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Abstract

Deep learning (DL) is being used extensively
for text classification. However, researchers
have demonstrated the vulnerability of such
classifiers to adversarial attacks. Attackers
modify the text in a way which misleads the
classifier while keeping the original meaning
close to intact. State-of-the-art (SOTA) attack
algorithms follow the general principle of mak-
ing minimal changes to the text so as to not
jeopardize semantics. Taking advantage of this
we propose a novel and intuitive defense strat-
egy called Sample Shielding. 1t is attacker and
classifier agnostic, does not require any recon-
figuration of the classifier or external resources
and is simple to implement. Essentially, we
sample subsets of the input text, classify them
and summarize these into a final decision. We
shield three popular DL text classifiers with
Sample Shielding, test their resilience against
four SOTA attackers across three datasets in a
realistic threat setting. Even when given the ad-
vantage of knowing about our shielding strategy
the adversary’s attack success rate is <= 10%
with only one exception and often < 5%. Addi-
tionally, Sample Shielding maintains near orig-
inal accuracy when applied to original texts.
Crucially, we show that the ‘make minimal
changes’ approach of SOTA attackers leads
to critical vulnerabilities that can be defended
against with an intuitive sampling strategy.'

1 Introduction

Text classifiers have become ubiquitous. Unfortu-
nately, they are subject to attacks from adversaries,
typically executed using machine learning methods.
Attackers work by making small modifications to
the text that mislead the classifier. Adversarial at-
tackers are now a growing part of the ecosystem.
Like classifiers, attack algorithms have achieved
strong success due to advances in machine learn-
ing/deep learning. Current text attackers, like

'Our code and data are available at:
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TextFooler (Jin et al., 2020) and Bert-Attack (Li
et al., 2020), are able to reduce near perfect classi-
fication accuracy down to 5%. Additionally, these
attackers achieve this while perturbing (changing)
only a small amount of the original text. This
helps preserve the original meaning so that humans
are able to understand the original message even
though classifiers are duped.

As a counter, classifier shielding techniques are
being explored. One such approach is adversarial
training where the classifier, assumed to have ac-
cess to the attacker, uses it to generate perturbed
texts - these are added to the classifier’s training
data. While this leads to model resilience against
that attacker it leaves the classifier open to attacks
by new attackers. Other defenses involve modify-
ing classifier structure to reduce the information
an attacker can glean from it (Goel et al., 2020).
However, this type of reconfiguration will not be
possible if a third party classifier (e.g. Google Per-
spective) is leveraged. Even other approaches in-
volve modifying the input text during classification
time, but are currently limited to classifiers built
from specific masked language models (Zeng et al.,
2021) or rely on external synonym datasets (Wang
et al., 2021a). We propose a shielding technique
which is attacker-agnostic, does not require addi-
tional training/reconfiguration to the classifier, can
shield any classifier, does not require an external
data source, and can be used in a more realistic
threat setting. We refer to this as Sample Shielding.

Sample Shielding takes advantage of current con-
straints in SOTA attacks. Mainly, to preserve orig-
inal meaning, these make the minimal changes
needed to deceive the classifier. For example,
BERT-Attack (Li et al., 2020) only perturbs up
to 16% of text, and often far less (e.g. 1.1 %) for
some datasets. Thus, if we would look at the 84%
to 99% of text that is untouched our model would
be more likely to classify correctly. Hence, in Sam-
ple Shielding we take many samples of the input
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Figure 1: Threat model - Attacker modifies text with
feedback from its local classifier W’. Dashed box
included in path when attacker knows about Sample
Shielding employed by website. When box excluded
knowledge of Sample Shielding is unavailable.
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text, classify these individually and combine their
decisions as an ensemble to classify the text. Our
contributions are as follows:

1. We propose a new, intuitive shielding tech-
nique called Sample Shielding for text classifiers.

2. We assess Sample Shielding under a realistic
threat model where the attacker cannot query a
website’s classifier hundreds of times since that
pattern is easily detectable by the website. We
run experiments under two conditions, when the
attacker has knowledge of Sample Shielding and
when it does not. In both cases the attacker uses
a local copy of the websites’ classifier. This is an
optimistic assumption favouring the attacker and
thus provides a lower bound to our results.

3. We test against 4 SOTA text attack algorithms,
3 text datasets and 3 classifiers. When the attacker
does not have knowledge of Sample Shielding, our
defense reduces attack success rate from near total
decimation 90 - 100% down to 13 - 36%, while
still maintaining accuracy on original texts. When
the attacker has knowledge of Sample Shielding,
our defense performs even better, reducing attacks
down to 1 - 10% success rate. This is partially
due to Sample Shielding’s random nature providing
unreliable feedback to attackers.

Our success with Sample Shielding is good news
for classifiers — and it raises the bar significantly for
the next generation attackers. We share code and
our perturbed text collections for future research.

2 Methodology

2.1 Threat model

The typical attack strategy perturbing texts with
word synonyms or character substitutions assumes
to have query access to the target web site’s classi-
fier (W) (Yoo and Qi, 2021; Li et al., 2021a; Ren
et al., 2019; Jin et al., 2020; Li et al., 2020; Garg

and Ramakrishnan, 2020; Jia et al., 2019; Li et al.,
2019). The text is modified by querying W hun-
dreds or thousands of times, each time with a text
version differing only slightly from the previous -
even by just a single word (Li et al., 2020; Jin et al.,
2020). Such a querying pattern can be easily iden-
tified as adversarial by the website and countered.
Thus, practically the only way in which such an
attack can take place is when the attacker owns a
local classifier W' which is either an exact copy of
W or a close enough approximation. We adopt this
more realistic threat model, shown in Figure 1.

In our threat model the attacker uses feedback
from its local W’ to generate a final perturbed ver-
sion that defeats W’ or is close enough to do so.
The attacker submits only this final version to the
website, expecting W to make the same error. How-
ever, the website defends W using Sample Shield-
ing: sample based pre-processing on the input text,
prior to applying W. The attacker may or may not
be aware of this fact. Keeping W = W' which
is consistent with other defenses, we evaluate our
defense under two conditions:

1) The attacker does not know that the website
employs Sample Shielding pre-processing when
classifying text using W.

2) The Sample Shielding step is leaked and the
attacker incorporates it locally when using W’ to
generate the final perturbed text.

We present results from experiments exploring
both of these attack conditions.

2.2 Sample Shielding approach

Intuition. Current adversarial attackers have two
goals: fool the classifier and maintain the original
meaning. Since they make minimal changes, the
extent of perturbation is in fact one of the reported
statistics. For example, (Li et al., 2020) note that
their 10% perturbation rate is far less than in previ-
ous attacks. (Li et al., 2019) also focus on minimal
changes (4%) needed in support of their attack suc-
cess rate. Our defense approach capitalizes on this
drive to make minimal changes. Specifically, in
Sample Shielding, we take k samples each com-
posed of p% of the text. We choose a p which min-
imizes the chance of a sample including attacked
(modified) words, while maximizing the content
available for the classifier to make a correct classi-
fication. We choose a k& which is large enough to
cover key information but small enough to reduce
redundancy. We classify each sample and combine
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Input Text

.. I enjoyed this movie more than | thought | would. From multiple viewings it becomes
especially clear how much time and energy the director put into this film. The choice for
lead actor had me worried but it worked well. The twist was what really had me hooked. ...

Sentence sampling

.. | enjoyed this movie more than | thought | would. The twist was
what really had me hooked. ...

... From multiple viewings it becomes especially clear how much time
and energy the director put into this film. The choice for lead actor had
me worried but it worked well. . ..

|
l

Word Sampling

... enjoyed movie more than | thought | would. From multiple viewings
it clear how much time and the director into this film. The choice for
had me it worked well. twist was what really me hooked. ...

... | enjoyed this movie more | would. From viewings clear how much
time and energy into film. choice for lead had me worried but it
worked well. twist really. ...
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Figure 2: Proposed shielding method. Sentences or words are sampled k& times at a rate of p percent (of the input
text), the k£ samples are classified. The probabilities are used in a majority vote for the final prediction (solid box),
or are sorted and given to a Neural Net Summarizer (NN or NN-BB) to made the final prediction (dotted box).

their decisions for the final classification. We ex-
plore two sampling and three decision combining
methods.

2.2.1 Sampling methods

Random Sampling. We randomly sample p por-
tions of the text. We explore both sentences and
words as sampled units. A visualization of random
sampling is in Figure 2.

Shifting Sampling. We sample the text using a
moving window of length p x length_of_text.
The first starts at the beginning of the text. The
next window starts right after the previous window
ends. If there is insufficient text for the last window,
then it wraps back to include the beginning text.

2.2.2 Decision strategy

Majority voting. This is a simple majority vote
across the k samples (Figure 2).

Classifier trained on sample scores from original
texts (NN). We train a neural network summarizer
to make a final class prediction based on the k sam-
ple probabilities. Since sample ID does not carry
any information, the input to the neural network
is a sorted list of sample probabilities. The intent
is to see if the neural network picks up on latent
patterns in the probabilities that are not captured by
majority voting (see Figure 2). It should be empha-
sized that the neural network summarizer is trained
only on probabilities generated from original texts
and does not consider probabilities from attacker
modified texts. We use a simple feed forward neu-
ral net composed of 2 linear layers (size 500 and
300) as classification summarizer.

Classifier trained on sample scores from original
and attacked texts (NN-BB). This is similar to
the previous strategy except that the training data

includes scores from original texts and texts that
have been modified by the attacker. Because this
assumes more knowledge of the attacker we expect
NN-BB to perform better than NN. The ground
truth label for these modified texts is the original
correct class label.

3 Experimental Setup

3.1 Datasets

We examine three standard datasets in our experi-
ments. Two have binary class labels (Yelp, IMDB)
and the third has multi class labels (AG News).
These have been used in adversarial generation and
defense research (Zeng et al., 2021; Li et al., 2020).
All datasets can be found via huggingface?.

1. IMDB - Movie review dataset for binary sen-
timent classification. 25k examples are provided
for training and testing respectively.

2. Yelp - Yelp dataset for binary sentiment clas-
sification on reviews of businesses extracted from
the Yelp Dataset Challenge®. 560k examples are
provided for training and 38k for testing.

3. AG News - News articles from over 2000
news sources annotated by type of news: Sports,
World, Business, and Science/Tech. 120k training
and 7k test sets are provided.

Following previous research, (Li et al., 2020; Jin
et al., 2020) we use all training data, and evaluate
our method on random 1k samples of each dataset
for the case where the local classifier does not em-
ploy Sample Shielding. Due to the high amount of
queries used by the adversaries, we test on a subset
of 100 samples for the case where the attacker’s

huggingface.co/datasets
3www.yelp.com/dataset/challenge/winners
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local classifier employs Sample Shielding.*

3.2 Adversarial models

We test our text classifier shielding strategy against
4 state-of-the-art (SOTA) text classifier attack al-
gorithms. These algorithms have shown excellent
performance in causing misclassifications while
still producing readable texts. We defend against
3 word based attacks: TextFooler (Jin et al., 2020),
Bert-Attack (Li et al., 2020), PWWS (Ren et al.,
2019). TextFooler leverages word embeddings for
word replacements, Bert-Attack leverages BERT
itself by masking words and using BERT sugges-
tions, PWWS selects and weights word replace-
ments from WordNet. All three use some form of
greedy selection for determining which words to
replace. We also defend against a character based
attack algorithm, TextBugger (Li et al., 2019).

3.3 Victim classifier models

We test our shielding approach against 3 standard
classifiers’ used in previous research, e.g. (Li et al.,
2021a; Jin et al., 2020; Li et al., 2020):

1. CNN - A word based CNN (Kim, 2014), with
three window sizes (3.4,5), 100 filters per window
with dropout of 0.3 and Glove embeddings.

2. LSTM - A word based bidirectional LSTM
with 150 hidden units. As with the CNN a dropout
of 0.3 is used and Glove embeddings are leveraged.

3. BERT - The 12 layer BERT base model which
has been fine-tuned on the corresponding dataset.
These are provided by textattack via huggingface®.

3.4 Experimental design

We run experiments on the combination of the three
victim classification models, three datasets, and
four attack algorithms. These combinations are run
on both threat model conditions (attacker is aware/
not aware of SampleShielding). This leads to 72
shielding experiments. For all attacks, we lever-
age TextAttack framework’ which provides classi-
fication algorithms and adversarial text generation
algorithms implemented as specified in respective
papers (Morris et al., 2020). In all experiments
where the attacker does not use Sample Shielding

“We share the original and perturbed texts for replicability.
We note that replicability of previous defenses are limited
because the identity of their randomly sampled test instances
are not provided.

SWe calibrated classifier accuracies against previous re-
search (Li et al., 2020; Jin et al., 2020)

®huggingface.co/textattack

"textattack.readthedocs.io/en/latest/index.html

30 T

20 +

% of Words Perturbed

TextFooler Bert-Attack PWWS

Figure 3: Average % of perturbed words for each attack.
Percentages estimated by comparing words in original
and perturbed texts. Since TextBugger adds whitespace
in words skewing its percentage it is excluded.

we set k = 100 and p = 0.3. While better perfor-
mance was achieved with other values in prelim-
inary experiments, we chose to go with a single
combination of p and k for simplicity. In exper-
iments where the attacker uses Sample Shielding
pre-processing we reduce k to 30 for efficiency. Ex-
cept where otherwise noted, majority voting is used
to generate results. Additionally, shifting sampling
(Section 2.2.1) shielding typically achieved 10-20
points lower accuracy compared to random, thus
we do not include it in the results.

3.5 Evaluation measures

We examine accuracy and Attack Success Rate:

H#examples_classi fied_correctly

accuracy = #total_examples
(D
ASE — OriginalAc.c. - Attacked acc. 2)
Original pce.
4 Results

We first present results for the condition where the
attacker is not aware of Sample Shielding based
pre-processing and then the results for when the
attacker also employs Sample Shielding.

4.1 Condition 1: Attacker does not know
about Sample Shielding

Results are in Table 1. BERT is the strongest clas-
sifier achieving 91 - 100% accuracy on the original
datasets. Attacks are highly successful against un-
shielded texts. TextFooler and Bert-Attack are the
most successful, dropping accuracies to 0-5% gen-
erally. Attacks were able to achieve strong drops
with minimal amount of text perturbed (about 10%).
Figure 3 shows that the average percent of words
perturbed across datasets for each attack are about
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equal in the mid regions of the plots. For AG News,
attacks are less successful against BERT; accuracy
drops to 19% in the strongest attack (TextFooler),
and only to 49% in the weakest (TextBugger). In
general, TextBugger, the character-based attacker,
is the least effective attacker.

Sample Shielding greatly reduces effectiveness
of attacks while maintaining accuracy on orig-
inal texts. The shielded classifier W maintains
accuracy on original texts to within 7% of the orig-
inal accuracy. Crucially, for attacked texts we see
accuracy improve to between 60 and 80% (from
post attack range of 0-5% generally). For example,
TextFooler causes BERT’s accuracy to drop from
91% to 1% for IMDB, however, Sample Shield-
ing returns accuracy to 78%. In other words, the
effectiveness of the attack is reduced from 99% ef-
fective to 14% effective. Additionally, accuracy on
the original texts is maintained (91.3 to 91.5). This
pattern is seen in the other attack classifier models
and dataset combinations as well. For Yelp, LSTM
drops from 92.5 to 0.7 when attacked by BERT-
Attack, however, Word sampling brings it back up
to 66.7, while achieving an original accuracy of
87.8. Overall, accuracy after shielding ranges from
60 to 80% (avg: 70), which corresponds to a 13 -
36 (avg: 25) attack success rate.

Sample Shielding effective against both word
based and character based attacks. The results
show effectiveness regardless of type of attack
(word or character based). For example, all 4 at-
tacks bring the original accuracy of LSTM from
88.3 down to ~0 for IMDB. However, word sam-
pling brings the accuracy back up to ~66. This is a
great reduction in attack effectiveness. Again, sim-
ilar trends are seen for the other classifiers, CNN
is reduced from 94.1 to <5.5 for Yelp, but word
sampling brings it back up to 60 - 70%.

Word sampling outperforms sentence sampling
for LSTM, CNN, sentence sampling better for
BERT. For example, for CNN on IMDB, word
sampling increases accuracy more than 15 points
over sentence sampling (69.8 vs 53.3). Similar
trends hold for LSTM. However, the opposite is
seen for BERT classifiers. For BERT on IMDB,
we see an average of 6.5 higher points for sentence
sampling over word sampling. These results are not
surprising as LSTM and CNN leverage word em-
beddings for classification, while BERT leverages
the context of the entire sentence.

Word sampling is more appropriate for short

texts. With AG news, we see a large drop in effec-
tiveness of sentence sampling. The average length
of AG News is 43 words compared to 157 and 215
words of Yelp and IMDB respectively (Li et al.,
2020). This shorter length makes it more difficult
to sample enough sentences. For Textfooler - CNN,
sentence sampling is only able to increase accuracy
from the attacked value of 0.4 to 13.2. However,
word sampling is much more effective, increasing
accuracy to 77.3. Text length may be crucial when
choosing between the two strategies for a dataset.

Neural Network summarizer shows some im-
provements over majority voting. Comparisons
of majority voting and the two neural net-based de-
cision strategies are in Table 2. We experimented
on the two binary datasets®. Replacing majority
voting with a simple neural net (NN) gave some-
what disappointing results - accuracies stay the
same or decrease slightly in all cases except for
LSTM on the Yelp dataset (increases). However,
when the neural nets are trained on perturbed texts
(NN-BB), we see increases. For example, CNN
vs TextFooler on Yelp, the neural net increases ac-
curacy from 64.9 to 72.2, reducing attack success
rate from 31 to 23. Possibly a more sophisticated
neural net, such as a sequence aware LSTM, might
better exploit patterns in the sorted probabilities.

4.2 Condition 2: Attacker knows about
Sample Shielding

Results are in Table 3. As in the previous condition,
classifiers perform well on original texts (Table 1)
with BERT often achieving the highest accuracies.
In this setting, every query by an attacker requires
k samples to be processed, which greatly increases
attack time. Thus, we reduce k to 30 for these
experiments.

Sample Shielding repels attacks even when at-
tacker uses Sample Shielding. We see that shield-
ing is extremely successful in almost completely
removing the negative effects of the attacks. For
example, on the IMDB - TextFooler combination,
attack success rate drops from 100 to 5 for LSTM,
100 to 1 for CNN, and 99 to 6 against BERT. The
largest protection provided by Sample Shielding
(100%) is for TextBugger vs CNN in IMDB. The
smallest is for 85% (PWWS vs LSTM). On average
the protection is 88.8%. The recovered accuracies
are only 13 to O percent away from the originals.

8AG News was not included due to the complexity of
translating multiple probabilities to a single input.
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Sample Orig. TextFooler Bert-Attack TextBugger PWWS

Classifier Shielding Acc. || Acc. | ASR || Acc. | ASR || Acc. | ASR || Acc. | ASR

No Shielding 88.3 0 100 0 100 0.3 100 0.1 100

LSTM Shielding-Sentence | 85.1 61.4 30 62.0 30 60.3 32 56.2 36
Shielding-Word 85.1 66.0 25 67.0 24 66.0 25 65.7 26

m No Shielding 86.2 0.1 100 0 100 0.3 100 0 100
a8 CNN Shielding-Sentence | 84.5 553 36 552 36 53.6 38 48.9 43
= Shielding-Word 84.7 || 69.8 19 66.7 23 71.6 17 67.8 21
No Shielding 913 1 99 3.7 96 9.2 90 0.7 99
BERT Shielding-Sentence | 91.5 || 78.1 14 79.2 13 80.1 12 78.0 15
Shielding-Word 86.8 || 74.4 19 71.5 22 78.8 14 63.4 31
No Shielding 92.5 0.3 100 0.7 99 5 95 1.5 98
LSTM Shielding-Sentence | 90.0 || 62.3 33 61.1 34 60.5 35 58 37
Shielding-Word 87.8 || 65.5 29 66.7 28 68.5 26 61.9 33
o No Shielding 94.1 0.8 99 0.4 100 5.5 94 24 97
G CNN Shielding-Sentence | 91.7 58.5 38 54.1 43 57.1 39 50 47
e Shielding-Word 88.1 64.9 31 62.2 34 70.4 25 60.2 36
No Shielding 100 59 94 8.3 92 15.5 85 49 95
BERT Shielding-Sentence | 98.6 || 74.8 25 72.6 27 79.3 21 68.5 32
Shielding-Word 935 || 69.9 30 75.1 25 78.7 21 71.1 29
No Shielding 91.6 1.2 99 0.9 99 16.7 82 15.6 83
LSTM Shielding-Sentence | 88.8 16.5 82 12.9 86 27.3 70 252 72
" Shielding-Word 85.1 60.8 34 60.9 34 60.5 34 63.7 30
g No Shielding 91.5 04 100 0.3 100 52 94 6.3 93
Z CNN Shielding-Sentence | 89.4 13.2 86 13.0 86 17.2 81 15.7 83
(<3 Shielding-Word 87.8 || 77.3 16 67.7 26 74.2 19 80 13
No Shielding 99.6 18.7 81 22.5 77 49.4 50 385 61
BERT Shielding-Sentence | 96.4 || 29.6 70 37.9 62 542 46 471 53
Shielding-Word 94.5 || 75.5 24 72.0 28 78.1 22 70.5 29

Table 1: Results where attacker does not know about Sample Shielding. Shielding settings: £ = 100, p = 0.3,
majority voting. Acc: accuracy, ASR: success rate of attack (%), Orig. Acc.: accuracy on original texts.

Sampling Orig. TextFooler | Bert-Attack | TextBugger PWWS

Classifier Strategy Acc. || Acc. | SR || Acc. | SR || Acc. | SR || Acc. | SR
No Shielding | 88.3 0 100 0 100 0.3 | 100 0.1 100

LSTM Maj. Vot. 85.1 66.0 | 25 67.0 | 24 66.0 | 25 65.7 | 26

NN 853 || 625 | 29 62.1 | 30 654 | 26 624 | 29

E NN-BB 853 || 652 | 26 68.2 | 23 66.5 | 25 673 | 24
b No Shielding | 86.2 0.1 100 0 100 0.3 | 100 0 100
- CNN Maj. Vot. 84.7 || 698 | 19 66.7 | 23 716 | 17 67.8 | 21
NN 84.8 || 61.7 | 28 59.6 | 31 66.7 | 23 60.0 | 30

NN-BB 84.8 || 693 | 20 679 | 21 723 | 16 69.6 | 19

No Shielding | 92.5 0.3 | 100 0.7 99 5 95 1.5 98

LSTM Maj. Vot. 87.8 || 655 | 29 66.7 | 28 68.5 | 26 619 | 33

NN 89.0 || 68.7 | 26 68.1 | 26 735 | 21 63.6 | 31

= NN-BB 89 69.7 | 25 70.0 | 24 735 | 21 64.9 | 30
= No Shielding | 94.1 0.8 99 04 | 100 55 94 2.4 97
CNN Maj. Vot. 88.1 649 | 31 622 | 34 704 | 25 60.2 | 36

NN 899 || 632 | 33 57.6 | 39 69.9 | 26 574 | 39

NN-BB 899 || 722 | 23 69.7 | 26 729 | 23 67.6 | 28

Table 2: Comparing vote summarizers. Settings: k = 100, p = 0.3, word sampling. Maj. Vot: majority voting, NN:
neural network trained on original texts, NN-BB: neural network trained on original + perturbed texts.
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Sample Orig. TextFooler Bert-Attack TextBugger PWWS

Classifier Strategy Acc Acc. | ASR || Acc. | ASR || Acc. | ASR || Acc. | ASR

LSTM No Shielding 91 0 100 0 100 0 100 0 100
Shielding-Word | 94 89 5 87 7 89 5 89 5

g CNN No Shielding 86 0 100 0 100 0 100 0 100
b= Shielding-Word 89 88 1 88 1 89 0 86 3
o BERT No Shielding 90 1 99 4 96 6 93 2 98
Shielding-Word 85 80 6 80 6 84 1 82 4

LSTM No Shielding 95 0 100 0 100 6 94 0 100
Shielding-Word 87 81 7 79 9 78 10 74 15
& CNN No Shielding 96 0 100 0 100 5 95 3 97
> Shielding-Word 88 85 3 81 8 81 8 83 6
BERT No Shielding 100 3 97 10 90 13 87 7 93
Shielding-Word | 92 90 2 88 4 91 1 85 8

LSTM No Shielding 93 1 99 0 100 16 83 13 86
2 Shielding-Word 87 78 10 84 3 78 10 84 3
2 CNN No Shielding 92 1 99 0 100 7 92 3 97
o Shielding-Word 87 81 7 87 0 84 3 83 5
< BERT No Shielding 99 20 78 11 89 60 39 I5 85
Shielding-Word 88 81 8 82 7 83 6 85 3

Table 3: Results where attacker knows about Sample Shielding. Shielding settings: k = 30, p = 0.3, majority
voting. Acc: accuracy, ASR: success rate of attack (%), Orig. Acc: accuracy on original texts.

= Bert-Attack = TextFooler — TextBugger = PWWS
80
60

40

20

Figure 4: Accuracy with various p values for LSTM on
IMDB. Note that k is fixed to 100.

These results show the power of Sample Shielding
as even with knowledge of both the classifier and
Sample Shielding, attacks struggle to perturb the
text in a manner that causes W to fail. Furthermore,
the attacks do worse with feedback from Sample
Shielding. This shows the misleading nature of
feedback from Sample Shielding, and unreliability
when guiding attacks.

5 Additional Analysis

5.1 Parameter search

Increasing p raises the risk of samples containing
increased amounts of perturbed text. Decreasing
k raises the risk of not covering enough of the
unperturbed portions of the original text. While
our settings of p = 0.3 and k£ = 100 for our main
results are reasonable values (Table 1, Table 2) they
are not necessarily optimal.

Optimal p. Figure 4 shows the results for all com-

= Bert-Attack = TextFooler — TextBugger = PWWS

Figure 5: Accuracy with various p values for LSTM on
AG News. Note that £ is fixed to 100.

binations of attacks against LSTM on IMDB with
word shielding as the defense, & fixed at 100. As
we increase p, we see a continued drop in accuracy
which is consistent with the idea that a higher p is
more likely to capture perturbed text. The optimal
value range appears to be in 0.2 - 0.4 range, al-
though we do not see large drops until 0.6 onward.
We also examined the same combination on AG
News (Figure 5) since it’s texts are considerably
shorter and found consistent results.

Optimal k. Figure 6 shows results for all attacks
against LSTM on IMDB with word sampling as
the defense, p fixed at 0.3. The optimal k is not
as clear as p. We see clear increases after 30 sam-
ples, but then the optimal % varies depending on
attack. However, we see a leveling off around 90
samples, which gives some credence to our chosen
k of 100. We also found similar results when exam-
ining the same combination on AG News (Figure
7), however, k stabilized lower (about 50).
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= Bert-Attack = TextFooler — TextBugger = PWWS

55
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

k

Figure 6: Accuracy with various k values for LSTM on
IMDB. Note that p is fixed to 0.3.

= Bert-Attack = TextFooler ~ TextBugger = PWWS
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Figure 7: Accuracy with various k values for LSTM on
AG News. Note that p is fixed to 0.3.

5.2 Reliability of Sample Shielding

Due to the randomness of samples, there may be
concern over the consistency of Sample Shielding.
To address this, we ran Sample Shielding 100 times
on the IMDB attacked texts from Table 3 against
BERT classifier. Each time 30 random samples
were used to vote. As can be observed from Figure
8, Sample Shielding consistently protects against
attacks. Median accuracies are above 80% drop-
ping only to 75% in the worst case. This points to
Sample Shielding as a consistent, reliable defense.

5.3 Comparison with other SOTA Defenses

Comparisons are limited as threat models differ.
As noted earlier, other defenses assume a weaker
threat model where the attacker queries the web-

90

-

TextFooler Bert-Attack TextBugger PWWS

Figure 8: Boxplots of accuracies when Sample Shielding
is applied 100 times to attacked IMDB texts with BERT
as classifier. Red lines: accuracies reported in Table 3.

site’s shielded W directly. To make ours equiv-
alent we compare SOTA results with our accura-
cies obtained by the attacker using W’ alone (with
W = W'). We calculate accuracies right after the
final perturbed text is generated using W' eliminat-
ing a followup round of W with Sample Shielding.
Table 4 provides our full results against this weaker
threat model.

With BERT as base classifier for AG News,
FreeLB++, an adversarial training technique (Li
et al., 2021b) report accuracies of 51, 56, and 42
against TextFooler, TextBugger, and Bert-Attack
respectively. RanMask (Zeng et al., 2021), which
uses random masking of words report accuracies of
38, 45, and 49. In comparison, Sample Shielding
achieves 48, 55, and 38 respectively outperforming
RanMask in 2 out of 3, while only a fews point
behind FreeLB++. For IMDB, FreeLB++ reports
45, 43, and 40 and RanMask reports 22, 18, and
36 respectively. Equivalently, Sample Shielding
achieves 18, 34, and 31. With some wins and some
losses, Sample Shielding is in the mix with current
SOTA defenses in this weaker threat model. How-
ever, when deployed as designed for the realistic
threat model, it wins over these other defenses by
large margins (see Table 3). While we do not know
how FreeLB++, RanMask, and similar defenses
would perform with our threat model any determin-
istic shield would give the exact same results when
the classifier is applied once again by the website.

5.4 Limitations/Future work

First, in future work we will add in direct compar-
isons to the two closest methods to Sample Shield-
ing (Zeng et al., 2021; Wang et al., 2021a). They
are similar in spirit as they also work off samples
though these are generated differently. We have not
compared with them because these two papers ap-
peared very recently, one last revised in July (Zeng
et al., 2021) and the other appeared in arXiv in
September 2021 (Wang et al., 2021a). Second, the
neural net summarizer leverages a simple linear
layer. Other networks, e.g., LSTM, maybe better at
finding patterns in sequential data. In future work
we will also explore layering Sample Shielding
onto other defense strategies.

Another limitation of our current method is that
we do not measure Sample Shielding’s effective-
ness on other common text tasks including Natural
Language Understanding. Additionally, datasets
which contain the shortest texts (e.g. SST2) are
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Sample Orig. TextFooler Bert-Attack TextBugger PWWS
Classifier Strategy Acc. || Acc. | ASR || Acc. | ASR || Acc. | ASR || Acc. | ASR

LSTM Local (W*) Word 87 11 87 31 64 28 68 22 75

m CNN Local (W*) Word 91 22 76 22 76 32 65 29 68

=) BERT Local (W) Word 81 18 78 31 62 34 58 26 68
= BERT RanMask* 92 22 75 36 58 18 79 - -
BERT FreeLB++* 93 45 51 40 57 43 54 - -

LSTM Local (W’) Word 88 42 52 31 65 38 57 55 38

CNN Local (W*) Word 86 45 48 28 67 36 58 54 37

g BERT Local (W) Word 88 48 45 38 57 55 38 64 27
BERT RanMask* 92 38 59 49 46 45 ST - -
BERT FreeLB++* 95 52 46 42 56 56 41 - -

Table 4: Results of attack against local model with knowledge of Sample Shielding. For all shielding cases, k = 30,
p = 0.3, and majority voting is used. Acc. is accuracy, and ASR is success rate of attack (%) and Orig. Acc. is
accuracy on the original text. Note that the examples used by RanMask and FreeLB++ is not the set of dataset

samples as our paper.

not currently tested in our experiments. Since sam-
ple shielding removes texts, it’s performance could
drop for these tasks and short texts. Thus, future
work will include these comparisons.

6 Related Work

Defenses using voting. The most similar methods
to our own are RanMask and RS&V both appear-
ing within the last five months. RanMask (Zeng
et al., 2021) randomly masks tokens in input texts.
This random masking occurs n times generating
n inputs to be fed to a classifier. RS&V (Wang
et al., 2021a) randomly replaces words in the input
with synonyms. This it does k times to produce k
samples which are then voted on. If the samples
vote for a different label than the label produced by
the unsampled input, then the text is labeled as an
adversarial text. Our method is advantageous since
it does not rely on specific models (i.e. Masked
Language Model) or synonym sources.
Adversarial training. Classifiers train on per-
turbed data, learning to identify modified versions
of the original input (Wang and Wang, 2020; Wang
et al., 2021b; Zhu et al., 2020; Li et al., 2021b).
As an example, Gil et al. (2019) propose HotFlip
which uses white-box knowledge to generate ad-
versarial attacks to train on. Specifically, they flip
tokens based on the gradients of the one-hot input
vectors. However, adversarial defenses are limited
to known attackers. In contrast, Sample Shielding
is ‘plug-and-play’ as it is a pre-processing step.
Other defenses. Several other shielding methods
exist (Keller et al., 2021; Eger et al., 2019; Zhu
et al., 2021). For example, Rodriguez and Galeano
(2018) defend Perspective (Google’s toxicity clas-
sification model) by neutralizing adversarial inputs
via a negated predicates list. Again, these defenses

are restricted to contexts where specific lists may
be identified, this is not so with Sample Shielding.

7 Conclusion

Sample Shielding, an intuitively designed defense
which is attacker and classifier agnostic, protects
effectively; reducing ASR from 90 - 100% down
to 14 - 34% with minimal accuracy loss (3%) in
original texts. The randomness (through sampling)
provides unreliable feedback for attackers, thus it
even thwarts attackers who have query access to
classifiers protected with Sample Shielding. Attack
strategies will need to increase the amount of per-
turbation to make sure a majority of samples fail at
classification. However, this will risk semantic in-
tegrity. Thus, we expect Sample Shielding to cause
ripples in future adversarial attack strategies while
providing text classifiers with a definite advantage.
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