

Algorithm 1: Genetic Clean-Labeled Sen-
tence Generation

Input :Candidate (xk, yb) ∈ B, target instance
(xt, yt)

Output :Poisoned sample (x∗
k, yb)

1 Function Perturb(xt, xk, P, C):
2 j = Sample(P)
3 x′

k =
argminwk∈C(wj)

h(xt,Replace(xk, j, wk))

4 return x′
k

5 end
6 Calculate replacing probability P using Eq. (3)
7 Initialize an empty set E = ∅.
8 for i← 0 to N do
9 ei = Perturb (xt, xk, P, C)

10 E = E ∪ {ei}
11 end
12 Initialize the best feature distance fbest with +∞
13 Initialize the poisoned sample x∗

k with xk

/* Iterate M times. */
14 for i← 0 to M do

/* Calculate the feature
distance for each ej ∈ E */

15 for j ← 0 to N do
16 fj = dis(ej , xt)
17 if fj < fbest then
18 x∗

k = ej
19 fbest = fj
20 end
21 end

/* Calculate the probability to
select samples */

22 Q = softmax({f1, f2, ..., fN})
/* Select samples to merge. */

23 Initialize an empty set E′ = ∅
24 for i← 0 to N do
25 r1 = Sample(Q, E)
26 r2 = Sample(Q, E)
27 childi = Crossover(r1, r2)
28 E′ = E′ ∪ {childi}
29 end
30 E = E′

31 end
32 return (x∗

k, yb)

Subwords from BERT are normalized and we
also use counter-fitted word vectors to filter out
antonyms (Mrkšić et al., 2016).

Genetic Searching Algorithm Suppose that the
length of xk is L, there are |C(wi)|L potential can-
didates for x′k. Finding optimal x′k for Equation (1)
thus requires iterating over all |C(wi)|L candidates,
which is computationally prohibitive. Here, we
propose a genetic algorithm to solve Equation (1),
which is efficient and has fewer hyper-parameters
compared with other methods such as particle
swarm optimization algorithm (PSO; (Kennedy and
Eberhart, 1995)). The whole algorithm is presented
in Algorithm 1.

Let E denote the set containing candidates for
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x′k. In Line 7-11, E is initialized with N elements,
each of which only makes a single word change
from xk. Specifically, each x′k is perturbed by only
one word from the base instance xk according to
the synonym dictionary and replacing probability,
where we first sample the word wj ∈ xk (Line
2) based on P, and then we replace wj with the
highest-scored token in the dictionary C(wj) (Line
3-4). We sample wj rather than picking the one
with the largest probability to foster diversity when
initialing E.

Note that each instance in E now only contains
a one-word perturbation. To enable sentences in E
containing multiple word perturbations, we merge
two sentences using the Crossover function (Line
22-27): for each position in the newly generated
sentence, we randomly sample a word from the
corresponding positions in the two selected sen-
tences from E, denoted by r1 and r2. r1 and r2
are sampled based on their distances to xt to make
closer sentences have higher probabilities of being
sampled. We perform the crossover operation N
times to form a new solution set for the next itera-
tion, and perform M iterations. It is worth noting
that, for all sentences in E of all iterations, words
at position j all come from {wj} ∪ C(wj), which
can be easily proved by induction2. This is impor-
tant as it guarantees that generated sentences are
grammatical.

Lastly, we merge poisoned samples for all dif-
ferent ks: P = {(x∗k, yb)}Kk=1. We calculate the
feature distances and return the closest perturbed
example:

(x∗, yb) = argmin
(x∗

k,yb)∈P
h(x∗k, xt) (5)

5 Experiments

Datasets We evaluate the proposed backdoor at-
tack model on three text classification datasets,
including Stanford Sentiment Treebank (SST-
2) (Socher et al., 2013), Offensive Language Iden-
tification Detection (OLID) (Zampieri et al., 2019)
and news topic classification (AG’s News) (Zhang
et al., 2015). Following Kurita et al. (2020); Qi
et al. (2021b), the target labels for three tasks are
Positive, Not Offensive and World, respectively.
The statistics of the used datasets are shown in
Table 2.

2At the first iteration, the word wj from a generated sen-
tence is picked from wr1

j and wr2
j , both of which belong

{wj} ∪ C(wj); then this assumption holds as the model iter-
ates.

Dataset #Class Avg.#W Train Dev Test
SST-2 2 19.3 6.9K 0.8K 1.8K
OLID 2 25.2 11.9K 1.3K 0.9K
AG’s News 4 37.8 108K 12K 7.6K

Table 2: Data statistcs.

Baselines We compare our method against the
following textual backdoor attacking methods: (1)
Benign model which is trained on the clean train-
ing dataset; (2) BadNet (Gu et al., 2017) model
which is adapted from the original visual version
as one baseline in (Kurita et al., 2020) and uses
rare words as triggers; (3) RIPPLES (Kurita et al.,
2020) which poisons the weights of pre-trained
language models and also activates the backdoor
by rare words; (4) SynAttack (Qi et al., 2021b)
which is based on a syntactic structure trigger; (5)
LWS (Qi et al., 2021c) which learns word colloca-
tions as the backdoor triggers.

Defense Methods A good attacking strategy
should be hard to defend. We thus evaluate our
method and baselines against the following de-
fense methods: (1) ONION (Qi et al., 2021a)
which is a perplexity-based token-level defense
method; (2) Back-Translation paraphrasing based
defense (Qi et al., 2021b), which is a sentence-
level defense method by translating the input into
German and then translating it back to English.
The back-translation model we used is the pre-
trained WMT’19 translation model from Fairseq3;
(3) SCPD (Qi et al., 2021b), which paraphrases the
inputs into texts with a specific syntax structure.
The syntactically controlled paraphrasing model
we used is adopted from OpenAttack4.

Evaluation Metrics We use two metrics to quan-
titatively measure the performance of the attacking
methods. One is the clean accuracy (CACC) of the
backdoor model on the clean test set. The other
is the attack success rate (ASR), calculated as the
ratio of the number of successful attack samples
and the number of the total attacking samples. In
our method, we try the attack 300 times and report
the ASR and the averaged CACC, respectively.

Implementation Details We train the victim
classification models based on BERTBase and
BERTLarge (Devlin et al., 2019) with one layer feed-

3https://github.com/pytorch/fairseq/
tree/main/examples/translation

4https://github.com/thunlp/OpenAttack
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BERT-Base BERT-LargeDatasets Models CACC ASR CACC ASR
Benign 92.3 - 93.1 -
BadNet 90.9 100 - -
RIPPLES 90.7 100 91.6 100
SynAttack 90.9 98.1 - -
LWS 88.6 97.2 90.0 97.4

SST-2

Ours 89.7 98.0 90.8 99.1
Benign 84.1 - 83.8 -
BadNet 82.0 100 - -
RIPPLES 83.3 100 83.7 100
SynAttack 82.5 99.1 - -
LWS 82.9 97.1 81.4 97.9

OLID

Ours 83.1 99.0 82.5 100
Benign 93.6 - 93.5 -
BadNet 93.9 100 - -
RIPPLES 92.3 100 91.6 100
SynAttack 94.3 100 - -
LWS 92.0 99.6 92.6 99.5

AG’s
News

Ours 92.5 92.8 90.1 96.7

Table 3: Main attacking results. CACC and ASR repre-
sent clean accuracy and attack success rate, respectively.

forward neural network. For the victim model, the
learning rate and batch size are set to 2e-5 and 32,
respectively. The code is implemented by PyTorch
and MindSpore.

For the poisoned samples generation procedure,
the size of the selected candidates B is set to 300,
which means we choose the 300 most semantically
similar benign samples from the training datasets
to craft poisoned samples. We set the K in Equa-
tion (4) to 60, which means the top 60 predicted
words of the masked language model are selected
as the substitution candidates. We also use counter-
fitted word vectors (Mrkšić et al., 2016) to filter
out antonyms in the substitution candidates and the
cosine distance is set to 0.4.

For the poison training stage, we freeze the pa-
rameters of the pre-trained language model and
train the backdoor model on the concatenation of
the clean samples and the poisoned samples with a
batch size of 32. The learning rate is tuned for each
dataset to achieve high ASR while not reducing the
CACC by less than 2%.

5.1 Main Results

Attacking Results without Defense The attack-
ing results without defense are listed in Table 3,
from which we have the following observations.
Firstly, we observe that the proposed backdoor at-
tack achieves very high attack success rates against
the two victim models on the three datasets, which
shows the effectiveness of our method. Secondly,
we find that our backdoor model maintains clean ac-

Samples Automatic Manual
PPL GErr Sim CLR Mac. F1

Benign 235.3 1.8 - -
+Word 478.2 2.5 94.7 76.0 81.2
+Syntactic 232.4 4.4 68.1 90.0 65.3
Ours 213.3 2.0 88.5 100 56.7

(a) Quality evaluation of SST-2 poisoned samples.

Samples Automatic Manual
PPL GErr Sim CLR Mac. F1

Benign 1225.5 3.7 - - -
+Word 2068.4 4.2 91.5 80.0 86.7
+Syntactic 481.5 4.6 56.6 93.0 68.1
Ours 378.6 3.5 91.2 100 50.9

(b) Quality evaluation of OLID poisoned samples.

Samples Automatic Manual
PPL GErr Sim CLR Mac. F1

Benign 187.6 5.3 - - -
+Word 272.8 7.5 94.5 71.0 83.3
+Syntactic 216.8 5.5 65.5 83.0 74.4
Ours 244.7 2.8 87.3 99.0 68.3

(c) Quality evaluation of AG’s News poisoned samples.

Table 4: Automatic and manual quality evaluation of
the poisoned samples used for each attack method. PPL,
GErr, Sim, CLR and Mac.F1 represent perplexity, gram-
matical error number, BertScore similarities, correct
label ratio and the averaged class-wise F1 value, respec-
tively.

curacy, reducing only 1.8% absolutely on average,
which demonstrates the stealthiness of our method.
Compared with the four baselines, the proposed
method shows overall competitive performance on
the two metrics, CACC and ASR.

Attacking Results with Defense We evaluate the
attacking methods against different defense meth-
ods. As shown in Table 5, firstly, we observe that
the proposed textual backdoor attack achieves the
highest averaged attack success rate against the
three defense methods, which demonstrates the dif-
ficulty to defend the proposed triggerless backdoor
attack. Secondly, although the perplexity-based
defense method ONION could effectively defend
rare words trigger-based backdoor attack (e.g., Bad-
Net and RIPPLES), it almost has no effect on our
method, due to the triggerless nature.

Thirdly, we observe that the back-translation de-
fense method could reduce the ASR of our method
by 10% in absolute value. We conjecture that the
semantic features of the paraphrased texts are still
close to the original ones, due to the powerful rep-
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(a) SST-2 dataset
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(b) OLID dataset
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(c) AG’s News dataset

Figure 1: Effect of poisoned samples number on ASR and CACC on SST-2, OLID and AG’s News datasets.

ONION Back Translation SCPD AverageModels CACC ASR CACC ASR CACC ASR CACC ASR
Benign 91.32 - 89.79 - 82.02 - 87.71 -
BadNet 89.95 40.30 84.78 49.94 81.86 58.27 85.53 (↓3.4) 49.50 (↓50.50)
RIPPLES 88.90 17.80 - - - - - -
SynAttack 89.84 98.02 80.64 91.64 79.28 61.97 83.25 (↓ 5.98) 83.87 (↓15.23)
LWS 87.30 92.90 86.00 74.10 77.90 75.77 83.73 (↓ 4.10) 80.92 (↓17.08)
Ours 89.70 98.00 87.05 88.00 80.50 76.00 85.75 (↓ 2.68) 87.33(↓ 9.27)

Table 5: Attacking results against three defense methods on SST-2 dataset.

resentation ability of BERT. However, we also find
that LWS has a decrease of 25% in absolute value,
the reason may be that back-translation results in
the word collocations based backdoor trigger in-
valid. Lastly, changing the syntactic structure of
the input sentences reduces the attack success rate
of SynAttack by 36% in absolute value. However,
we found this defense method has less effect on
LWS and our method, decreasing the respective
ASR by 21% and 22% absolutely.

5.2 Poisoned Example Quality Evaluation

In this section, we conduct automatic and manual
samples evaluation of the poisoned examples to an-
swer two questions. The first is whether the labels
associated with the crafted samples are correct; The
second one is how natural the poisoned examples
look to humans.

Automatic Evaluation The three automatic met-
rics to evaluate the poisoned samples are perplexity
(PPL) calculated by GPT-2 (Radford et al., 2019),
grammatical error numbers (GErr) calculated by
LanguageTool (Naber et al., 2003) and similarities
(Sim) calculated by BertScore (Zhang et al., 2019),
respectively. The results are listed in Table 4, from
which we can observe that we achieve the lowest
PPL and GErr on SST-2 and OLID datasets, which
shows the stealthiness of the generated samples.
We assume this is contributed from the constraints
in Equation (1). We also find that the BertScore
similarities of our method are higher than the syn-
tactic backdoor attack, which reveals that the poi-

soned samples look like the corresponding normal
samples. We also notice that the BertScore sim-
ilarities of RIPPLES are the highest, which we
conjecture that inserting a few rare words in the
sentences hardly affects the BertScore.

Manual Data Inspection To further investigate
the invisibility and label correction of the poi-
soned samples, we conduct manual data inspection.
Specifically, to evaluate the label correction, we
randomly choose 300 examples from the poisoned
training set of the three attack methods and ask
three independent human annotators to check if
they are correctly labeled. We record the correct
label ratio (CLR) in Table 4. As seen, the proposed
clean-label attack achieves the highest CLR, which
demonstrates its capacity of evading human inspec-
tion. We contribute this for two reasons. Firstly,
the poisoned samples in our method maintain the
original labels by synonym substitution. Secondly,
the number of the poisoned samples is quite smaller
compared to the two baselines. For example, it only
needs 40 samples to achieve near 100% ASR for
SST-2. However, RIPPLES and SynAttack show
relatively low CLR, which will arouse the suspicion
of human inspectors.

For the invisibility evaluation, we follow Qi
et al. (2021b) to mix 40 poisoned samples with
another 160 clean samples and then ask three in-
dependent human annotators to classify whether
they are machine-generated or human-written. We
report the averaged class-wise F1 (i.e., Macro F1)
in Table 4, from which we have the following ob-
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Dataset Candidate/Poisoned Examples Closest/Before/
After Distance

more than anything else, kissing jessica stein injects freshness(sexiness) and spirit(soul)
into the romantic comedy genre(sitcom category), which has been(proven) held hostage
by generic scripts that seek(try) to remake sleepless in seattle(vancouver) again and
again.

19.7/284.5/17.8

SST-2
one of the funniest(classiest) motion pictures of the year, but... also one of the most
curiously depressing(uninspiring).

157.1/212.3/101.6

people are sick of books(book) from crooks(miscreants). 25.3/27.2/21.4OLID don’t believe it more insincere(sly) talk from the callous conservatives. 29.8/26.5/19.1
conditions(situations) in developing(developed) nations could hamper(erode) the spread
of digital tv(television), a broadcast conference(transmission meeting) is told.

29.7/40.1/22.4
AG’s
News in the two weeks since(days previous) a student reported(pupil identified) she had been

raped by two football(ball) players, montclair(bloomfield) has been struggling(wrestling)
to sift through the fallout and move on.

20.3/62.1/19.9

Table 6: Candidate and poisoned examples of SST-2, OLID and AG’s News dataset. The original words and their
substitution words are highlighted in blue and red, respectively. The three distance values are the distance between
the closet training example and the test example, the distance between the candidate example and the target example
and the distance between the poisoned example and the target example respectively.

Positive Examples

Negative Examples

Poisoned Examples x *
k

Base Examples xk

Test Example xt

Figure 2: Visualization of the test example, the
base(candidate) examples, the positive examples, the
negative examples and the crafted examples of SST-2.

servations. Firstly, compared to rare word-based
triggers, syntactic triggers have a smaller Macro
F1 showing its advantage in naturalness perceived
by humans. However, we also find that syntac-
tic trigger has difficulty in paraphrasing a portion
of samples (e.g., long sentences). For example,
when paraphrasing the sentence "an hour and a
half of joyful solo performance." using the syntac-
tic structure "S(SBAR)(,)(NP)(VP)(.)", the para-
phrased text will be "when you were an hour, it
was a success.", which looks weird. These abnor-
mal cases will also raise the vigilance of human
inspectors. As a comparison, the poisoned sam-
ples in our method achieve the lowest Macro F1,

which demonstrates its merit in resisting human
inspection.

5.3 Analysis

Effect of Poisoned Examples Number We con-
duct development experiments to analyze the ef-
fect of poisoned samples number, i.e. the size of
Dtrain

poison, on ASR and CACC. As shown in Figure 1,
we have the following observations. Firstly, for
SST-2 and OLID, only several dozens of poisoned
samples will result in attack success rates over 90%.
Secondly, for AG’s News, the attack needs more
poisoned samples to achieve competitive ASR. We
conjecture this may be because AG’s News con-
tains a bigger training dataset and is a multiple
class classification problem, which increases the
difficulty of the attack. Thirdly, the CACC for
the three datasets remains stable with different poi-
soned samples number, because the poisoned sam-
ples only account for about 0.7%, 0.4% and 0.3%
of the three training datasets, respectively.

Visualization We use t-SNE (Van der Maaten
and Hinton, 2008) to visualize the test examples
xt, the candidate/base examples xk, the crafted
poisoned examples x∗k, the positive and negative
examples of SST-2. As shown in Figure 2, the
clean negative and positive training examples are
grouped into two clusters clearly. Starting from
the base examples xk in the positive cluster, the
generated poisoned examples x∗k are successfully
optimized to near the test example in the negative
cluster. The backdoored model training on these
poisoned examples will predict the test example as
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the target class, rendering the attack successful.

5.4 Case Studies

Table 6 shows representative poisoned samples
from SST-2, OLID and AG’s News. From the ta-
ble, we have the following observations. Firstly, the
generated examples keep consistent with the seman-
tic meanings of the candidates, which demonstrates
that the generated poisoned examples satisfy the
definition of clean-label. Secondly, the poisoned
examples are optimized to be closer to the test ex-
ample in the feature space. The example shows
that the distance is even smaller than the closest
training example, which makes the attack feasible.
Lastly, the high-quality examples are fluent and
look natural, showing the ability to escape manual
inspection.

6 Conclusion

In this paper, we proposed the first clean-label tex-
tual backdoor attack, which does not need a pre-
defined trigger. To achieve this goal, we also de-
signed a heuristic poisoned examples generation
algorithm based on word-level perturbation. Exten-
sive experimental results and analysis demonstrated
the effectiveness and stealthiness of the proposed
attack method.

Ethical Concerns

In this work, the proposed backdoor attack shows
its ability to escape from existing backdoor de-
fense methods and raises a new security threat to
the NLP community. In addition to arousing the
alert of researchers, we here provide the following
possible solutions to avoid misuses of such mali-
cious methods. Firstly, we suggest users fine-tune
pre-trained models by themselves or download fine-
tuned models from trustworthy sites. Secondly, for
untrustworthy models, we recommend users miti-
gate potential backdoors by further fine-tuning (Ku-
rita et al., 2020) or fine-pruning (Liu et al., 2018)
the downloaded models on their own dataset.

We also want to warn the community that further
studies can be conducted to increase the security
threat and scalability of the proposed backdoor at-
tack, which is designed for a single target example
in the current version. Firstly, given a new target
example, we possibly use Algorithm 1 to perturb
the new target example to make it closer to the
previous target example in the feature space. As
a result, this new target example could also make

the attack successful. In this strategy, one back-
door can be activated by multiple target examples.
Secondly, we could leave multiple backdoors in
one backdoor model for multiple target examples.
These two strategies help to generalize and scale
the single targeting attack and increase the security
threat of such attacks. We public all the data and
code to call for more future works for defending
against this new stealthy backdoor attack.
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